
ProvideX

Contents iii
Preface xiii
Introduction 17
Directives 27
System Functions 389
System Variables 555
Mnemonics 577
System Parameters 653
Control Object Properties 701
Special Files and Devices 737
Special Command Tags 769
Appendix 809
Error Codes and Messages 828
Index 843

Language Reference

Version 8.30

ProvideX is a trademark of Sage Software Canada Ltd.
All other products referred to in this document are trademarks or registered trademarks of their
respective trademark holders.

©2009 Sage Software Canada Ltd. — Printed in Canada
8920 Woodbine Ave. Suite 400, Markham, Ontario, Canada L3R 9W9

All rights reserved. Reproduction in whole or in part without permission is prohibited.

The capabilities, system requirements and/or compatibility with third-party products described herein
are subject to change without notice. Refer to the Sage ProvideX website www.pvx.com for
current information.

Publication Release: V8.30
January 20, 2009

ProvideX Language Reference V8.30 Back iii

Contents

Preface
Using this Documentation xiii
Conventions . xiv

Chapter Outlines . xvi

1. Introduction
About ProvideX . 17
Basic Concepts . 19

Punctuation/Syntax . 25

2. Directives
Overview . 27
ACCEPT Read Single Keystroke 28
ADD INDEX Add Key to Keyed File 29
ADDR Load & Lock Program in Memory. 30
AUTO Automatic Line Generation. 31
BEGIN Reset Files and Variables 32
BREAK Immediate Exit of Loop 33
BUTTON Control Button. 34
BYE Terminate ProvideX Session 39
CALL Transfer to Subprogram. 40
CASE Define Branch Points . 42
CHART Control Chart . 43
CHECK_BOX Control Check Box. 47
CLEAR Reset Variables. 54
CLIP_BOARD Use Windows Clipboard 55
CLOSE Close File. 56
CONTINUE Initiates Next Iteration of Loop 57
CREATE TABLE Create Keyed File (EFF). 58
CUSTOM_VBX Create/Control VBX 61
CWDIR Change Working Directory 62
DATA Define Data Elements. 63
DAY_FORMAT Specify DAY Format 64
DEF CLASS Define Object Class 65

DEF GID/UID Define Group/User ID 67
DEF FN Define Function . 68
DEF MSG Define Temporary Message 70
DEF OBJECT Define Object. 71
DEF systab= Define System Tables 74
DEF sysvar= Define System Variables 76
DEFAULT Branch If No Matching Case. 77
DEFCTL Define/Redefine CTL Values 78
DEFPRT Define as Printer . 81
DEFTTY Define Terminal Size . 82
DELETE Remove Lines from Program 83
DELETE OBJECT Remove Windows Object. 84
DICTIONARY Data Dictionary Access 85
DIM Define Arrays and Strings 86
DIRECT Create File with Keyed Access 89
DIRECTORY Create Subdirectory. 91
DISABLE Disable Use of Prefix Table Entry. 92
DISABLE CONTROL Disable Control 93
DISABLE EVENT Internal Event Disable. 94
DROP Removes Program from Memory 95
DROP_BOX Control Drop Box 96
DROP CLASS Delete Class Definition 102
DROP INDEX Drop Key from Keyed File 103

Contents Directives

ProvideX Language Reference V8.30 Back iv

DROP OBJECT Delete Object 104
DROP..ON Drag and Drop . 105
DUMP Display Variables. 106
EDIT Edit Line in Program . 108
ENABLE Re-Enable Use of Prefix Table Entry 110
ENABLE CONTROL Enable Control. 111
ENABLE EVENT Internal Event Enable 112
END Halt Program Execution 113
END DEF End Definition of Multi-line Function . . 114
END SWITCH End Branching of a Program. 115
END WITH End Branching of a Program 116
END_IF End IF Directive. 117
ENDTRACE End Trace Output 118
ENTER Specify Arguments . 119
ERASE Delete File/Directory from System. 120
ERROR_HANDLER Define Generic Handler 121
ESCAPE Interrupt Program Execution 122
EXECUTE Execute Basic Instruction 123
EXIT Terminate Subprogram and Return 124
EXITTO End Loop, Transfer Control 125
EXTRACT Read and Lock Data. 126
EXTRACT RECORD Read-Lock Data Record 128
FILE Create New File from File Descriptor. 130
FIND Locate and Read Data . 131
FIND RECORD Locate & Read Data Record. 132
FLOATING POINT Switch to Scientific Notation . . 133
FOR..NEXT Loop While Incrementing 134
FUNCTION Declare Object Method 137
GET_FILE_BOX Ask for Filename 139
GOSUB Execute Subroutine . 141
GOTO Transfer within Program 142
GRID Control Grid . 143
H_SCROLLBAR Control Horizontal Scrollbar 153
HIDE Hide Control . 156
IF..THEN..ELSE Test Condition 157
INDEXED Create Indexed File 159
INPUT Get Input from Terminal 160
INSERT Insert New Record in File 162
INVOKE Execute Operating System Command 163
IOLIST Specify Variable List . 165
KEYED Create Single/Multi-Keyed File 166
KEYED LOAD Load and Repair Keyed File 172
LET Assign Value to Variable . 173
LIKE Inherit Properties. 174

LINE_SWITCH Redirect Console Input/Output175
LIST List Program Statements.176
LIST_BOX Control List Box. .178
LOAD Read Program into Memory194
LOAD CLASS Pre-Load Class Definition195
LOAD DATA Load Program Constants.196
LOCAL Designation of Local Data197
LOCK Reserve File for Exclusive Use.200
LONG_FORM Use Long Variable Names.201
MENU_BAR Control Menu Bar.202
MERGE Read/Append Lines from File 206
MESSAGE_LIB Establish Message Library208
MNEMONIC Define File Command Sequence 210
MSGBOX Display PopUp Message Box.212
MULTI_LINE Control Multi-Line Input215
MULTI_MEDIA Control Multimedia Interface223
NEXT End FOR Loop .225
NEXT RECORD End SELECT Statement 226
OBTAIN Get Hidden Terminal Input.227
ON EVENT Event Processing .228
ON..GOSUB Conditional Subroutine Execution . . .230
ON..GOTO Conditional Transfer of Control 231
OPEN Open for Processing .232
PASSWORD Apply Password & Encryption.239
PERFORM Call Subprogram, Share Variables.243
POP Premature Exit from Stack245
POPUP_MENU Create Popup Menu 246
PRECISION Change Current Precision.248
PREFIX Set File Search Rules .249
PREINPUT Place Data in Input Queue254
PRINT Display Information .255
PROCESS Call a NOMADS Panel256
PROCESS SERVER Establish Remote Server 258
PROGRAM Create or Assign Program File259
PROPERTY Declare Object Properties.261
PURGE Clear Data from a File263
QUIT Terminate ProvideX Session264
RADIO_BUTTON Control Radio Button265
RANDOMIZE Set Random Key270
READ Read Data from File .271
READ DATA Read Data from Program.273
READ RECORD Read Record from File 275
REDIM Re-Dimension Array .277
REFILE Clear Data from File .278

Contents System Functions

ProvideX Language Reference V8.30 Back v

RELEASE Terminate ProvideX Session. 279
REM Remark . 280
REMOVE Delete Record from File. 281
RENAME Change a File's Name 282
RENAME CLASS Change Name of Class 283
RENAME CONTROL Change CTL Values 284
RENAME..INDEX Rename Keys in Keyed File. 285
RENUMBER Change Program Line Numbers 286
REPEAT..UNTIL Repetitive Execution 287
RESET Reset Program State . 288
RESTORE Reset Program Data Position 289
RETRY Re-Execute Failing Instruction. 290
RETURN Subroutine/Function Return. 291
ROUND Control Rounding. 293
RUN Transfer and Execute a Program 294
SAVE Write Program to File. 295
SAVE CONTROL Save Image of Control 296
SAVE DATA Save Program Constants 297
SAVE FILE Save Bitmap to Disk 298
SELECT..FROM..NEXT RECORD Query Records . 299
SERIAL Create a Sequential File. 302
SET_FOCUS Set Input Focus . 304
SET_NBF Set Number of Keyed I/O Buffers 305
SET_PARAM Set System Parameters 306
SETCTL GOSUB on CTL Event. 307
SETDAY Change Local Date . 308
SETDEV Set Device Type Name. 309
SETDEV IOL= Alter IOList for Open Channel 310
SETDEV KEY Alter Keys of Open Channel 311
SETDEV PROGRAM Set I/O Program 312
SETDEV SEP= Change File SEP 313
SETDEV TSK() Add to TSK() List 314
SETDRIVE Change Default Drive 315
SETERR Set Error Transfer . 316

SETESC Set Interrupt Processing.317
SETFID Set FID() Definition .320
SETMOUSE Control/Set Mouse.321
SETTIME Set Local Time .323
SETTRACE Enable Program Tracing324
SHORT_FORM Use Short Variable Names325
SHOW Show Control .326
SORT Create File for Sorting. .327
START Restart ProvideX .328
STATIC Add Local Properties at Runtime.329
STOP Halt Program Execution.330
SWITCH..CASE Branch Control 331
SYSTEM_HELP Invoke Windows Help.332
SYSTEM_JRNL File System Journalization334
TABLE Define Translation Table340
TRANSLATE Translate Contents of Variable341
TRISTATE_BOX Control Tristate Box344
UNLOCK Remove Exclusive Use from File.349
UNTIL End REPEAT Loop. .350
UPDATE Update Existing Record in File351
USER_LEX Define Alternate Keywords 352
VARDROP_BOX Control Variable Drop Box 354
VARLIST_BOX Control Variable List Box 360
V_SCROLLBAR Control Vertical Scrollbar 365
VIA Assign Variable Indirectly368
VIDEO_PALETTE Control Video Colours.370
WAIT Temporarily Halt Execution.372
WAIT FOR EVENT Wait for Event373
WEND End WHILE Loop .374
WHILE..WEND Repeat Statements375
WINPRT_SETUP Windows Printer Setup376
WITH..END WITH Object Reference Construct382
WRITE Add/Update Data in File 383
WRITE RECORD Write Record 386

3. System Functions
Overview . 389
@() Location Function . 390
@X() / @Y() Convert X/Y Coordinates 391
ABS() Absolute Value . 392
ACS() Return Arc-Cosine . 393
AND() Logical AND . 394
ARG() Command-Line Argument 395

ASC() Get Internal Character Value.396
ASN() Returns Arc-Sine Function397
ATH() Convert Hex .398
ATN() Return Arc-Tangent .399
BIN() Binary String from Numeric Value400
BSZ() Bank Memory Size .401
CHG() Notify if Variable Has Changed402

Contents System Functions

ProvideX Language Reference V8.30 Back vi

CHR() ASCII Character of Value 403
CMP() Compress Data . 404
COS() Return Cosine . 406
CPL() Compile String . 407
CRC() Cyclic-Redundancy-Check. 408
CSE() Case Compare . 409
CTL() Return CTL Definition 410
CVS() Convert String . 412
DEC() Get Binary of String . 414
DIM() Generate String/Get Array Size 415
DIR() Get Current Directory . 417
DLL() Call Windows DLL . 418
DSK() Get Current Disk Drive 421
DTE() Convert Date . 422
ENV() Get Environment Values 424
EPT() Return Exponent Value. 426
ERR() Test Error Value . 427
EVN() Evaluate Numeric Expression. 429
EVS() Evaluate String Expression 430
EXP() Raise to Base Ten . 431
FFN() Find File Number. 432
FIB() Return File Information Block. 434
FID() Return File Information Descriptor. 438
FIN() Return File Information. 441
FPT() Return Fractional Part 445
GAP() Return Odd Parity String. 446
GBL() Reference Global String Variable 447
GEP() Return Even Parity String 449
HSA() Highest Sector Available 450
HSH() Generate Modified Value 451
HTA() Get Hex Value of String 454
HWN() Highest Unused Window Number. 455
I3E() Convert to/from IEEE Format. 456
IND() Return Next Record Index 457
INT() Return Integer Portion 458
IOL() Get IOList Specification. 459
IOR() Logical OR. 460
JST() Justify String . 461
JUL() Return Julian Date . 463
KEC() Return Key of Current Record 465
KEF() Return First Key of File. 466
KEL() Return Last Key of File 467
KEN() Return Key After Next. 468
KEP() Return Prior Record's Key. 469

KEY() Return Key of Next Record.470
KGN() Generate Record Key. .471
LCS() Return Lowercase String.472
LEN() Return String Length .473
LNO() Return Line Number. .474
LOG() Return Base 10 Logarithm475
LRC() Longitudinal-Redundancy Check 476
LST() Return List Form of Statement477
MAX() Return Maximum Value.478
MEM() Return Memory Value479
MID() Return Substring. .480
MIN() Return Minimum Value.481
MNM() Return Mnemonic Value482
MOD() Return Modulus .483
MSG() Return Message Text .484
MSK() Scan String for Mask .486
MXC() / MXL() Return Maximum Column/Line .488
NEW() Create New Object .489
NOT() Invert String Bits/Logical Condition.490
NUL() Return Test for Null .491
NUM() Convert String to Value492
OBJ() Return Object Information493
OPT() Return File Open Options495
PAD() Pad/Truncate String .496
PCK() Pack Numeric Data .498
PFX() Return Prefix Value .499
PGM() Return Program Line.500
POS() Scan String .502
PRC() Round Number to Precision.503
PRM() Return Parameter Value 504
PTH() Return Pathname .506
PUB() List Public Programs. .507
RCD() Return Next Record .508
RDX() Convert ASCII to Radix-40509
REC() Expand IOList Specification.510
REF() Control Reference Count512
RND() Return Random Number513
RNO() Return Next Record Number514
SEP() Return Field Separator.515
SGN() Return Sign of Value .516
SIN() Sine Function. .517
SQR() Square Root .518
SRT() Sort String .519
SSZ() Return Sector Size .521

Contents System Variables

ProvideX Language Reference V8.30 Back vii

STK() Program Call Stack . 522
STP() Strip Leading/Trailing Characters. 523
STR() Convert Numeric to String 525
SUB() Substitute Text . 527
SWP() Swap Data . 528
SYS() Invoke Operating System Command 529
TAN() Return Tangent . 531
TBL() Convert String Via Table. 532
TCB() Return Task Information 534
TMR() Timer. 541
TRX() Convert Radix-40 to ASCII 542

TSK() Returns Entry from Task List543
TXH() Text Height .544
TXW() Text Width .545
UCS() Return Upper Case String546
UCP() UnCompress Data .547
UPK() Unpack Numeric Data 548
VIN() / VIS() Obtain Value of Variable.549
XEQ() In-line Subprogram Execute551
XFA() Extended Field Attributes.552
XOR() Logical Exclusive OR .554

4. System Variables
Overview . 555
BKG Background Process Status 556
CHN Channels Open . 556
CTL Control Signal Code . 557
DAY Return Current System Date 557
DLM Return System Directory Delimiter 558
DSZ Data Space Size Available to User 559
EOM End of Message Character String 559
ERR Last System-Detected Error Value 560
ERS Line Number of Last Error 560
ESC ASCII ESCape Character 561
GFN Highest Available Global Channel 561
GID Operating System Process Identifier. 562
HFN Highest Available Local Channel 562
HLP Last Specified HLP= Value. 563
HWD Starting/Home Directory 563
LFA Last File Number Accessed 563
LFO Last File Number Opened 564
LIP Input Location: Column, Line 564
LPG Lead Program Name . 564
LWD Current Working Directory 565
MSE Mouse State . 565

MSL Length of String Matching Last MSK567
NAR Number of Arguments, Start ProvideX 567
NID Network or Network Node ID.567
PFX Current Prefix Setting .568
PGN Current Program Pathname 568
PRC Precision Currently In Effect569
PRM ProvideX Parameter Settings570
PSZ Current Program Size. .570
QUO ASCII Quote Character .571
RET Operating System's Last Error Code.571
RND Random Number Generator.571
SEP ProvideX Field Delimiter.572
SID System Identification Code.572
SSN System Software Identifier 572
SYS Operating System Identification 573
TIM Time in Hours Past Midnight 573
TME Time in Hours Past Midnight574
TMS Seconds Expired in Current Minute 574
TSM Error Status of Current Program575
UID Current UserID .575
UNT Lowest Available Local Channel 576
WHO Current UserID .576

5. Mnemonics
Overview . 577
Dynamic Information in Mnemonics 580
Mnemonic Categories . 581
List of Mnemonics . 585
'@@' Define Cursor Position Sequence 585
'+$' & '-$' For Internal Use Only 585

'2D' Use 2D Controls .585
'3D' Use 3D Controls .586
'4D' Use 4D Controls .586
'AB' Abort (For Windows Spooler)586
'ARC' Define/Draw Arc .586
'AT' Character Attribute Output Sequence587

Contents Mnemonics

ProvideX Language Reference V8.30 Back viii

'+B' & '-B' Output Buffering On/Off 587
'Bn' Background Colour . 588
'BACKGR' or 'BK' Next Colour Is Background 588
'BB' Begin Blinking . 588
'BE' Begin Echoing . 589
'BEEP' Simple Sound Effect . 589
'BG' Begin Generating Error #29 589
'BI' Begin Input Transparency. 590
'BJ' Join Box Intersections . 590
'BK' Next Colour Is Background. 590
'BLACK' & '_BLACK' Colour Text 591
'BLUE' & '_BLUE' Colour Text 591
'BM' Begin Output of Markup Files 591
'BO' Begin Output Transparency 591
'BOX' Define / Draw a Box . 592
'BR' Begin Reverse Video . 592
'BS' Cursor Back One Space . 592
'BT' Begin Type-Ahead Mode. 593
'BU' Begin Underscoring . 593
'BW' Begin WrapAround . 593
'BX' Define / Draw a Box . 593
'*C' Automatic Output on CLOSE 594
'Cn' Control Cursor Display Mode 594
'CAPTION' Replace Caption for Window 594
'CE' Clear from Cursor to End of Screen 595
'CF' Clear Foreground Mode . 595
'CH' Position Cursor at Home 595
'CI' Clear Input Type-Ahead Buffer 595
'CIRCLE' Define / Draw a Circle. 596
'CL' Clear from Cursor to End of Line 596
'COLOUR' & '_COLOUR' User-Defined Colours . . . 596
'CP' Condense Print for Screen 597
'CPI' Logical Characters per Inch 597
'CR' Carriage Return. 598
'CS' Clear Screen . 598
'CURSOR' Control Cursor, Mouse Pointer. 598
'CYAN' & '_CYAN' Colour Text 599
'+D' & '-D' Obsolete . 599
'DC' Delete Character at Cursor 599
'DEFAULT' or 'DF' Define Default 600
'DIALOGUE' Define/Draw Dialogue Region 600
'DN' Move Cursor Down a Line 602
'DO' Delete Objects in Scroll Region 602
'DROP' or 'WD' Drop Identified Window 602

'+E' & '-E' Multi-line Enter as Tab.603
'EB' End Blinking Mode (DOS) 603
'EE' End Echo Mode. .603
'EF' End Expanded Print. .603
'EG' End Generating Error #29603
'EI' End Input Transparency .604
'EJ' End Box Joining .604
'EL' Start Edit Key Load .604
'EL' End VFU Load .604
'EM' End Output Markup Mode.605
'EO' End Output Transparency605
'EP' Start Expanded Print. .605
'ER' End Reverse Video .605
'ES' Send Escape .606
'ET' End Type Ahead .606
'EU' End Underscoring .606
'EW' End WrapAround. .606
'+F' & '-F' Signal Change of Focus On/Off.606
'Fn' Foreground Colour .607
'FF' Form Feed. .607
'FILL' Define Fill Style. .607
'FL' Start Function Key Load .608
'FONT' Define / List Fonts .609
'FRAME' Define / Draw a Frame 610
'GD' Define Graphics Character Set611
'GE' End Graphics Data .611
'GF' Default Font for Window Objects.612
'GOTO' or 'WG' Make Window Current 612
'GREEN' & '_GREEN' Colour Text.612
'GS' Start Graphics Data Transmission613
'*H' Control Screen Colours .613
'HIDE' Control Window Display.614
'*I' Input Conversion Table .614
'+I' & '-I' Implied Decimals On/Off 614
'IC' Insert a Space at Cursor. .614
'IMAGE' Define a Graphics Group615
'JC' Justify Centre. .616
'JD' Justify Decimal-Aligned .616
'JL' Left-Justify Text .616
'JN' Right-Justify for Numeric.616
'JR' Right-Justify Text .616
'JS' Left-Justify String .616
'L6' Set to 6 LPI .617
'L8' Set to 8 LPI .617

Contents Mnemonics

ProvideX Language Reference V8.30 Back ix

'LC' Mixed-Case User Input . 617
'LD' Delete Current Line . 617
'LF' Line Feed (Advance Line) . 617
'LI' Insert Line . 617
'LINE' Define / Draw a Line. 618
'LM' Landscape Mode . 618
'LPI' Logical Lines / Inch. 618
'LT' Move Left One Column. 619
'MAGENTA' & '_MAGENTA' Colour Text 619
'MAXSIZE' & 'MINSIZE' Window Resize Limit 619
'ME' Begin Edit Mode. 620
'MESSAGE' Define Message Bar Text. 620
'MINSIZE' Window Resize User Limit 621
'MN' End Edit Mode. 622
'MODE' Set Attributes and Colour 622
'MOVE' or 'WM' Relocate Current Window 623
'MP' Print Mode (Parallel) . 623
'MS' Print Mode (Serial) . 623
'+N' & '-N' Control Drop/List Box Write Error. . . . 623
'NI' Next Input Numeric . 624
'*O' Output Conversion Table. 624
'OPTION' On-The-Fly Setting 624
'OFFSET' Offset for *WINPRT* 629
'+P' & '-P' Define Mouse Movement 630
'PE' Auxiliary Port Off . 630
'PEN' Define Pen Style . 630
'PICTURE' Define / Draw Picture 631
'PIE' Define / Draw Pie Slice . 632
'PM' Portrait Mode . 633
'POLYGON' Define/Draw a Polygon. 633
'POP' or 'WR' Restore Previous Window 633
'PS' Auxiliary Port On . 634
'PUSH' or 'WC' Save/Copy Current Window 634
'*R' OS Command String. 634
'RB' Ring Bell . 634
'RC' Return Cursor Address . 635
'RECTANGLE' Draw a Rectangle. 635
'RED' & '_RED' Colour Text . 635
'RL' Return Line Contents . 636
'RM' Reset to Default Mode. 636
'RP' Terminal Read to End . 636
'RS' Restore Screen . 636
'RT' Move Right One Column. 637
'+S' & '-S' Substitute Solid Lines On/Off 637

'Sn' Slew to Channel .637
'SB' Set Mode to Background .638
'SCROLL' Define/Control Scroll Region 638
'SE' & 'SD' Scroll Enable/Disable638
'SF' Set Mode to Foreground .639
'SHOW' / 'HIDE' Control Window Display 639
'SIZE' Control Visual Size of Window639
'SL' Start VFU Load. .640
'SN' Native Screen Mode .640
'SP' Standard Print .640
'SR' Scroll Reset .641
'SWAP' or 'WS' Swap Windows on Stack.641
'SX' Set Extended Screen Mode641
'+T' & '-T' Text Display On/Off641
'TEXT' Draw Text .642
'TEXTWDW' Create Text Window643
'TR' Terminal Read from Start .643
'TW' Transmit Windows as String644
'+U' & '-U' Screen Refresh On/Off644
'UC' Convert Input to Upper Case 644
'UP' Move Up One Line .644
'+V' & '-V' Control Row Highlighting.645
'VT' Slew to S6, Vertical Tab. .645
'!W' For Internal Use Only .645
'+W' & '-W' Windows-Style Windows645
'WA' Define / Draw Window. .646
'WC' Save/Copy Current Window 646
'WD' Drop Identified Window .646
'WG' Make Window Current. .646
'WHITE' & '_WHITE' Color Text.646
'WINDOW' or 'WA' Define / Draw Window.647
'WM' Relocate Current Window.648
'WP' Wide Printer (DOS). .648
'WR' Remove Current Window648
'WRAP' WrapAround On/Off .648
'WS' Swap Windows On Stack648
'WX' Windows Definition Sequence649
'*X' Program to Call on CLOSE649
'+X' & '-X' Windows ’X’ Close Button.650
'XP' Line Mode (DOS) .650
'YELLOW' & '_YELLOW' Colour Text 650
'+Z' & '-Z' Text Mode Like Windows650
'ZX' Return Attributes as per BBx651

Contents System Parameters

ProvideX Language Reference V8.30 Back x

6. System Parameters
Overview . 653
List of System Parameters 655
'1U' Force Dedicated User Slot 655
'3D' 3D in Windows . 655
'AD' Auto-DIM Array . 655
'AH' Alternative 'WINDOW'/'BOX' Heading. 656
'AI'= Automatic Line-Number Increment 656
'AP' Auto-Enable PDF Output. 656
'AW' Alternate WINPRT_SETUP. 656
'B0' Base Zero for Level / Window 656
'BF'= Common File Buffers. 657
'BL'= Break Lines in Listings . 657
'BT' Binary Test: 1st Read . 657
'BX' BBx Emulation . 658
'BY'= Base year . 658
'CD' Check Current Directory. 658
'CE' Obsolete . 658
'CF' Bypass Console Flush . 658
'CH'= Hover Colour . 659
'CI' Cache IOList . 659
'CO'= Mouse Over Colour . 659
'CS' Coloured Syntax . 660
'CT'= Character Time-out . 660
'CU'= Currency Symbol. 660
'D0' Divide by Zero. 660
'DB'= Dynamic File Buffers . 660
'DC' Destructive Cursor. 661
'DD' Convert Directory Delimiter 661
'DF'= Enforced Delay Time after 'FF'. 661
'DL'= Enforced Delay Time after 'LF'. 662
'DP'= Decimal Point Symbol . 662
'DT'= Device Time-out. 662
'DW'= Delay Time after 'WI'. 663
'EG' End Generation of Error #29 663
'EL'= Encryption Level . 663
'EO' Embedded 'EO' Mnemonics 664
'ES' Display OS Errors in Command Mode 664
'EX' Apply Execute at Level 0 . 664
'F,' Suppress Commas on Numeric Overflow 665
'F4' Return CTL=4 for Exit . 665
'FB'= Dedicated File Buffers . 665
'FC' Force File Commit . 665

'FE' Obsolete .665
'FF'= File Format .666
'FI' Ignore Format Mask Error.666
'FL' Filename in Lower Case. .666
'FN' Filename As-Is: No Case Conversion.667
'FO'= Format Overflow Character667
'FP' Floating Point .667
'FS'= Default Field Separator .667
'FT' Trapping the F10 Key. .668
'FU' Filename in Upper Case .668
'FX' Force EXTRACT .668
'HC' Obsolete .668
'HP' LibHaru *PDF* .669
'I0' Ignore Null Substring (No Error 47) 669
'I2' Ignore Max. Record Count (No Error 2) 669
'IC' Ignore Case .669
'IM' Insert Mode for Input .669
'IR' Insert Mode Reset (Decimal Point)670
'IS'= CTL for Input Ending on SIZ=.670
'IW' Terminate Invoke Wait .670
'IZ'= Ignore Max. Memory Setting 670
'JC' Obsolete .670
'KF'= Keyed File Format. .671
'KR' Keyed File I/O Emulates BBx 671
'LB'= Colour for Line # in Break Points 671
'LC' List Variables in Lower Case 671
'LD' List Directives in Lower Case 672
'LE' SAVE / LIST Indent Statements672
'LF' Long Form Variables .672
'LM' List, Show Matched Strings672
'LP' Obsolete .672
'LS'= Colour for Line with Syntax Error 673
'LU' Lock Unnecessary: Serial Files.673
'LW' For Internal Use Only .673
'LZ' Suppress Leading Zeros. .673
'MB'= MegaBytes: File Segment Size674
'MC' Maintain Case. .674
'MF'= Multi-Line Size Factor .675
'MP' Returns Positive Modulus Value.675
'MS'= Memory for Program Swap.675
'MX' User-Defined Message Box.675
'NE' Subprogram Error Report 676

Contents System Parameters

ProvideX Language Reference V8.30 Back xi

'NI' Ignore Blanks in Numeric Fields. 676
'NK' Null Key Stripping. 676
'NL' Suppress LET Directive in Listings. 676
'NN' No Line Numbers as References 676
'NR' No Intermediate Rounding on Division 676
'NS' No Swapping . 677
'NX' Obsolete . 677
'OC' Commit Prior to OPEN Directive. 677
'OF'= Maximum Size Before Output Flush. 677
'OL'= Maximum Buffers for OPEN LOAD 677
'OM' Old Style Mask . 678
'OP' Return Original Program Name 678
'OR' Full OS Path for Rename 678
'OW'= Owner Application Code 678
'PC'= Program Load Caching . 678
'PD'= Default Precision for Current Session. 679
'PE' Password Error Control . 679
'PF' EMS Page Frame . 679
'PL'= Program Libraries. 679
'PO' Path Original. 680
'PP' Prompt for Password. 680
'PQ' Password Queue . 680
'PS'= Maximum Program Size (KB). 681
'PT' Obsolete . 681
'PU' Upper-Case Prefix. 681
'PW'= Password Character for Multi-Line 681
'PZ' Suppress Program Size Warning 681
'Q_'= Lowest Task Priority . 682
'Q^'= Highest Task Priority . 682
'QD'= Windows Queue Display 682
'QF'= Task Priority Factor. 683
'QK' Quick Key Lookup . 683
'QS' START, Not Initialized . 683
'QT' No Prompt in Command Mode 683
'RI' Round Multi-Line Inputs . 683
'RN'= Rounding Control . 684
'RP' Raw Print for *WINDEV*. 684
'RR' Reset on RUN . 684
'RS' Round STR() . 684
'SB' Self-Block Extracts . 686
'SC' Show Cursor. 686
'SD' Subdirectory Slash . 686
'SF' Short Form Variables. 686
'SK' Shrink Keyed Files. 687

'SL'= Save Command Lines .687
'SP' Set Printer Default. .687
'SR' Small Reads .687
'SS' Check Structure on Save .688
'SV'= Generate for Older Version.688
'SW'= Scroll Wheel .688
'SZ'= Maximum Memory Size for Session688
'TA'= Turbo Mode Acknowledgement689
'TB' Toolbar Size .689
'TC'= Tip Colour .689
'TH'= Thousands Separator .690
'TL' LIKE Emulates Thoroughbred 690
'TN' Strip Trailing Nulls .690
'TT'= Timed Trace .691
'TU' Thin-Client Turbo Mode. .691
'TX' Default String-Template Field Separator.691
'UL' Un-Numbered Line Assignment.692
'UM' Upper Memory Blocks. .692
'VC' VT100 Cursor Mode Line Wrap.692
'VM' Direct Memory Addressing692
'VP'= Variable Pitch .692
'VR'= Verify Read .693
'VW'= Verify Write .693
'WB' WindX BREAK Recognition693
'WD'= Defer File Writes .694
'WF' Force Windows Screen Update.694
'WH'= Delay Retry: Locking File Headers694
'WI'= Windows Instruction Count 694
'WK' Keep Window .695
'WL' Use Write Locks. .695
'WP' Wait for Pipe on Close .695
'WT'= Number of Retries .695
'WZ'= WindX ZLib Compression.696
'XC' WindX Continues After TCP Error.696
'XF' Extended File Channels. .696
'XI' Extract Ignore .696
'XL' Obsolete .696
'XS'= Extended Memory (KB) 697
'XT' ProvideX Exits to OS .697
'ZP' Accept Zero-Length Programs.697
'!9' Sage MAS 90 Date Format697
'!B'= Set Break Character. .697
'!D' Numeric Separators: Legacy Mode698
'!F' Obsolete. .698

Contents Control Object Properties

ProvideX Language Reference V8.30 Back xii

'!I' NOMADS Input Queue . 698
'!K' Descending Key Logic (Legacy). 698
'!Q'= ODBC SQL Display . 698
'!R'= For Internal Use Only . 698
'!S' Suppress Error Flags on Serial Save. 699
'!T' 'DP' or Decimal for Numerics. 699

'!U'= For Internal Use Only .699
'!V' I’m a Service .699
'!W' WindX Keyboard Synchronization 699
'!X' I/O Crossover. .700
'*K' Obsolete .700
'*L' Obsolete. .700

7. Control Object Properties
Overview . 701
Graphical Control Objects 703

Properties List .709
Compound Properties .728

8. Special Files and Devices
Overview . 737
BITMAP Virtual Bitmap . 738
HTML Print to HTML. 740
MEMORY Create & Use Memory File. 741
PDF PDF Print Interface. 744

*SYSTEM Event Handling Object751
VIEWER Print Preview .752
WINDEV Raw Print Mode .756
WINPRT Windows Printing760
*XML XML Interface .764

9. Special Command Tags
Overview . 769
[DB2] DB2 Support . 770
[DDE] Dynamic Data Exchange 776
[DLL] Custom File Access . 778
[LIB] Program Library . 781
[MYSQL] MySQL InnoDB Support. 783

[OCI] Connect to Oracle Server 786
[ODB] Open DataBase .791
[RPC] Remote Process Control797
[TCP] Transmission Control Protocol 799
[WDX] Direct Action to Client Machine 801

A. Appendix
Overview . 809
 Input/Output and Control Options 810
Data Format Masks . 813
Labels/Logical Statement References 816
Negative CTL Definitions . 817
Operators . 821
Apostrophe Operator . 823
System Limits . 825
Reserved Words . 827
Error Codes and Messages 828
List of Messages . 829

Index . 843

ProvideX Language Reference V8.30 Back xiii

Preface

The ProvideX Language Reference describes all features of the ProvideX programming
language: directives, functions, system variables, mnemonics, parameters, specialty files,
reserved words and system limitations. Although this volume is intended primarily for
programmers and analysts, and describes the language in precise detail, it does not try to
explain how to design and implement applications that can be written in ProvideX.

For product licensing and installation, refer to the ProvideX Installation and Configuration
Guide. For a comprehensive look at the ProvideX environment, it's uses, and the details
required to develop applications, refer to the ProvideX User's Guide.. Other ProvideX
products (i.e., NOMADS, WindX, JavX, the ODBC Driver, the WebServer, and the
Application Server) are fully documented in separate publications. Rather than reproduce
existing material, references to these publications are supplied where applicable.

Using this Documentation B MK

U sing this Documentation

This documentation is designed for both viewing and printing via Acrobat® Reader.
Click Help > Reader Guide on the menu bar to learn how to display, copy, search,
and print PDF documentation. While there are several ways to navigate the contents
of a PDF-based document, the following methods are highly effective, and are
consistent with other documentation distributed by ProvideX:

Bookmarks
The list of bookmarks, displayed on the left side of the Acrobat window, serves as a
hyperlinked table of contents. Bookmarks are displayed in a hierarchy where subordinate
headings appear indented below main headings. When subordinates are hidden or
collapsed, a plus sign (in Windows) or triangle (in Mac OS) will appear next to the main
heading. Simply click on the plus sign or triangle to display all collapsed headings.

Preface Conventions

ProvideX Language Reference V8.30 Back xiv

Cross-References
Blue hyperlinks appear throughout this document wherever one section cross-references
another. They also appear in the form of hyperlists; such as the Table of Contents, the
Index, and the linked tables placed at the beginning of some chapters.

Navigat ion Tips

The mouse pointer looks like an index finger when it is positioned over a linked
cross-reference — simply click to activate the link. For example, "Using this
Documentation" is hyperlinked back to the beginning of this section.

Conventions B MK

Conventions

The following syntax items are used in this documentation to illustrate the format of
program statements in ProvideX.

PDF Navigation Tips: The chapter name at the top left corner of the page head can be
used as a hyperlink to the beginning of the chapter. Use the page-up/down/back/
forward buttons to move one page at a time. Use the Back button to
jump to the previous view.

... Dots indicate the continuation of a list of elements.

[] Square brackets enclose optional elements in the format. For example, in
ABS(num[,ERR=stmtref]) you can omit the ERR=stmtref portion of the
statement as in ABS(X-Y). (Exceptions are noted for individual commands
where the brackets are "real"; i.e., part of the syntax.)

{ } Curly brackets enclose a list of elements in syntax formats where it is
mandatory to select one item. For example, with {YES | NO}, you must
select either YES or NO. In descriptions in this manual, they denote
{bitmap / icon} buttons. (Exceptions are noted for individual commands
where the brackets are "real"; i.e., part of the syntax.)

 | Vertical bars (pipes) separate a choices; e.g., {YES | NO}.

chan Channel or logical file number. It must be an integer between 0 and 127. This
identifies the channel to which your directive applies; e.g., CLOSE (14).
• Channel zero (0) is the console. If you omit the channel, the system

defaults to 0 (the console).
• Channels 1 to 63 are commonly used for local files.
• Channels 64 to 127 are used for global files.
• Exception: In extended file mode ('XF' system parameter) the channels range

from 0-32767 for local files, and 32768-65000 for global files.

col,ln,
wth,ht

Position/coordinates. Numeric expressions. Column and line coordinates for
top left corner, width in number of columns, and height in number of lines.

ctrlopt,
fileopt

Optional syntax elements — three-character codes followed by an equals
sign and argument (DOM=3250).

Preface Conventions

ProvideX Language Reference V8.30 Back xv

Numeric Expressions and Variables
When a syntax format in this manual includes a numeric variable like chan, index or
num (lowercase), you can normally substitute a numeric expression consisting of
variables, literals, functions, and operators. For instance, your value could be something
like HFN or 4 or NUM(A1$)*3-2. (NUM in upper case is the function.) When numeric
variables are used in numeric expressions, subscripts are allowed; e.g., COST[4].

Example:

To apply the format FOR var=first TO last[STEP val] ...

FOR I=1 TO 10 or
FOR LEAPS=-10 TO XYZ STEP ABC*.1

String Expressions and Variables
When a syntax format in this manual includes a string variable like prog_name$ or
title$, you can normally substitute a string expression consisting of variables, literals,
functions, and operators; e.g., PRINT "Printing "+REPORT$. When string
variables are used in string expressions, subscripts and substrings are allowed; e.g.,
CUSTOMER$(15,4).

Example:

For the CHECK_BOX READ [*]ctl_id,state$[,mode$][,ERR=stmtref] format, you
need string variables to receive the current state and optionally, the mode of
selection.

CHECK_BOX READ 14000,ON_OFF$,KEYSTROKE$

stmtref Statement reference. This can be either the line label or line number of a
statement in the current program. Line numbers must be in the range of 0
to 64999.

If your given line number does not exist, ProvideX goes to the statement
with the next higher line number. For example, if line 1000 doesn't exist
and 1010 is the next line number, then for GOTO 1000 ProvideX will go to
1010 and proceed with execution from there.

Exception: ProvideX verifies the existence of an IOList and stmtref for
IOL=stmtref. It does not proceed to the next higher statement number.

varlist List of comma-separated variables. Typically, a mix of string and/or
numeric variables is acceptable; e.g., DEPT,ITEM,DESC$... (See
individual directives for restrictions.)

Note: Exceptions and valid values are stated when there are restrictions on the use of
numeric or string expressions in a format (e.g., where only variable names are allowed).

Preface Chapter Outlines

ProvideX Language Reference V8.30 Back xvi

Chapter Outlines B MK

Chapter Outlines

Chapter 1. Introduction, p.17. Provides some general information about the
ProvideX development system, introduces basic language concepts, and lists
punctuation/syntax conventions.

Chapter 2. Directives, p.27. Provides an alphabetical listing of all ProvideX
directives (commands), complete with mandatory and optional syntax elements.

Chapter 3. System Functions, p.389. Provides an alphabetical listing of the standard
functions.

Chapter 4. System Variables, p.555. Provides an alphabetical listing of the various
system variables used to provide system information such as the date and time.

Chapter 5. Mnemonics, p.577. Provides an alphabetical listing of the mnemonics
used in ProvideX to control the output of information to terminals and printers.

Chapter 6. System Parameters, p.653. Provides an alphabetical listing of the
system parameters that are normally used at start-up, to define a system's operation
under ProvideX.

Chapter 7. Control Object Properties, p.701. Provides a list of control object
properties and explains use of the apostrophe operator.

Chapter 8. Special Files and Devices, p.737. Describes ProvideX device files
designed for special file handling.

Chapter 9. Special Command Tags, p.769. Describes the special command file tags
that are used in conjunction with a pathname in an OPEN statement.

Appendix, p.809. Discusses additional features and contains information that is
supplementary to this language reference.

Index, p.843. Contains a comprehensive list of keyword references. As with the Table
of Contents, the page numbers in the Index are linked to the source.

ProvideX Language Reference V8.30 Back 17

Language Reference 1
Introduction

Welcome to ProvideX – a powerful, versatile, intuitive programming language and
integrated development environment for building sophisticated business applications.

About ProvideX

About ProvideX B MK

At the most elementary level, ProvideX is a system that executes computer instructions
written in the ProvideX language. The instructions may be entered one statement at a
time for immediate execution, or contained in a program for sequential execution.

ProvideX also comprises, in itself, all the tools and facilities necessary to design, develop,
and implement comprehensive multi-user applications – applications that are ready to
accommodate industry-standard technologies and a variety of host platforms. This system
is equipped with a suite of integrated development tools, automatic error correction,
rigorous security controls, transparent access to commercially-available databases, support
for the latest industry standards and protocols, and much more.

For Business Applications
Since the language is oriented towards integer math and values with two decimal
points (monetary values), ProvideX is probably best known for the development of
business-related products. It comes complete with a robust native data storage
system that can handle generous file sizes and various file types. While optimized
for small to mid-range businesses, ProvideX also has the capacity to manage large
multi-user banking, manufacturing, and hotel/hospitality applications.

Unique Implementation
Programs created in ProvideX must be executed on systems where ProvideX is
running. The fact that the development cycle and program execution occur within
the same environment presents some distinct advantages in functionality: platform
independence, unmediated debugging of source code, smaller program size, and the
implementation of Object-Oriented Programming techniques.

This added functionality does not compromise performance. Unlike other similar
languages, ProvideX uses a two-pass system that "pre-compiles" programs when
they are saved to disk so they execute much faster at runtime.

1. Introduction About ProvideX

ProvideX Language Reference V8.30 Back 18

Product Options

ProvideX can be configured for multiple uses (depending on the license and the
platform), but every installation begins with the base system that includes:

• ProvideX. Language interpreter and application development environment.

• NOMADS. Toolset for developing GUI-based applications (MS Windows).

• COM/OCX/ActiveX, DDE, DLL, ZLIB, SSL, PDF, etc. Built-in support for a number
of industry-standard technologies.

Extend the functionality of the ProvideX base system with a set of tightly integrated
application development and deployment solutions:

• WindX, JavX, and UltraFX. Thin-clients for displaying and interacting with
GUI-based ProvideX applications running from a server.

• Application Server. Secure configurable hosting facility for connecting thin-client
implementations via MS Windows, UNIX/Linux, and MAC OS X.

• Local and Client/Server ODBC. Open DataBase Connectivity (ODBC) for external
access to ProvideX databases.

• Web Server. Interface for producing ProvideX-coded websites that allow browser
access to ProvideX and ODBC data sources.

• Internet Toolkit. Utilities for developing e-mail/web-enabled applications.

• RPC. Remote Processing Capability for distributed processing of ProvideX.

• XML Support. Implementation for parsing and serializing XML documents.

• OCI, DB2, MySQL, ODBC. Native external database support.

• Smart Controls. Auto-load capability for list boxes/grids.

• Customizer. Utility for customizing panels dynamically without changing source.

• Multiple Image Support. Extended support for a variety of image file types.

• Report Writer. Powerful interface for designing and generating reports (runtime
module included with base system).

• Views. End-user "viewing" of application data for simplified extraction and
reporting (runtime module included with base system).

• Charting Control. Control object for creating advanced chart illustrations.

• OLE Server. Interface allowing external applications to access ProvideX objects directly.

Note: These products may be sold as stand-alone add-on packages or as part of a
Professional or eCommerce bundle. Contact your local ProvideX dealer/distributor or
visit www.pvx.com for complete product information and licensing.

1. Introduction Basic Concepts

ProvideX Language Reference V8.30 Back 19

Basic Concepts B MK

Basic Concept s

This section covers the structural concepts used throughout this manual. Some of the
terminology discussed will be familiar to programmers with experience in other
Business Basic languages. However, ProvideX has several unique properties. Before
you attempt to program in ProvideX, take some time to understand the different
aspects of the language.

For product licensing and installation, refer to the ProvideX Installation and
Configuration Guide. For a comprehensive look at the ProvideX environment, it's uses,
and the details required to develop applications, refer to the ProvideX User's Guide.

ProvideX Session
The ProvideX environment comprises a Command mode and an Execution mode. When in
Command mode, ProvideX will be waiting for a directive or statement to be entered.
Execution mode begins once a RUN or a CALL directive is used to execute a program.

By default, ProvideX initializes in Command mode; as indicated by the Command mode
prompt '->'.

Directives can be entered in Command mode. If a directive does not include a leading
line number, it is executed immediately; otherwise, the statement is used in the
construction of a program. When a statement is inserted into a program, the prompt
changes from '->' to '-:' to indicate that the program has been changed but not saved.

When ProvideX is in Execution mode, it receives and executes all the statements that
constitute a program. The program remains in Execution mode until completed (via the
STOP or END directive), an error occurs, or it is interrupted via a BREAK or ESCAPE
instruction. The ProvideX session can be terminated using BYE, QUIT, or RELEASE.

These concepts are discussed in further detail in the ProvideX User's Guide.

Directives and Statements
In ProvideX, all processing is controlled by the use of directives – commands that tell the
system what task is to be performed. Each program statement (line of code) consists of
one or more directives. When ProvideX executes a program, it executes all directives
contained in a statement from left to right, then proceeds to the next line. Some directives
provide the ability to alter the normal flow of execution.

The general format of a program statement includes a unique line number (optional), the
directive indicating the operation to perform, parameters, and comments. Parameters
are syntax elements, keywords, operators, and arguments that can be used to further
define a directive's operation. For example, the complete syntax for the CLOSE directive
appears as follows: CLOSE (chan[,ERR=stmtref])[,(chan[,ERR=stmtref])...]. Depending
on the statement, it is possible to exclude all but the mandatory parameters from the
directive, as in CLOSE (14).

1. Introduction Basic Concepts

ProvideX Language Reference V8.30 Back 20

See Chapter 2. Directives, p.27, for the complete list of directives and the details of
their mandatory or optional parameters.

System Functions
A ProvideX system function consists of a three-character function name followed by
an open parenthesis, the parameter(s) for the function, an optional error transfer, and
finally a close parenthesis, e.g., AND(A$,B$,ERR=0300). The number and type of
parameters vary from function to function. All may include the ERR= option (even
those where an error is unlikely). System functions are listed and described in
Chapter 3. System Functions, p.389.

Data and Variables
ProvideX supports two basic types of data -- Numeric data and String data. Numeric
data consists of numeric values such as account balances, prices and quantities.
String data consists of textual information such as account names and descriptions.
A ProvideX program maintains and processes its data using variables: numeric
variables to store numeric values and string variables to store textual information.

The language includes various internally-defined variables for providing system
information, such as the date and time. These are listed and described in Chapter 4.
System Variables, p.555. You can use system variables wherever normal program
variables would be used, but you cannot modify them.

Mnemonics
Mnemonics are used to control output to terminals and printers. A mnemonic
instruction is enclosed in single quotation marks. Refer to Chapter 5. Mnemonics,
p.577, for an alphabetical listing of all ProvideX mnemonics, complete with formats
and descriptions. Refer to the MNEMONIC Directive, p.210 for more information.

Examples:
5000 PRINT @(5,5),'CL' ! Clears screen-line 5 to its end, starting at column 5
5150 OPEN (30) PRINTER$
5160 PRINT (30)'FF', ! Form-feed instruction to PRINTER$ on Channel 30

System Parameters
System parameters are normally used at start-up to define the system's operation under
ProvideX. For example, the 'BY' parameter is used to define the base year for the JUL() and
DTE() functions. Like mnemonics, system parameters are enclosed in single quotation
marks. Refer to Chapter 6. System Parameters, p.653, for an alphabetical listing of
system parameters, complete with formats and descriptions. For further information, refer
to the PRM() Function, p.504, and the PRM System Variable, p.570.

Note: All system variables have reserved three-character names and do not have a
trailing dollar sign $, e.g., CTL. To avoid potential conflicts with the reserved list (since
ProvideX might reserve more three-character variables in the future), Sage Software
Canada Ltd. recommends strongly that you do not use three-character variable names.

1. Introduction Basic Concepts

ProvideX Language Reference V8.30 Back 21

Graphical Control Objects
Graphical control objects in ProvideX programs display information, input data, and
handle event processing. The following directives are used to create and maintain
the various control object types: BUTTON, CHART, CHECK_BOX, DROP_BOX, GRID,
LIST_BOX, MULTI_LINE, RADIO_BUTTON, TRISTATE_BOX, VARDROP_BOX,
VARLIST_BOX, V_SCROLLBAR, and H_SCROLLBAR.

Graphical control objects can also be produced using the NOMADS toolset for
GUI-based application development. Refer to the ProvideX NOMADS Reference.
The attributes of a control object can be referenced and determined by the use of
property names (’Height, ’Font$, ’Text$, ’TextColour$, ...). The object itself is
defined by a numeric variable containing the CTL value associated with the control,
followed by an apostrophe and the property. Refer to Chapter 7. Control Object
Properties, p.701, for a description of the Apostrophe Operator, and to review all
properties listed in the Properties List.

Specialty Files
ProvideX supports the use of a series of specialty files. See Chapter 8. Special Files
and Devices, p.737 for descriptions of the commands you can use with the
following special device files:

BITMAP Virtual Bitmap, p.738
HTML Print to HTML, p.740
MEMORY Create & Use Memory File, p.741
PDF PDF Print Interface, p.744
VIEWER Print Preview, p.752,
WINDEV Raw Print Mode, p.756,
WINPRT Windows Printing, p.760.

Special Command Tags
ProvideX supports the use of a series of special file tags. See Chapter 9. Special
Command Tags, p.769 for information on the following:

[DDE] Dynamic Data Exchange, p.776,
[DLL] Custom File Access, p.778,
[LIB] Program Library, p.781
[OCI] Connect to Oracle Server, p.786,
[ODB] Open DataBase, p.791,
[RPC] Remote Process Control, p.797,
[TCP] Transmission Control Protocol, p.799,
[WDX] Direct Action to Client Machine, p.801.

Note: In Windows, the above directives use Graphical Device Interface (GDI)
resources/handles that are only released when the window they are in is dropped or
cleared.

1. Introduction Basic Concepts

ProvideX Language Reference V8.30 Back 22

Object Oriented Programming
The ProvideX language has been extended to support all of the key design principles
of Object Oriented Programming (OOP). Various OOP-related articles and examples are
available from the ProvideX website, www.pvx.com.

The three basic principles of OOP are Encapsulation, Inheritance, and Polymorphism.
These concepts provide a major part of the framework used to create and interact
with objects. ProvideX OOP objects are defined through the use of classes. A class
defines the name given to the object definition, as well as the object’s properties and
methods. Properties are the data portion of the object, consisting of fields or
variables. Methods (or functions) are the actions that the object will perform. The
defined properties/methods are accessible via the Apostrophe Operator.

The following directives and functions are used to handle OOP mechanisms in ProvideX :

Accessing Data Files

ProvideX supports a wide variety of file formats: proprietary/non-proprietary,
program, link, device, data, etc. When referring specifically to data files in ProvideX,
the primary file types and record formats are defined as follows:

DEF CLASS, p.65 Defines the object class.
PROPERTY, p.261 Declares data/properties for the object.
LOCAL, p.197 Declares internal data/properties for the object.
FUNCTION, p.137 Declares functions or methods for the object.
LIKE, p.174 Specifies other objects that this object inherits from.
PROGRAM, p.259 Defines the default program that contains the object logic.
PRECISION, p.248 Sets default program precision for use within the object.
LOAD CLASS, p.195 Pre-loads a class definition into memory from a .pvc file.
RENAME CLASS, p.283 Change name of an existing class.
STATIC, p.329 Dynamically declares LOCAL variables.
DROP OBJECT, p.104 Deletes an object.
DROP CLASS, p.102 Deletes class definition and all related information.
NEW(), p.489 Creates an object instance.
REF(), p.512 Controls reference counts.

Serial Records can vary in length and are typically accessed in a sequential
manner from beginning to end.

Indexed Records are the same length and are accessed by index number.
Keyed Records are accessed via key, a string of characters used to identify the

records in a file. Keyed files are the most common data file type used by
applications written in ProvideX. Three Keyed formats are supported:
FLR (fixed-length records), VLR (variable-length records), and EFF
(enhanced file format). Keyed files are also considered to be:
Direct consisting of a single key per record (FLR/VLR)
Keyed consisting of one or more keys per record (FLR/VLR,EFF)
Sort consisting of keys but no data (FLR/VLR, EFF).

1. Introduction Basic Concepts

ProvideX Language Reference V8.30 Back 23

Access to a data file is controlled by the use of a channel or logical file number. The link
between data file and channel is established using the OPEN directive. All subsequent
input and output to the file uses the same channel, which cannot be reused until the
file is closed (via CLOSE, START, BEGIN, or by termination of the user session). The
directives listed below are used to create, delete, and rename data files:

CREATE TABLE Create Keyed File (EFF), p.58
DIRECT Create File with Keyed Access, p.89,
DIRECTORY Create Subdirectory, p.91
INDEXED Create Indexed File, p.159,
KEYED Create Single/Multi-Keyed File, p.166,
SERIAL Create a Sequential File, p.302,
SORT Create File for Sorting, p.327
RENAME Change a File's Name, p.282
ERASE Delete File/Directory from System, p.120
ADD INDEX Add Key to Keyed File, p.29
DROP INDEX Drop Key from Keyed File, p.103
RENAME..INDEX Rename Keys in Keyed File, p.285
The following directives are used for file input/output and access:
PRINT Display Information, p.255,
FIND Locate and Read Data, p.131
READ Read Data from File, p.271,
EXTRACT Read and Lock Data, p.126
REMOVE Delete Record from File, p.281,
PURGE Clear Data from a File, p.263
WRITE Add/Update Data in File, p.383
OPEN Open for Processing, p.232
CLOSE Close File, p.56
LOCK Reserve File for Exclusive Use, p.200
UNLOCK Remove Exclusive Use from File, p.349.
There are also several system functions for file processing:
FIB() Return File Information Block, p.434,
FID() Return File Information Descriptor, p.438,
FIN() Return File Information, p.441,
IND() Return Next Record Index, p.457,
KEC() Return Key of Current Record, p.465,
KEF() Return First Key of File, p.466,
KEL() Return Last Key of File, p.467,
KEN() Return Key After Next, p.468,
KEP() Return Prior Record's Key, p.469,
KEY() Return Key of Next Record, p.470,
KGN() Generate Record Key, p.471,
RCD() Return Next Record, p.508,
RNO() Return Next Record Number, p.514.
Refer to the ProvideX User's Guide for further information on handling data files.

1. Introduction Basic Concepts

ProvideX Language Reference V8.30 Back 24

Other Facets of ProvideX
The appendix at the end of this manual expands on several additional features of the
ProvideX programming language. Subject sections are listed as follows:

Input/Output and Control Options, p.810
Data Format Masks, p.813
Labels/Logical Statement References, p.816
Negative CTL Definitions, p.817
Operators, p.821
System Limits, p.825
Reserved Words, p.827
Error Codes and Messages, p.828

Error Reporting and Handling
If an error condition is detected during the execution of a program, the associated
error code(s) can be obtained using the ERR and RET system variables. The line
number of the last system-detected error can be determined by the ERS variable. The
MSG() function provides a description for any known ProvideX error in the range of
0 to 255. The system parameter 'ES', if enabled, can be used to display any OS error
messages, along with the normal ProvideX error, from a Command prompt.

By default, when an error occurs in an application, ProvideX will stop processing,
display the error code/message and statement where it occurred, and then return to
Command mode. Most ProvideX directives and functions, for which errors are
anticipated, provide an error transfer option denoted by an ERR=stmtref option in
the syntax description (stmtref represents a line number or label to transfer control
to). Error handling can also be specified via the SETERR directive. The
ERROR_HANDLER directive is used to assign a generic application-wide error
handling program that will intercept any un-trapped errors in an application.
For further information on error codes and error handling in ProvideX, refer to the
ProvideX User's Guide, as well as the following sections in this manual:
Error Codes and Messages, p.828
ERR System Variable, p.560,
ERS System Variable, p.560
RET System Variable, p.571,
MSG() Function, p.484,
'ES' System Parameter, p.664
SETERR Directive, p.316
ERROR_HANDLER Directive, p.121.

1. Introduction Punctuation/Syntax

ProvideX Language Reference V8.30 Back 25

Punctuation/Syntax B MK

Punctuat ion/Syntax

The following syntax symbols have fixed meaning in ProvideX:

! Exclamation. ProvideX accepts an exclamation mark as a substitute for
the REM Remark; e.g., ! this remark. An exclamation mark as the
leading character of a string also denotes one of Sage Software Canada
Ltd.'s embedded bitmaps; e.g., !STOP.

" Quotes. Standard quotation marks enclose string literals. A leading
quotation mark can also be used as a substitute for the INVOKE directive;
e.g., "NOTEPAD is the same as INVOKE "NOTEPAD".

$ Dollar sign. A dollar sign at the end of a variable name marks a string
variable; e.g., CUST$. Dollar signs can also enclose hexadecimal values,
for example $8A$.

' Apostrophe. Single quotation marks (apostrophes) enclose system
parameters and mnemonics, for instance 'TL' and 'CS'. The Apostrophe
Operator, is used to indicate a control object property.

; Semicolon. Directives and entry points are separated by semicolons in
program statements. When entered as the first character of a line,
ProvideX hides the line from line listings making it appear as if it did not
exist. The line will execute correctly, but it cannot be interrogated.

* Asterisk. ProvideX includes a number of auxiliary applications that are
stored under the LIB directory. The names of these utilities and
subsystems are preceded by an asterisk when accessed in ProvideX; e.g.,
*UPB, *IT. An asterisk may also have specific meaning in the syntax of
different directives or functions; e.g., as a wildcard character.

% Percent Sign. A percent sign before a variable name denotes a global
variable or function; e.g., %DEPT. A percent sign following a variable name
indicates that the variable is an integer; e.g., DEPT%. A variable name
having both leading and trailing percent signs denotes a global variable
for integer values; e.g., %DEPT%

*[] Asterisk + Square Brackets. The search utility (for searching programs) is
invoked by enclosing a search string within square brackets preceded by
an asterisk.; e.g.,
->*[print]
0090 REM Printing
0100 PRINT DAY
0120 PRINT "Today's date is ",DAY
0610 IF LEN(X$)>100 THEN PRINT "TOO LONG"; GOTO 0210

*[]=[] Global search and replace can be used to make changes in programs; e.g.,
*[CST$]=[CUST$] changes all instances of CST$ to CUST$.

1. Introduction Punctuation/Syntax

ProvideX Language Reference V8.30 Back 26

-:

->

-}

Prompts. When your ProvideX prompt is a dash with a colon, that
indicates that your current program has not been saved. After you save
your program, the prompt reverts to an arrow. Under WindX, the prompt
is a dash and a right brace.

/ or \ Slashes. ProvideX accepts either slash (forward or back) as a substitute for
LIST; e.g., / 30 is the same as LIST 30.

xxxx: String–trailing colon. Use a trailing colon to denote that your string is a
line label (statement reference or entry point); e.g.,

0110 IF UPDATE$="Y" GOSUB CUSTOMER
...
2000 CUSTOMER:
2010 INPUT 'CS',@(5,5),"Enter customer number",CST
2020 ! REST OF ROUTINE ...
2200 RETURN

? Question Mark. ProvideX accepts a leading question mark as a substitute
for PRINT; e.g., ? CUST$ is the same as PRINT CUST$. ProvideX also
places a question mark between a line number and program statement to
denote a syntax error.

' Back Apostrophe. ProvideX accepts the back apostrophe as a substitute for
the EDIT.

ProvideX Language Reference V8.30 Back 27

Language Reference 2
Directives

Over view

Overview B MK

This chapter provides an alphabetically arranged list of all ProvideX directives. Each
definition includes the correct syntax (showing associated parameters), values
returned, a general description, examples, and sometimes a cross reference to related
material. The list begins on the following page.

ACCEPT
ADD INDEX
ADDR
AUTO
BEGIN
BREAK
BUTTON
BYE
CALL
CASE
CHART
CHECK_BOX
CLEAR
CLIP_BOARD
CLOSE
CONTINUE
CREATE TABLE
CWDIR
DATA
DAY_FORMAT
DEF CLASS
DEF GID/UID
DEF FN
DEF MSG
DEF OBJECT
DEF systab=
DEF sysvar=
DEFAULT
DEFCTL
DEFPRT
DEFTTY
DELETE
DELETE OBJECT
DICTIONARY
DIM
DIRECT
DIRECTORY
DISABLE
DISABLE CONTROL
DISABLE EVENT
DROP

DROP_BOX
DROP CLASS
DROP INDEX
DROP OBJECT
DROP..ON
DUMP
EDIT
ENABLE
ENABLE CONTROL
ENABLE EVENT
END
END DEF
END SWITCH
END WITH
END_IF
ENDTRACE
ENTER
ERASE
ERROR_HANDLER
ESCAPE
EXECUTE
EXIT
EXITTO
EXTRACT
EXTRACT RECORD
FILE
FIND
FIND RECORD
FLOATING POINT
FOR..
FUNCTION
GET_FILE_BOX
GOSUB
GOTO
GRID
H_SCROLLBAR
HIDE
IF.. THEN.. ELSE..
INDEXED
INPUT
INSERT

INVOKE
IOLIST
KEYED
KEYED LOAD
LET
LIKE
LINE_SWITCH
LIST
LIST_BOX
LOAD
LOAD CLASS
LOAD DATA
LOCAL
LOCK
LONG_FORM
MENU_BAR
MERGE
MESSAGE_LIB
MNEMONIC
MSGBOX
MULTI_LINE
MULTI_MEDIA
NEXT
NEXT RECORD
OBTAIN
ON EVENT
ON ... GOSUB
ON ... GOTO
OPEN
PASSWORD
PERFORM
POP
POPUP_MENU
PRECISION
PREFIX
PREINPUT
PRINT
PROCESS
PROCESS SERVER
PROGRAM
PROPERTY

PURGE
QUIT
RADIO_BUTTON
RANDOMIZE
READ
READ DATA
READ RECORD
REDIM
REFILE
RELEASE
REM
REMOVE
RENAME
RENAME CLASS
RENAME CONTROL
RENAME..INDEX
RENUMBER
REPEAT..
RESET
RESTORE
RETRY
RETURN
ROUND
RUN
SAVE
SAVE CONTROL
SAVE DATA
SAVE FILE
SELECT..
SERIAL
SET_FOCUS
SET_NBF
SET_PARAM
SETCTL
SETDAY
SETDEV
SETDEV IOL=
SETDEV KEY
SETDEV PROGRAM
SETDEV SEP=
SETDEV TSK()

SETDRIVE
SETERR
SETESC
SETFID
SETMOUSE
SETTIME
SETTRACE
SHORT_FORM
SHOW
SORT
START
STATIC
STOP
SWITCH..
SYSTEM_HELP
SYSTEM_JRNL
TABLE
TRANSLATE
TRISTATE_BOX
UNLOCK
UNTIL
UPDATE
USER_LEX
VARDROP_BOX
VARLIST_BOX
V_SCROLLBAR
VIA
VIDEO_PALETTE
WAIT
WAIT FOR EVENT
WEND
WHILE..
WINPRT_SETUP
WITH
WRITE
WRITE RECORD

2. Directives ACCEPT

ProvideX Language Reference V8.30 Back 28

ACCEPT Directive List of DirectivesAC CEPT Read Single KeystrokeRead Single Keystroke
Format ACCEPT(chan[,fileopt])char$

Where:

Description Use the ACCEPT directive to read a single keystroke (character) from a terminal. The
ACCEPT directive doesn't echo the keystroke/character to the terminal. If no input is
in the input buffer, the ACCEPT directive waits for terminal input. Control transfers
to the stmtref if you include a NUL= option and the terminal input buffer has no
data in it.

See Also OBTAIN Get Hidden Terminal Input, p.227
INPUT Get Input from Terminal, p.160

Example The following example reads one record at a time and displays it on the terminal.
When any key is pressed, control drops to line 130 (ending the listing of the file).

0100 READ RECORD (1,END=0130)R$
0110 PRINT R$
0120 ACCEPT (0,NUL=0100,TIM=0.5)X$
0130 PRINT "<Display halted>"

chan Channel or logical file number.

char$ String variable. Receives the input character.

fileopt Supported file options (see also, File Options, p.810):
ERR=stmtref On error , transfer to program line number/label.
NUL=stmtref On no input, transfer to program line number/label.
TIM=num Maximum time-out value in integer seconds.

2. Directives ADD INDEX

ProvideX Language Reference V8.30 Back 29

ADD INDEX Directive AD D IND EX Add Key to Keyed FileAdd Key to Keyed File
Format ADD INDEX keydescription TO filename$ [,ERR=stmtref]

Where:

Description The ADD INDEX directive allows keys to be added to a ProvideX Keyed file without
having to rebuild the file. When adding keys to the file:

• ProvideX builds keys on-the-fly.
• Exclusive access to the file is required.
• Keys are assigned the next available key number.
• When adding a unique alternate key, the add generates an error and the key is not

defined if duplicate keys are in the desired index.
• Only one key can be added at any one time (ADD or DROP cannot execute at the

same time and will fail with an error zero).
• The key names are case insensitive (key will be converted to uppercase characters).
• The first character of the key name cannot be a "#" as this is reserved for access to

the keys by key number.
• If a key name is specified, it cannot be null; e.g., "".
• Spaces are valid and significant. A name of " " (space) is valid, and is not the same

as a key of " " (space space).

Example ADD INDEX ["KeyName":2:1:30]+[1:1:6] TO "cstfile"

See also DROP INDEX Drop Key from Keyed File, p.103
RENAME..INDEX Rename Keys in Keyed File, p.285

filename$ Name of the file to which the key will be added. String
expression.

keydescription$ Description of the key using the same format as KEYED directive.

stmtref Program line number or label to transfer control to.

TO Mandatory keyword, not case-sensitive.

Note: A total key length that exceeds 240 characters will result in Error #80:
Invalid key definition.

2. Directives ADDR

ProvideX Language Reference V8.30 Back 30

ADDR Directive AD DR Load & Lock Pr ogram in MemoryLoad & Lock Program in Memory
Format ADDR prog_name$[, ERR=stmtref]

Where:

 Description The ADDR directive loads the specified program into memory and keeps it there
until you unload it.

For as long as the ADDR-loaded program is in memory, that specific program will be
referenced (using its absolute path) even if you change the system PREFIX or current
directory after executing the ADDR directive. That is, all subsequent references to
any program whose name matches that string will still refer to the ADDR-loaded
program.

You can see this in the example below. When the program is executed, ProvideX
ADDR-loads "DATECHK", changes directories and executes the ADDR-loaded
program even though there is a different current directory and a different program
with the same name might exist in that directory.

To unload a program which is ADDR-loaded, either use the DROP directive or
execute the START directive.

See also DROP Removes Program from Memory, p.95
START Restart ProvideX, p.328

Examples 0010 CWDIR "/opt/application/utilities"
0015 ! /opt/application/utilities/datecheck is loaded in memory.
0020 ADDR "datecheck"
0025 ! New working directory: could contain a different datecheck.
0030 CWDIR "/opt/application/ar"
0040 RUN "datecheck" ! Still runs /opt/application/utilities/datecheck

prog_name$ Name of the program to be loaded and kept in memory. String
expression. If you omit the pathname, ProvideX search rules apply.

stmtref Program line number or label to transfer control to.

2. Directives AUTO

ProvideX Language Reference V8.30 Back 31

AUTO Directive AUTO A utomatic Line GenerationAutomatic Line Generation
Format AUTO [lineno[,incr]]

Where:

Description Use the AUTO directive to have ProvideX automatically generate line numbers to
prefix your statement input.

If you omit the starting line number in this directive, then ProvideX uses either the
last generated line number (if any), or the next higher line in the current program. If
you do not specify an increment, the default is 10. If you change the increment in
Command mode, it stays at the new setting until you change it again.

The AUTO function remains active until you enter a null line (e.g., press) or
execute a command. You can backspace over and change the generated line number.

Examples ->AUTO 100,10
0100 ! ProvideX generates lineno 0100 for you. Add the statement.
0110 ! ProvideX adds 10, generates line 0110.
0120

incr Increment you want ProvideX to add automatically to generate each
subsequent line number. Default increment is 10; however, you can set a
different default via the 'AI'= System Parameter, p.656.

lineno Starting program line number you want ProvideX to use. Optional.

Note: This directive only works in Command mode.

Enter

2. Directives BEGIN

ProvideX Language Reference V8.30 Back 32

BEGIN Directive BEGIN Reset Files and VariablesReset Files and Variables
Format BEGIN [[EXCEPT]varlist]

Where:

Description The BEGIN directive performs the following functions:

1. Closes all local files currently open (global files are not affected).

2. Closes all open windows (unless the 'WK' parameter is set), drops non-global
control objects, and resets the menu bar.

3. Clears local variables (global variables are not affected).
a) All if no varlist appears on directive.
b) Only those in varlist if no EXCEPT clause given.
c) All but those in varlist if EXCEPT clause present.
Refer to the examples provided below.

4. Resets PRECISION to the default ('PD'=2) or value set via the 'PD'= System
Parameter, p.679.

5. Sets ERR, RET, and CTL to zero.

6. Clears the stack for FOR..NEXT, WHILE..WEND, GOSUB..RETURN, etc.

7. Resets pointer to the first DATA item in the program.

See Also CLEAR Reset Variables, p.54,
RESET Reset Program State, p.288,
START Restart ProvideX, p.328,
ERR() Test Error Value, p.427,
CTL Control Signal, p.557,
RET Operating System's Last Error Code, p.571.
Data Integration, User’s Guide.

Examples The following examples refer to item 3 in the description.

 a) 0100 BEGIN
 b) 0100 BEGIN A3$,B3$,C3,D3
 c) 0100 BEGIN EXCEPT CST_ID$,TX_VAL,TX_TBL${ALL}

varlist List of variables. Optional.

Note: When executed within an object (in Object Oriented Programming), the BEGIN
directive will clear all of the object's properties, along with standard variables, and will
close any standard local files and files owned by the object.

2. Directives BREAK

ProvideX Language Reference V8.30 Back 33

BREAK Directive BREAK Immediate Exit of LoopImmediate Exit of Loop
Format BREAK

Description Use the BREAK directive to perform an immediate exit from a loop or case structure.
Execution resumes following the directive that would normally have ended the loop
or case structure (e.g., NEXT, or WEND). The *BREAK label emulates a BREAK
directive for use as a statement reference.

See Also CASE Define Branch Points, p.42
SWITCH..CASE Branch Control, p.331
EXITTO End Loop, Transfer Control, p.125
Flow Overrides in the ProvideX User’s Guide

Examples 00100 PROCESS_TAXCODE:
00110 LiquorTax=0,SalesTax=0,ServiceTax=0
00120 SWITCH UCS(TaxCode$)
00130 CASE "X","Z" ! two codes are tax exempt
00140 BREAK ! stop processing for case "X" here
00150 CASE "L" ! liquor pays all liquor,sales and service tax
00160 LiquorTax=cost*LiquorTaxRate
00170 ! no break here, logic falls through
00180 CASE "S" ! pays sales and service tax
00190 SalesTax=cost*SalesTaxRate
00200 ! no break here, logic falls through
00210 CASE "V" ! service tax
00220 ServiceTax=cost*ServiceTaxRate
00230 BREAK ! end processing for this case and any that fell through
00240 DEFAULT ! enter here if case not found
00250 MSGBOX "Unknown tax code","Error"
00260 END SWITCH
00270 TotalTax=LiquorTax+SalesTax+ServiceTax
00280 RETURN

Note: You can now use BREAK commands in SELECT structures. In earlier version of
ProvideX, BREAK and the corresponding *BREAK label were not supported for use
with SELECT..NEXT RECORD directives.

2. Directives BUTTON

ProvideX Language Reference V8.30 Back 34

BUTTON Directive BUTTON Co ntrol But tonControl Button
Formats 1. Define/Create: BUTTON [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]

2. Remove: BUTTON REMOVE [*]ctl_id[,ERR=stmtref]

3. Disable/Enable: BUTTON {DISABLE | ENABLE} [*]ctl_id[,ERR=stmtref]

4. Hide/Show: BUTTON {HIDE | SHOW} [*]ctl_id[,ERR=stmtref]

5. Force Focus: BUTTON GOTO [*]ctl_id[,ERR=stmtref]

6. Signal on Focus: BUTTON SET_FOCUS [*]ctl_id,ctl_val[,ERR=stmtref]

7. Logical Push, Release: BUTTON {ON | OFF} [*]ctl_id[,ERR=stmtref]

8. Read Activation Mode: BUTTON READ [*]ctl_id,mode$[,ERR=stmtref]

Where

BUTTON OPT= Settings
Available attribute/behaviour settings are listed below. Some characters may be
combined. Invalid settings are ignored.

* Optional. Use a leading asterisk to denote a global button.

@(col,ln,
wth,ht)

Position and size of the button region. Numeric expressions. Column and
line coordinates for top left corner, width in number of columns and height
in number of lines. Use line value -1 to display the button on the tool bar.

contents$ Text/images to appear on the button. See BUTTON contents$, p.36

ctl_id Unique logical identifier for the button (any integer -32000 to +32000). Avoid
integers that conflict with keyboard definitions (e.g., 4 cancels CTL=4 for the

 key) or Negative CTL Definitions, p.817. Use this value with the
apostrophe operator to access various Button Properties.

ctrlopt Control options. Supported options for BUTTON include:
ERR=stmtref Error transfer
FNT="font,size[,attr]" Font name, size, optional properties

Refer to the 'FONT' Mnemonic, p.609 for details.
MSG=text$ Message string.
MNU=ctl CTL value associated with right-click menu event
OWN=name$ Name assigned for automated testing of this control
OPT=char$ (See BUTTON OPT= Settings)
TIP=text$ Mouse pointer message

To change the colour, refer to the 'TC'= System Parameter, p.689.

ctl_val CTL value to generate when focus goes to button.

mode$ String variable. ProvideX returns a single-character hex value in this
variable to report the last method / keystroke the user chose to activate
the button (01 for MOUSE-CLICK or $0D$ for).

stmtref Program line number or label to transfer control to.

"<" Bitmap Left. Places bitmap left of text.

F4

Enter

2. Directives BUTTON

ProvideX Language Reference V8.30 Back 35

Combined options can be used to create several different button types. For example, the
"f", "T", and "U" options provide the ability to turn buttons into hotspots, which
allows for clickable areas on bitmaps or hyperlinked text in dialogues; e.g.,

">" Bitmap Right. Places bitmap right of text.
"_" Bitmap Below. Places bitmap below text (4D only). See '4D' Mnemonic, p.586.
"~" Bitmap Above. Places bitmap above text (4D only). See '4D' Mnemonic, p.586.
"^" Drop-down. Adds drop-down functionality. (This requires menu event

setting via MNU=ctl option or MenuCtl property.)
"*" Default. Defines button as default.
"B"

-
Bitmap Button. Has a bitmap whose width is divided into four images. Use
this attribute to custom design buttons of any colour, style or shape by
controlling the bitmap image that appears. Each of the four divisions
represents what a button will look like in a particular state:
1st quarter: Bitmap image when button is disabled.
2nd quarter: Bitmap image when button is in normal (released) state.
3rd quarter: Bitmap image when the mouse is over the button.
4th quarter: Bitmap image when the button is pressed.

"d" Permanently Disabled. Button is grayed out and cannot be enabled.
"D" Initially Disabled. Button is initially grayed out.
"F"

-
Flat. Button shows no raised outline unless the mouse is over the button or
the button is pushed.

"f" Flat-No Border. Same as "F", but has no border.
"G" Global. Keep active when focus changes to new/non-concurrent window. When

using secondary commands (REMOVE or SET_FOCUS) on buttons created with
OPT="G" identify the button by prefixing the CTL value with an asterisk.; e.g.,
BUTTON 100,@(10,10,10,1)="Global",OPT="G"
BUTTON REMOVE *100

"h" Permanently Hidden. Button cannot be shown.
"H" Initially Hidden. Button is initially hidden.
"S"

-
Signal Only. ProvideX generates a CTL value, but does not shift focus to the
button automatically (the default), but only when focus is explicitly passed
to it. Use this to have a button act like a function key.

"s" Scroll. Button can scroll within a resizable/scrollable dialogue box.
"T" Transparent. Button is "see-through" to window contents below button area.
"U" Underscore. Text is underlined.
"V" Hovertext. Indicates that text will change color when mouse is over the button.
"Y" System Tray. Places an icon in the Taskbar Notification Area.

"VTf" Creates a general hotspot.
"VUTf" Creates an HTML-like hotspot (e.g., URL hyperlink).
"F^" Creates a word-style toolbar with drop list

2. Directives BUTTON

ProvideX Language Reference V8.30 Back 36

Description Use the BUTTON directive to create/control a button object on the screen or to place an
icon in the Taskbar Notification Icon (see User’s Guide, p.155). The ctl_id is used to
generate a CTL whenever the button is pressed. If ctl_id is prefixed by an asterisk *, the
button is considered global, and not tied to a specific window. By default, non-global
buttons are deleted when a window is removed/dropped or when the application issues
a BEGIN. Global buttons can be removed manually or cleared by a START.

BUTTON contents$
The contents$ string expression defines the text or picture to appear on the button.
In the text, you can use an ampersand "&" preceding a character to identify it as a
hot key the user can press in conjunction with the key to activate the button
from the keyboard.

Images and Icons
When adding an image to a button, enclose the image name in curly braces. Use a
leading exclamation point (!) to identify the image as internal, or specify the relative
path and filename to access an image file that is external. There are no icons in the
ProvideX executable and ProvideX does not support retrieving icons from either
resource libraries or other system DLLs /executables. For more information on the
options available for displaying internal/external images and the recognized image file
types, see Images and Icons, p.153 in the User’s Guide.

When you use text as well as images, the relative positions of the image and the text
set their relative placement. The following are example contents$ expressions:

"{!Add}Add" ! Displays the {!Add} bitmap in front of the text "Add"
"Delete{!Del}" ! Displays the {!Del} bitmap after the text "Delete"

If the string expression includes two images separated by a vertical bar inside a
single set of curly braces, the first is displayed when the button is released (normal
state), the second when the button is pressed; e.g., "{!Stop|C:\MYBMP\Go}.

You can also use the OPT="B" clause for a Bitmap Button to display different images
for different states. See BUTTON OPT= Settings, p.34.

Button Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
button object are described in Chapter 7. Control Object Properties, p.703.

Format 1: Define/Create

BUTTON [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]

Use this format to create a button control object, and give it a unique identifier in
ctl_id. The ctl_id is used to generate a CTL value whenever the user presses the
button; e.g.,

0010 REM Create button: CTL=4000 when pressed, 'Stop Sign' picture, "Exit" text
0020 BUTTON 4000,@(2,14,12,2)="{!Stop}Exit"

Alt

2. Directives BUTTON

ProvideX Language Reference V8.30 Back 37

If the ctl_id has a leading asterisk *, the button is considered global (not tied to a
specific window); e.g.,

0010 REM To add a global button to the Toolbar with the text "Help":
0020 BUTTON *1000,@(0,-1,10,1)="Help"

Format 2: Remove
BUTTON REMOVE [*]ctl_id[,ERR=stmtref]

Use BUTTON REMOVE to delete a button; e.g., to remove the button created
previously,

0030 BUTTON REMOVE 4000

By default, non-global buttons are deleted when a window is removed/dropped or
when the application issues a BEGIN. Global buttons can be removed using BUTTON
REMOVE syntax, or cleared using the START directive.

Format 3: Disable/Enable
BUTTON {DISABLE | ENABLE} [*]ctl_id[,ERR=stmtref]

Use the BUTTON DISABLE format to gray out a button so that it will be visible but
inaccessible to users. To reactivate it, use BUTTON ENABLE.

0030 BUTTON DISABLE 4000
...
0500 BUTTON ENABLE 4000

Format 4: Hide/Show
BUTTON {HIDE | SHOW} [*]ctl_id[,ERR=stmtref]

Use the BUTTON HIDE format to hide the display of an active button. (The user can't
see or use the button when it's hidden. Use the BUTTON SHOW format to restore the
button's display and access.

Format 5: Force Focus
BUTTON GOTO [*]ctl_id[,ERR=stmtref]

Use BUTTON GOTO to reactivate and force focus to a button, ready for the next user
action; e.g.,

0030 BUTTON GOTO 4000

Format 6: Signal on Focus
BUTTON SET_FOCUS [*]ctl_id,ctl_val[,ERR=stmtref]

The BUTTON SET_FOCUS format can be used to define an alternate CTL value to
generate whenever focus shifts to the button.

Note: A button object can be created using a ctl_id of 0 zero for applications that need
to emulate the key in the absence of an actual keyboard; i.e., touchscreen format. Enter

2. Directives BUTTON

ProvideX Language Reference V8.30 Back 38

Format 7: Logical Push, Release
BUTTON {ON | OFF} [*]ctl_id[,ERR=stmtref]

Use BUTTON ON/OFF to make it look like the button was pressed/released though
no signal is generated; e.g.,

0030 BUTTON ON 4000

Format 8: Read Activation Mode
BUTTON READ [*]ctl_id,mode$[,ERR=stmtref]

Use BUTTON READ to receive the user's method of selecting the button. ProvideX
returns a hex value in the mode$ variable to tell you what keystroke last activated the
button. Once read, this field is reset to 00. Possible values are described below:

01 for MOUSE-CLICK.
02 for DOUBLE MOUSE-CLICK.
$0D$ for .
20 for (and keyboard hot key, as in the example below).
09 for to go to the button.
00 when the user exits the button control.
Other specific characters include: 81 for 82 for ...

Read the user's selection(s) to make them available to your applications. In the
example below, the STROKE$ variable returns the user's method of selection (by
mouse, carriage return or space bar). The value returned for keyboard strokes (the
hot key -B and the for the following example, is 20).

0010 ! BUTTON Example
0020 PRINT 'CS'
0030 LIST
0040 BUTTON 2000,@(24,17,7,3)="{!BUG|!STOP}Hit the &Bug"
0050 LET BTN=2000
0060 SETCTL BTN:READ_BOX
0070 BUTTON GOTO BTN
0080 PRINT @(24,24),"HotKey=<Alt-B>. Try Mouse and keyboard too. END=<F4>"
0090 OBTAIN (0,SIZ=1,ERR=0090)@(0,0),'CURSOR'("off"),'ME',IN_VAR$,'MN'
0100 IF CTL=4 THEN GOTO END
0110 READ_BOX:
0120 BUTTON READ BTN,STROKE$
0130 PRINT @(24,20),"Your HTA(selection)=",HTA(STROKE$),",CTL=",CTL:"#####"
0150 GOTO 0090
0160 END:
0170 BUTTON REMOVE BTN; PRINT 'CS'

See Also RADIO_BUTTON Control Radio Button, p.265
CHECK_BOX Control Check Box, p.47
TRISTATE_BOX Control Tristate Box, p.344
Chapter 7. Control Object Properties, p.701.
Images and Icons, p.153 in the User’s Guide.

Enter
SPACEBAR

Tab

F1 F2

Alt SPACEBAR

2. Directives BYE

ProvideX Language Reference V8.30 Back 39

BYE Directive BYE Terminate ProvideXTerminate ProvideX Session
Format BYE

Description Use the BYE directive to end a ProvideX session and return to the operating system.
If the ERR system variable has a value other than zero (i.e., an error has occurred)
then the operating system is informed that an error has occurred within ProvideX.
This allows you to do external testing of error conditions.

The ProvideX compiler converts the BYE directive into a QUIT directive. When you
use it in a compound statement, the BYE directive must be the final directive.

See Also QUIT Terminate ProvideX, p.264
RELEASE Terminate ProvideX, p.279

2. Directives CALL

ProvideX Language Reference V8.30 Back 40

CALL Directive CALL Transf er to Subpr ogramTransfer to Subprogram
Format CALL subprog$[;entry$][,ERR=stmtref][, arglist]

Where:

Description Use the CALL directive to transfer control to a subprogram. The current program state is
saved and the specified subprogram is loaded and executed. If you use arguments, they
are recieved in the called subprogram via the ENTER directive.

The called program should terminate with an EXIT, which may be replaced by an END
or STOP.

Arguments for CALL and ENTER
Normally, the total number of arguments in the CALL and ENTER statements must
match. Each argument in the CALL statement must correspond in relative position
and in type (numeric or string) to a variable in the ENTER statement. If you use a
shorter list of arguments in a CALL statement than in the ENTER statement, make
sure to maintain relative position and type up to the point where you shorten the list
(and include error handling options). Otherwise, ProvideX returns

Error #36: ENTER parameters don't match those of the CALL.

You can protect a simple variable in a CALL or ENTER statement by placing it inside
parentheses. This turns the variable into an expression, which has the effect of
making it read only; e.g., CALL "PROG",(A$).

IOLists can also be used as arguments for CALL statements; e.g.,

CALL "PROG",IOL=8000

;entry$ Name of starting line label to use as entry point in the subprogram.
Optional. Max string size 8kb. If included, use a leading semicolon and
add it to the subprog string expression; e.g.,
CALL "get_pizza;order",top_1,top_2 ...

arglist Comma-separated list of variables, literals, or expressions.

stmtref Program line number or label to transfer control to.

subprog$ Name of the subprogram to call. Max string size 8kb.

Warning: If you pass an argument to the subprogram using a simple variable (e.g.,
A$,Z) then any changes to the variable in the subprogram will have an effect in the
calling program. Subscripted variables/expressions (including substrings) or any
values enclosed in parentheses only have their values passed one way: to the
subprogram. Changes made to these will not affect the calling program.

2. Directives CALL

ProvideX Language Reference V8.30 Back 41

Pass a complete array to a subprogram by specifying the array name followed by
{ALL}. In this case, all values are passed to the subprogram and any changes made
are returned to the calling program. See the ProvideX User's Guide for more details
on this directive.

String templates cannot be passed if they are defined prior to the ENTER statement in
the called program.

CALL Using Entry-Point Labels

This directive also has an optional ProvideX feature you'll find useful for
applications like subprogram "libraries" (with multiple stand-alone routines, each
accessed by a line label). To use this form of access, append a semicolon plus the
label name of the starting statement to the subprogram name (e.g., CALL
"PROG;STARTING_LABEL",ERR=1000,X$,A,CT$). After the called subprogram is
loaded, ProvideX internally issues a GOTO STARTING_LABEL (e.g.) directive and starts
execution there. Use this to create a single subprogram with multiple entry points
and ENTER directives.

CALL and ENTER from ASCII Programs

When you run programs from ASCII text files, the CALL and ENTER with no
arguments will always fail because the system thinks that the variables have already
been assigned. To work around this, use the PERFORM directive or save the called
program in a program file.

See Also Called Procedures, User’s Guide
ENTER Specify Arguments, p.119
PERFORM Call Subprogram, Pass Variables, p.243
END Halt Program Execution, p.113
EXIT Terminate Subprogram and Return, p.124
STOP Halt Program Execution, p.330

Examples 0020 CALL "ABCDEF",ERR=0050,A,4*F,Z$,X$(4,5),(Q)

In ABCDEF:

0030 ENTER Z,X,A$,B$,V$

Z will receive the value of A – A will reflect changes in Z.
X will receive the value of 4*F.
A$ will receive the value of Z$ – Z$ will reflect changes in A$.
B$ will receive the string from X$(4,5) which will not change.
V$ will receive Q$ but Q$ cannot be changed.

2. Directives CASE

ProvideX Language Reference V8.30 Back 42

CASE Directive CASE D ef ine Br anch Point sDefine Branch Points
Format CASE range[$]

Where:

Description Use the CASE directive to list possible branch points in a program.

See Also SWITCH..CASE Branch Control, p.331,
BREAK Immediate Exit of Loop, p.33,
DEFAULT Branch If No Matching Case, p.77

Examples 00100 PROCESS_TAXCODE:
00110 LiquorTax=0,SalesTax=0,ServiceTax=0
00120 SWITCH UCS(TaxCode$)
00130 CASE "X","Z" ! two codes are tax exempt
00140 BREAK ! stop processing for case "X" here
00150 CASE "L" ! liquor pays all liquor,sales and service tax
00160 LiquorTax=cost*LiquorTaxRate
00170 ! no break here, logic falls through
00180 CASE "S" ! pays sales and service tax
00190 SalesTax=cost*SalesTaxRate
00200 ! no break here, logic falls through
00210 CASE "V" ! service tax
00220 ServiceTax=cost*ServiceTaxRate
00230 BREAK ! end processing for this case and any that fell through
00240 DEFAULT ! enter here if case not found
00250 MSGBOX "Unknown tax code","Error"
00260 END SWITCH
00270 TotalTax=LiquorTax+SalesTax+ServiceTax
00280 RETURN

range[$] List of values defining branch points in a program. String or
numeric expression.

Note: Refer to SWITCH..CASE Branch Control, p.331, for complete syntax.

2. Directives CHART

ProvideX Language Reference V8.30 Back 43

CHART Directive CH ART Control Ch ar tControl Chart
Formats 1. Define/Create: CHART ctl_id,@(col,ln,wth,ht),[,ctrlopt]

2. Remove: CHART REMOVE ctl_id[,ERR=stmtref]
3. Disable/Enable: CHART {DISABLE | ENABLE} ctl_id[,ERR=stmtref]
4. Hide/Show: CHART {HIDE | SHOW} ctl_id[,ERR=stmtref]
5. Load: CHART LOAD ctl_id,strvar$[,ERR=stmtref]
6. Clear Data: CHART CLEAR ctl_id[,ERR=stmtref]
7. Clear Data & Titles: CHART DELETE ctl_id[,ERR=stmtref]
8. Retrieve Value: CHART FIND ctl_id,dataset, point,{numvar|label$}[,ERR=stmtref]
9. Read Selected Set: CHART READ ctl_id, dataset,eom$[,ERR=stmtref]

10. Update Existing Values: CHART WRITE ctl_id,dataset,point,{numvar|label$}[,ERR=stmtref]

Where

@(col,ln,
wth,ht)

Position and size of the check box region. Numeric expressions.
Column and line coordinates for top left corner, width in number of
columns and height in number of lines.

ctl_id Unique logical identifier for the chart (any integer -32000 to +32000). Avoid
integers that conflict with keyboard definitions (e.g., 4 cancels CTL=4 for the

 key) or Negative CTL Definitions, p.817. Use this value with the
apostrophe operator to access various Chart Properties.

ctrlopt Control options. Supported options for CHART include:
ERR=stmtref Error transfer
FMT=def$ See Chart Formats listed below.)
FNT="font" Font name (size controlled by window coordinates).
OPT=char$ (See Attribute/Behaviour Settings below).
SEP=char$ Delimiter character. Hex or ASCII string value.
TIP=text$ Mouse pointer message. To change the colour, refer to the
'TC'= System Parameter, p.689.
Chart Formats (for FMT=def$): 2DLINE (default), 2DAREA, 3DAREA,
2DBAR, 3DBAR, 2DCOLUMN, 3DCOLUMN, 3DLINE, 2DPIE, 3DPIE, 2DRIBBON,
3DRIBBON, 2DSCATTER, 3DSCATTER, 2DSTACK, 3DSTACK.
Attribute/Behaviour Settings (for OPT=char$):
"B" - Chart has no border or frame.
"D" - Initially disabled
"d" - Permanently disabled
"H" - Chart is initially hidden
"h" - Permanently hidden.
"G" - Keep active on focus change to a new/non-concurrent window.
Some OPT= characters may be combined. Invalid settings are ignored.

dataset Dataset from which values will be drawn.
numvar Name of variable that will contain returned numeric data value.
eom$ EOM character sequence used to select the set. Hex string expression.

F4

2. Directives CHART

ProvideX Language Reference V8.30 Back 44

Description Use the CHART directive to create two and three dimensional chart illustrations in a
graphical application. The chart type and visual look information is determined by
the FMT= option (several chart types are available). Chart values can have impact on
the resolution ability of the chart; e.g., it cannot reliably produce pie slices that are
thinner than 0.1 percent of the total pie chart value range.

Chart Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
chart object are described in Chapter 7. Control Object Properties, p.704.

Format 1: Define/Create
CHART ctl_id,@(col,ln,wth,ht),[,ctrlopt]

Use this format to create the chart. The value in ctl_id is a unique identifier that is
used to generate a CTL value whenever the chart is selected and changed.

Format 2: Remove
CHART REMOVE ctl_id[,ERR=stmtref]
Use this format to delete an entire chart.

Format 3: Disable/Enable
CHART {DISABLE | ENABLE} ctl_id[,ERR=stmtref]
If the mouse is clicked on a chart while it is enabled, then the program receives a CTL
event based on the ctl_id of the chart. This does not occur when the chart is disabled.

Format 4: Hide/Show
CHART {HIDE | SHOW} ctl_id[,ERR=stmtref]
With the CHART HIDE format, the chart remains active, but is not displayed. It is still
accessible to program(s). Use the CHART SHOW to restore the user's display and access.

label$ Name of variable that will contain returned label value.
point Data point within the dataset.
strvar$ String containing the chart data.

Note: This feature requires ProvideX Charting Control activation. Refer to the
ProvideX website for licensing information.

2. Directives CHART

ProvideX Language Reference V8.30 Back 45

Format 5: Loading Data into a Chart

CHART LOAD ctl_id,strvar$[,ERR=stmtref]
Use this format to load chart data into a chart. The last character in strvar$ identifies the
separator for the data set while the value defined by SEP= when the chart is created, is
used to identify the different data points within each set. Legend labels can be specified
as the first element in a dataset definition followed by an equal sign (=); e.g.,

CHART LOAD 10,"100,200,300,400/150,250,350,450/"

This loads a chart with two data sets consisting of four points (or data elements).
CHART LOAD 10,"Last Year=100,200,300,400/This Year=150,250,350,450/"

This includes legend labels for the first example.

Format 6: Clearing Data from a Chart
CHART CLEAR ctl_id[,ERR=stmtref]
This clears the data values from the chart but not the titles and labels.

Format 7: Clearing Data & Titles from a Chart
CHART DELETE ctl_id[,ERR=stmtref]
This clears all of the data values and all of the titles from the chart.

Format 8: Retrieving Values from a Chart
CHART FIND is used to retrieve values from a chart based on the specified dataset and
data point. The format is described below.

CHART FIND ctl_id,dataset,point,numvar[,ERR=stmtref]
The data is read from the chart and returned in numvar.

CHART FIND ctl_id,dataset,point,label$[,ERR=stmtref]
This format retrieves the label in label$. Legend labels are determined for a specified
dataset when the point value is set to zero. Point labels are determined for a specified
point when the dataset value is set to zero. The following example reads the value and
label for the second point of the first dataset:

CHART FIND 10,1,2,RETURN_VALUE
CHART FIND 10,1,0,LEGEND_LABEL_1$
CHART FIND 10,0,1,POINT_LABEL_1$

Format 9: Reading Selected Set from a Chart
CHART READ ctl_id, dataset,eom$[,ERR=stmtref]
Use CHART READ upon receiving a CTL notification that the control was selected
with the mouse. The eom$ character will yield 01 indicating that the dataset was
selected by a mouse click.

2. Directives CHART

ProvideX Language Reference V8.30 Back 46

Format 10: Updating Existing Values in a Chart
CHART WRITE is used to change existing values in a chart based on the specified dataset
and data point.

CHART WRITE ctl_id,set,point,data$[,ERR=stmtref]
This format updates the data for an individual point.

CHART WRITE ctl_id,set,point,label$[,ERR=stmtref]
This format changes chart labels. Legend labels are updated for a specified dataset when
the point value is set to zero. Point labels are updated for a specified point when the
dataset value is zero.

2. Directives CHECK_BOX

ProvideX Language Reference V8.30 Back 47

CHECK_BOX Directive CH ECK_BOX Cont rol Check BoxControl Check Box
Formats 1. Define/Create: CHECK_BOX [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]

2. Remove: CHECK_BOX REMOVE [*]ctl_id[,ERR=stmtref]

3. Disable/Enable: CHECK_BOX {DISABLE | ENABLE}[*]ctl_id[,ERR=stmtref]

4. Hide/Show: CHECK_BOX {HIDE | SHOW} [*]ctl_id[,ERR=stmtref]

5. Force Focus: CHECK_BOX GOTO [*]ctl_id[,ERR=stmtref]

6. Signal on Focus: CHECK_BOX SET_FOCUS ctl_id,ctl_val[,ERR=stmtref]

7. Logical On/Off: CHECK_BOX {ON | OFF} [*]ctl_id[,ERR=stmtref]

8. Read Activation Status: CHECK_BOX READ [*]ctl_id,state$[,mode$][,ERR=stmtref]

9. Update: CHECK_BOX WRITE [*]ctl_id,state$[,ERR=stmtref]

Where

* Optional. Use a leading asterisk to denote a global check box.

@(col,ln,
wth,ht)

Position and size of the check box region. Numeric expressions. Column
and line coordinates for top left corner, width in number of columns and
height in number of lines. Note that width and height are for the total
area (box plus text/description). Use line value -1 to display the check
box on the tool bar.

contents$ Text/pictures to appear on the check box. {bitmap} and {icon} images
are supported. String expression. See CHECK_BOX contents$, p.49

ctl_id Unique logical identifier for the check box (any integer -32000 to +32000).
Avoid integers that conflict with keyboard definitions (e.g., 4 cancels CTL=4
for the key) or Negative CTL Definitions, p.817. Use this value with
the apostrophe operator to access various Check Box Properties.

ctrlopt Control options. Supported options for CHECK_BOX include:
ERR=stmtref Error transfer
FNT="font,size[,attr]" Font name, size, optional properties

Refer to the 'FONT' Mnemonic, p.609 for details.
MSG=text$ Message string.
MNU=ctl CTL value associated with right-click menu event.
OPT=char$ (See CHECK_BOX OPT= Settings:, p.48.)
OWN=name$ Name assigned for automated testing of this control.
TBL=char$ Single character translation
TIP=text$ Mouse pointer message.

To change the colour, refer to the 'TC'= System Parameter, p.689.

ctl_val CTL value to generate when focus goes to the input field.

mode$ String variable. ProvideX returns a single-character hex value in this
variable to report the last method / keystroke the user chose to toggle
the check box (01 for MOUSE-CLICK or $0D$ for).

F4

Enter

2. Directives CHECK_BOX

ProvideX Language Reference V8.30 Back 48

CHECK_BOX OPT= Settings:
Available attribute/behaviour settings are listed below. Some characters may be
combined. Invalid settings are ignored.

state Current state of the check box (0=OFF, 1=ON).

stmtref Program line number or label to transfer control to.

"<" Bitmap Left. Places bitmap left of text.
">" Bitmap Right. Places bitmap right of text.
"^" Drop-down. Adds drop-down functionality.
"*" Default. Defines check box as default.
"B"

-
Bitmap. Has a bitmap whose width is divided into four images. Use this
attribute to custom design check boxes of any colour, style or shape by
controlling the bitmap image that appears. Each of the four divisions
represents what a button will look like in a particular state:
1st quarter: Bitmap image when button is disabled.
2nd quarter: Bitmap image when button is in normal (released) state.
3rd quarter: Bitmap image when the mouse is over the button.
4th quarter: Bitmap image when the button is pressed.

"d" Permanently Disabled. Checkbox is grayed out and cannot be enabled.
"D" Initially Disabled. Checkbox is initially grayed out.
"F"

-
Flat. Check box shows no raised outline unless the mouse is over the button
or the button is pushed.

"f" Flat-No Shift. Same as "F", but will not shift when pressed.
"G" Global. Keep active when focus changes to new/non-concurrent window. When

using secondary commands (REMOVE or SET_FOCUS) on controls created with
OPT="G" identify the control by prefixing the CTL value with an asterisk.; e.g.,
CHECK_BOX 100,@(10,10,10,1)="Global",OPT="G"
CHECK_BOX REMOVE *100

"h" Permanently Hidden. Checkbox cannot be shown.
"H" Initially Hidden. Checkbox is initially hidden.
"P" Sticky - Pressed. Button remains in the "pressed" position until next selection.
"S"

-
Signal Only. ProvideX generates a CTL value, but does not shift focus to the
check box automatically (the default), but only when focus is explicitly
passed to it. Use this to have a check box act like a function key.

"s" Scroll. Check box can scroll within a resizable/scrollable dialogue box.
"T" Transparent. Check box is "see-through" to window data behind.
"U" Underscore. Text is underlined.
"V" Hovertext. Indicates that text will change color when mouse is over the check box.
"Y" System Tray. Places an icon in the Taskbar Notification Area.

2. Directives CHECK_BOX

ProvideX Language Reference V8.30 Back 49

Combined options can be used to create several different check box types. The "f", "T",
and "U" options provide the ability to turn check boxes into hotspots, which allows for
clickable areas on bitmaps or hyperlinked text in dialogues; e.g.,

Description Use the CHECK_BOX directive to create/control a check box object on the screen or to
place an icon in the Taskbar Notification Icon (see User’s Guide, p.155). The user
can toggle check boxes between two states: ON to check the option or OFF to uncheck
it. (If you need a third state for a check box, refer to the TRISTATE_BOX Directive,
p.344.)

CHECK_BOX contents$
The contents$ string expression defines the text or picture to appear on the check
box. In the text, you can use an ampersand "&" preceding a character to identify it as
a hot key the user can press in conjunction with the key to activate the check
box from the keyboard. By default, the text is displayed to the right of a check box.
Add a colon (:) to the end of the text field to force the text to display to the left side.

Using Images
When adding an image to a check box, enclose the image name in curly braces. Use a
leading exclamation point (!) to identify the image as internal, or specify the relative
path and filename to access an image file that is external. There are no icons in the
ProvideX executable and ProvideX does not support retrieving icons from either
resource libraries or other system DLLs /executables. For more information on the
options available for displaying internal/external images and the recognized image file
types, see Images and Icons, p.153 in the User’s Guide.

When you use text as well as images, the relative positions of the image and the text
set their relative placement. The following are example contents$ expressions:

"{!Add}Add" ! Displays the {!Add} bitmap in front of the text "Add"
"Delete{!Del}" ! Displays the {!Del} bitmap after the text "Delete"

If you enclose two images separated by a pipe | vertical bar in a single set of curly
braces, the first will be displayed when the CHECK_BOX state is 0 (zero for
OFF/normal state), the second when the CHECK_BOX state is 1 (ON); e.g.,

"{!Stop|C:\MYBMP\Go}"

You can also use the OPT="B" clause for a Bitmap Button to display different images
for different states.

"VTf" Creates a general hotspot.
"VUTf" Creates an HTML-like hotspot (e.g., URL hyperlink).
"F^" Creates a word-style toolbar with drop list

Alt

2. Directives CHECK_BOX

ProvideX Language Reference V8.30 Back 50

Check Box Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
check box object are described in Chapter 7. Control Object Properties, p.704.

2. Directives CHECK_BOX

ProvideX Language Reference V8.30 Back 51

Format 1: Define/Create
CHECK_BOX [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]

Use this format to create a check box. The ctl_id is a unique value that is used to
generate a CTL value whenever the user toggles the box; e.g.,

0010 REM Create check box, CTL=100, Text="Post Month End", ALT-P to select box
0020 CHECK_BOX 100,@(60,20,20,2)="&Post Month End"

If the ctl_id has a leading asterisk *, the check box is considered global (not tied to a
specific window).

Format 2: Remove
CHECK_BOX REMOVE [*]ctl_id[,ERR=stmtref]

Use the CHECK_BOX REMOVE format to delete a check box. Note that, by default, all
check boxes which are not global are deleted when a window is removed or
dropped, and on a BEGIN; e.g.,

0030 CHECK_BOX REMOVE *17000 ! Removes global check-box 17000

Global check boxes can be removed using the above syntax, or cleared using the
START directive.

Format 3: Disable/Enable
CHECK_BOX {DISABLE | ENABLE}[*]ctl_id[,ERR=stmtref]

Use the CHECK_BOX DISABLE format to gray out a check box so that it will be
visible but inaccessible to users. To reactivate it, use CHECK_BOX ENABLE; e.g.,

0030 CHECK_BOX ENABLE 100

Format 4: Hide/Show
CHECK_BOX {HIDE | SHOW} [*]ctl_id[,ERR=stmtref]

Use the CHECK_BOX HIDE format to keep a check box from being displayed. Use the
CHECK_BOX SHOW format to restore the display of a hidden check box.

Format 5: Force Focus
CHECK_BOX GOTO [*]ctl_id[,ERR=stmtref]

Use the CHECK_BOX GOTO format to reactivate and force focus to a check box, ready
for the next user action; e.g.,

0030 CHECK_BOX GOTO 110

Format 6: Signal on Focus
CHECK_BOX SET_FOCUS ctl_id,ctl_val[,ERR=stmtref]

Use the CHECK_BOX SET_FOCUS format to define an alternate CTL value to
generate whenever focus shifts to the check box.

2. Directives CHECK_BOX

ProvideX Language Reference V8.30 Back 52

Format 7: Logical On/Off
CHECK_BOX {ON | OFF} [*]ctl_id[,ERR=stmtref]

Use the CHECK_BOX {ON | OFF} format to make it appear that a check box is
depressed or released; e.g.,

0030 CHECK_BOX OFF 110,ERR=0040

Format 8: Read Activation Status
CHECK_BOX READ [*]ctl_id,state$[,mode$][,ERR=stmtref]

Use the CHECK_BOX READ format to receive the current state of the check box ("0"=
off and "1"= on). Use the second (optional) string variable to have ProvideX return
the user's method of toggling the check box. Once read, this field is reset to 00.
Some of the possible values are:

01 for MOUSE-CLICK.
02 for DOUBLE MOUSE-CLICK.
$0D$ for .
20 for (and keyboard HotKey, as in the example below.
00 when the user exits the check box.

Read the user's selection(s) to make them available to your applications. The
ON_OFF$ variable in the example below receives the current on/off state. For
STROKE$ in the example below, ProvideX returns 20 when the user makes the
selection using either or the &T hot key -T.

0010 ! CHECK_BOX Example
0020 PRINT 'CS'; LIST
0030 CHECK_BOX 90,@(40,17,25,3)="&Toggle for Status"
0040 LET C_BX=90; LET C_BX'BACKCOLOUR$="LIGHT CYAN"
0050 SETCTL C_BX:READ_BOX
0060 CHECK_BOX GOTO C_BX
0070 PRINT @(40,24),"HotKey=<Alt-T>. Try Mouse and keyboard too. END=<F4>"
0080 GETINPUT:
0080:OBTAIN (0,SIZ=1,ERR=GETINPUT)@(0,0),'CURSOR'("off"),'ME',IN_VAR$,'MN';
0080:LET CT=CTL
0090 IF CT=4 THEN GOTO END
0100 READ_BOX:
0110 CHECK_BOX READ C_BX,ON_OFF$,STROKE$
0120 ! WRITE_BOX
0130 CHECK_BOX WRITE C_BX,ON_OFF$
0140 PRINT @(40,20),"Current Status: ",ON_OFF$
0150 PRINT @(40,21),"Key Stroke : ",HTA(STROKE$)

Note: This does not alter its state; i.e., "checked" or "unchecked". Use CHECK_BOX
WRITE to do that.

Enter
SPACEBAR

SPACEBAR Alt

2. Directives CHECK_BOX

ProvideX Language Reference V8.30 Back 53

Format 9: Update
CHECK_BOX WRITE [*]ctl_id,state$[,ERR=stmtref]

Use the CHECK_BOX WRITE format to update the check box's state; e.g.,

0100 ! WRITE C_BX
0110 LET ON_OFF$="0"
0130 CHECK_BOX WRITE C_BX,ON_OFF$

See Also RADIO_BUTTON Control Radio Button, p.265
BUTTON Control Button, p.34
TRISTATE_BOX Control Tristate Box, p.344
Chapter 7. Control Object Properties, p.701.

2. Directives CLEAR

ProvideX Language Reference V8.30 Back 54

CLEAR Directive CLEAR Reset VariablesReset Variables
Formats 1. Clear, Reset: CLEAR [EXCEPT] [varlist]

2. Clear Composite String: CLEAR template$

Where:

Description The CLEAR directive performs several functions:

1. Resets PRECISION to the default value of 2.

2. Clears the following local variables (global variables are not affected unless
specified in varlist):
• All if no varlist appears on directive
• Only those in varlist if no EXCEPT clause given
• All but those in varlist if EXCEPT clause present

3. Sets ERR, RET, and CTL to zero
4. Clears FOR/NEXT, GOSUB/RETURN stack
5. Resets the pointer to the first DATA item in the program.

See Also BEGIN Reset Files and Variables, p.32,
RESET Reset Program State, p.288,
START Restart ProvideX, p.328,
ERR System Variable, p.560,
CTL System Variable, p.557,
RET System Variable, p.571.

Format 1: Clear, Reset
CLEAR [EXCEPT] [varlist]

The examples here show, respectively, clearing all variables, clearing only a selected
list of variables, and CLEARing all EXCEPT a selected list of variables:

0100 CLEAR
1100 CLEAR A3$,B3$,C3,D3
2100 CLEAR EXCEPT CST_ID$,TX_VAL,TX_TBL${ALL}

Format 2: Clear Composite String
Use this format to clear the attributes of a variable DIMensioned as a string template;
e.g., CLEAR CUST$ or CLEAR CUST.NAME$. For more on string templates, see DIM
Define Arrays and Strings, p.86.

template$ Name of a variable DIMensioned as a string template. String expression.

varlist List of variables. Optional.

Note: When executed within an object, the CLEAR directive will clear all of the object's
properties, along with standard variables. See Data Integration, p.275 in the User’s
Guide.

2. Directives CLIP_BOARD

ProvideX Language Reference V8.30 Back 55

CLIP_BOARD Directive CLIP_BOARD U se Windows ClipboardUse Windows Clipboard
Formats 1. Read Clipboard Data: CLIP_BOARD READ var$[,ERR=stmtref]

2. Write Clipboard Data: CLIP_BOARD WRITE text$[,ERR=stmtref]

Where:

Description

Use the CLIP_BOARD directive to have ProvideX application read or write to the
Windows clipboard. Only text can be passed to/from the clipboard. You can read a
maximum of 32000 bytes using ProvideX to access the clipboard. The write limit
depends on the system.

ProvideX does not interpret the data in the clipboard. Because of this, carriage return
$0D$ and line feed $0A$ characters are present in multi-line clipboard data when it
is read. You should place these characters between the lines when writing to the
clipboard.

Examples 1000 INPUT "Enter customer ID:",C$
1010 READ (1,KEY=C$)C.NM$,C.ADR1$,C.ADR2$
1020 CLIP_BOARD WRITE C$+" "+C.NM$+$0D0A$+C.ADR1$+$0D0A$+C.ADR2$
1030 PRINT "Your information is in the clipboard.."

stmtref Program line number or label to transfer control to.

text$ The data to place into the Windows clipboard.

var$ String variable. Receives the contents of the clip board.

Note: This directive is for Windows or WindX only.

2. Directives CLOSE

ProvideX Language Reference V8.30 Back 56

CLOSE Directive C LOSE Close FileClose File
Format CLOSE {(*) | (chan)}[,(chan)...[,ERR=stmtref])]

Where:

Description Use the CLOSE directive to close a given logical file number. The memory used for
buffers and control information is returned to the system. Once closed, the file
(channel) number can be reused for a different file.

The ERR= branch will be taken should an error occur during the close. If the
application tries to close an unopened file, an error will only be generated if an
ERR= branch is provided. If an ERR= branch is not provided, the close is assumed to
have occurred previously and no error is generated.

See Also OPEN Open for Processing, p.232
BEGIN Reset Files and Variables, p.32
START Restart ProvideX, p.328
'WK' System Parameter, p.695

Examples CLOSE (30)
OPEN (30)"PRINT_DEVICE"
0500 LET CSTFILE=HFN; OPEN (CSTFILE)"CSTFILE"
0510 LET PRDFILE=UNT; OPEN (PRDFILE)"PRDFILE"
0520 LET ORDFILE=7; OPEN (ORDFILE)"ORDFILE"
0530 PRINT CSTFILE,PRDFILE,ORDFILE
0540 STOP
-:run
 63 5 7

Either of the two statements below will close channels 63, 5 and 7. The second
statement closes all other open local channels as well.

CLOSE (CSTFILE),(PRDFILE),(ORDFILE) ! Just closes channels 63,5,7
CLOSE (*) ! Closes ALL open file channels (i.e., 63,5,7 and 30)

* Asterisk denotes "all OPEN local channels". CLOSE (*) resets all files then
closes everything but channel 0 (unless the 'WK' parameter is set). This
closes all open windows and purges graphical controls from the system.

chan Channel or logical file number.

stmtref Program line number or label to transfer control to.

Note: A CLOSE directive will delete a Memory file. See *MEMORY* Create & Use
Memory File, p.741. When you CLOSE (chan), ProvideX returns all memory that was
occupied by the Memory file to the system.

Note: When executed within an object, CLOSE (*) will close any standard local files
and files owned by the object. See Data Integration, p.275 in the User’s Guide.

2. Directives CONTINUE

ProvideX Language Reference V8.30 Back 57

CONTINUE Directive CONTINUE Init iat es Next It er at ion of LoopInitiates Next Iteration of Loop
Format CONTINUE

Description Use the CONTINUE directive to go immediately to the next iteration of a loop (or
terminate the loop if it is the last iteration). The *CONTINUE label emulates a
CONTINUE directive for use as a statement reference.

See Also Labels/Logical Statement References , p.816
Flow Overrides, User’s Guide

Examples 0010 FOR I=-1 TO 3 STEP 1
0020 IF I<=0 THEN PRINT " TESTING ",; CONTINUE
0030 PRINT I,
0040 NEXT
-:run
 TESTING TESTING 1 2 3-:

0110 FOR I=1 TO 100
0120 IF X$[I]<K$ CONTINUE
0130 PRINT X$[I]
0140 NEXT

2. Directives CREATE TABLE

ProvideX Language Reference V8.30 Back 58

CREATE TABLE Directive CREATE TABLE Cr eat e Keyed File (EFF)Create Keyed File (EFF)
Format CREATE TABLE filename$,[,extkey_len][,key_def$][,max_recs][,rec_size][,fileopt]

Where:

filename$ Name of the Keyed file to create. String expression.
extkey_len Numeric expression. Length of the external key for all records in the file

(maximum 127 characters).
key_def$ String expression defining the key. The Keyed file can be single- or

multi-keyed. A key definition is made up of one or more key field
definitions ranging 0 to 15 for FLR/VLR files or 0 to 255 for EFF files. Use
integers for specific field numbers, or 0 zero for record-based offsets. The
key definition formats are as follows:

Single key field:
[["keyname":]field:offset:len[:"attr"]]

Composite key fields (using the + operator):
[["keyname":]field:offset:len[:"attr"]]+[field:offset:len[:"attr"]]

Multi-keyed alternate key fields are comma-delimited:
[["keyname":]field:offset:len[:"attr"]], [["keyname":]field:offset:len[:"attr"]]

Where:
keyname Name of key assigned for use in KNO=name$ options.
field Integer, 1 to number of fields (0 = record-based offset).
offset Starting position within the field (integer, 1 to 3839).
len Number of characters in the key field (integer, max. 127)
"attr" Attribute characters, see Key Definition Attributes, p.167

: Colon - the separator for elements in a key segment.

The maximum total size for an external key is 127 characters. The
maximum length for internal or alternate keys is 240 characters.
Note: The outer set of square brackets in the above formats are part of the
syntax; the inner brackets indicate optional syntax items (i.e., the brackets
enclosing the optional [:"attr"] are not part of the syntax).

max_recs Maximum number of records the file is allowed. Optional numeric
expression. The default is zero (no limit). (Use a comma with no value
to set the default.) If a positive value is supplied, ProvideX creates
and pre-allocates disk space for the file. With a negative value,
ProvideX allocates sufficient disk space for the file, but will set the
max_recs count back to zero (unlimited).

rec_size Maximum size of the data portion of the record (excluding the key). A
negative value creates a variable-length record (VLR) data file with the
maximum record length equal to the positive value of this field. A positive
value creates a fixed-length record (FLR) formatted file.

2. Directives CREATE TABLE

ProvideX Language Reference V8.30 Back 59

Description Use the CREATE TABLE directive to create a file with one or more keys. If the first
field in the directive after the filename is a number, ProvideX creates an external file
key (i.e., an index to the file). If the first field in the directive is a key definition
enclosed in square brackets [], then ProvideX uses only internal key fields instead.

ProvideX considers the first key specified for an EFF file to be the primary key. Every
record must have a unique primary key. You can have duplicate secondary keys
from record to record. There is a maximum of 255 keys allowed on a file with a
maximum of 255 data components making up these 255 keys. For VLR/FLR files,
there is a maximum of 16 key fields allowed on a file with a maximum of 96 data
components making up the 16 keys. There is no limit (other that the maximum of 96
key components) to the number of fields that comprise a key. The initial
implementation of EFF (in Version 6) is limited to 96 keys and 96 segments.

If a given filename already exists, ProvideX returns Error #12: File does not
exist (or already exists).

Keys have the following limits:
• Maximum external key size is 127 bytes.
• Maximum internal or alternate key size is 240 bytes.
• Maximum segment size is 127 bytes.

If you do not specify size, the default is VLR with a maximum record size
of 256. The maximum block size for a VLR file is 31KB and the maximum
record size is 31000 bytes. Attempting to create a VLR file with a record size
more than 31000 bytes results in an FLR file with the requested record size.

fileopt Supported file options (see also, File Options, p.810):
BSZ=num Block size. Numeric expression (1 - 63).
ERR=stmtref Error transfer.
SEP=char$ Default field separator character. Hex or ASCII string value.
OPT=char$ Single character settings:
"C" - Compressed. Adds simple compression to record data.
"X" - Extended Record Size. Extends record sizes up to 2GB per record.
"0" - Create VLR/FLR files (default if 'KF'=0)
"1" - Create EFF Files with 2GB limit.
"2" - Create EFF Files without 2GB limit (supported platforms).
"Z" - Set ZLib Compression for VLR and EFF Files.
Note: OPT="2" generates Error #99: Feature not supported
on platforms that do not offer Large File Support (LFS). Using options
"Z" and "C" together will result in an Error #32.

Note: By default, the CREATE TABLE directive will create Enhanced File Format (EFF)
files on platforms that support Large File System (LFS), 64-bit addressing; however,
by setting OPT="0" in the syntax, CREATE TABLE can also be used to create
variable-length record (VLR) data files or fixed-length record (FLR) formatted files. For
more information on VLR/FLR, refer to the KEYED Directive, p.166.

2. Directives CREATE TABLE

ProvideX Language Reference V8.30 Back 60

Enhanced File Format (EFF) Notes
EFF records are always variable length. The following limitations exist for EFF files:
1. 63Kb (64512 bytes) is the maximum block size.
2. The maximum record size is 64000 bytes. When using extended records the record size

is limited to 32000 bytes when created, although records can be as large as 2GB.
3. EFF files do not support the multi-segmented techniques available for VLR files.
4. Refer to chart below for sample file size limitations. The block size determines the

maximum file size. As of Version 6, EFF files will only use 3-byte pointers. The
ability to use 4-byte pointers is part of the design to allow larger file sizes and will
be enabled in a future version of ProvideX.

See Also KEYED Create Single/Multi-Keyed File, p.166
DIRECT Create File with Keyed Access, p.89
SYSTEM_JRNL File System Journalization, p.334
ADD INDEX Add Key to Keyed File, p.29
DROP INDEX Drop Key from Keyed File, p.103
RENAME..INDEX Rename Keys in Keyed File, p.285
SORT Create File for Sorting, p.327
Accessing Data Files, p.22

Bl
oc

k
Si

ze
 (K

B)

3-Byte Pointers 4-Byte Pointers (future)

M
ax

 P
ag

es
 p

er

In
vo

ic
e

Se
gm

en
t

M
ax

 A
dd

re
ss

ib
le

Pa

ge
s

Si
ze

 o
f F

ile
 in

 M
B

Si
ze

 o
f F

ile
 in

 G
B

M
ax

 P
ag

es
 p

er

In
vo

ic
e

Se
gm

en
t

M
ax

 A
dd

re
ss

ib
le

Pa

ge
s

Si
ze

 o
f F

ile
 in

 M
B

Si
ze

 o
f F

ile
 in

 G
B

4 1,022 2,056,264 8,032 8 818 1,645,816 6,429 6
8 2,046 8,388,607 65,536 64 1,637 9,998,796 78,116 76

12 3,070 8,388,607 98,304 96 2,456 25,061,024 293,684 287
16 4,094 8,388,607 131,072 128 3,275 46,832,500 731,758 715
20 5,118 8,388,607 163,840 160 4,094 75,313,224 1,470,961 1,436
24 6,142 8,388,607 196,608 192 4,914 110,525,688 2,590,446 2,530
28 7,166 8,388,607 229,376 224 5,733 152,429,004 4,167,981 4,070
32 8,190 8,388,607 262,144 256 6,552 201,041,568 6,282,549 6,135
36 9,214 8,388,607 294,912 288 7,371 256,363,380 9,012,775 8,802
40 10,238 8,388,607 327,680 320 8,190 318,394,440 12,437,283 12,146
44 11,262 8,388,607 360,448 352 9,010 387,177,720 16,636,543 16,247
48 12,286 8,388,607 393,216 384 9,829 462,631,372 21,685,846 21,178
52 13,310 8,388,607 425,984 416 10,648 544,794,272 27,665,334 27,017
56 14,334 8,388,607 458,752 448 11,467 633,666,420 34,653,632 33,841
60 15,358 8,388,607 491,520 480 12,286 729,247,816 42,729,364 41,728
63 16,126 8,388,607 516,096 504 12,901 805,383,628 49,549,969 48,389

2. Directives CUSTOM_VBX

ProvideX Language Reference V8.30 Back 61

CUSTOM_VBX Directive CUSTOM _VBX Create/Contr ol VBXCreate/Control VBX
Formats 1.Define VBX, Logical ID: CUSTOM_VBX id,@(col,ln,wth,ht),name$,control$[,fileopt]

2.Define Event-CTL: CUSTOM_VBX DEFCTL id,ctl_val,event$[,ERR=stmtref]
3.List Event Names: CUSTOM_VBX DEFCTL id,*,list$[,ERR=stmtref]
4.Add Item to List: CUSTOM_VBX LOAD id,index,val$[,ERR=stmtref]
5.Remove List Item: CUSTOM_VBX LOAD id,index,*[,ERR=stmtref]
6.Read Property: CUSTOM_VBX READ id,property$,var$[,array_element][,ERR=stmtref]
7.List Properties: CUSTOM_VBX READ id,*,list$[,ERR=stmtref]
8.Write Property: CUSTOM_VBX WRITE id,property$,val$[,array_element][,ERR=stmtref]
9.Disable/Enable: CUSTOM_VBX {DISABLE | ENABLE} id[,ERR=stmtref]

10.Force Focus: CUSTOM_VBX GOTO id[,ERR=stmtref]
11.Remove VBX: CUSTOM_VBX REMOVE id[,ERR=stmtref]
12.Hide/Show VBX: CUSTOM_VBX {HIDE | SHOW} id[,ERR=stmtref]

Where:

@(col,ln,
wth,ht)

Position and size of the CUSTOM_VBX region.

control$ Name of the control to use in the file. String expression.
ctl_val CTL to be generated when an event occurs.
event$ Name / number of the VBX event.
fileopt Supported file options (see also, File Options, p.810):

ERR=stmtref Error transfer
KEY=char$ Hot key
MSG=text$ Message line
OPT=char$ Settings: "s" - Scroll, "D" - Disabled, "H" - Hide.
TBL=char$ Single character translation

id Unique logical identifier for the CUSTOM_VBX control object.
index Array index. Numeric expression, integer.
list$ String variable for receiving list of event / property names.
name$ Name of the VBX file containing the logic. String expression.
property$ Name / number of the VBX property.
val$ Value of an item / property.
var$ Variable to receive current value of the property.

Deprecated. VBX support is discontinued as of ProvideX Version 7. Execution of this
directive will result in an Error #99 Feature not supported. Refer to the
Version 6 Language Reference for complete documentation.

2. Directives CWDIR

ProvideX Language Reference V8.30 Back 62

CWDIR Directive CWDIR Change Wor king DirectoryChange Working Directory
Format CWDIR new_dir$[,ERR=stmtref]

Where:

Description Use the CWDIR directive to change from the current working directory to a new one.
If the specified directory name does not exist, ProvideX returns an Error #12:
File does not exist (or already exists).

See Also LWD System Variable, p.565,
HWD System Variable, p.563

Examples 0010 CWDIR "C:\Program Files\"+C$+"Programs"
0020 RUN "SOMETHING"
0030 CWDIR HWD ! Return home

new_dir$ String expression. Name of the new directory in which you want to
work or run applications. Include a disk letter and colon ":" to change
to another drive.

stmtref Program line number or label to transfer control to.

2. Directives DATA

ProvideX Language Reference V8.30 Back 63

DATA Directive DATA Define D at a Element sDefine Data Elements
Format DATA expression[$][, ...]

Where:

Description Use the DATA directive to define the values for the READ DATA directive. The values
to be read can include constants, variables, and/or expressions. You can use a
formatted IOList with a READ DATA statement. When ProvideX executes the READ
DATA directive, it evaluates each expression in order and places its value into the
corresponding variable(s) defined in the READ DATA directive.

When ProvideX progresses through reading the data, it increments an internal
pointer to the next data expression. When the end of DATA statement is reached,
ProvideX proceeds to the next DATA statement in the program. ProvideX returns

Error #2: END-OF-FILE on read or File full on write

when no further DATA statements exist in the program.

See Also READ DATA Read Data from Program, p.273,
RESTORE Reset Program Data Position, p.289,
BEGIN Reset Files and Variables, p.32
LOAD Read Program into Memory, p.194

Example 00010 DATA 1,"Dog"
00020 DATA 2,"Cat"
00030 DATA 3,"Pig"
00040 READ DATA n,x$,ERR=DONE
00050 PRINT n,x$
00060 GOTO 0040
00070 DONE: PRINT "done"
00080 END

RUN
 1Dog
 2Cat
 3Pig
done

expression[$], ... A series of string or numeric expressions.

Note: You cannot use the DATA directive in a compound statement.

2. Directives DAY_FORMAT

ProvideX Language Reference V8.30 Back 64

DAY_FORMAT Directive DAY_FORMAT Specif y D AY For matSpecify DAY Format
Formats 1. Set Date Format Mask: DAY_FORMAT [new_fmt$]

2. Read Date Format Mask: DAY_FORMAT READ current_fmt$

Where:

Description Use the DAY_FORMAT directive to change the format mask for the DAY variable. The
format string contains the new format for the DAY variable. Characters in the format
string control the following:

All other characters in the mask are returned as literals in the DAY variable. The
DAY_FORMAT stays in effect until a START directive is executed.

The DAY_FORMAT directive mask can contain the letters AA (e.g., "MM/DD/AA"). The
format AA indicates a packed two-character year field. ProvideX returns $A0$ for
the year 2000, $A1$ for 2001, $B0$ for 2010, etc. up to $Z9$ for the year 2269. This
format assists with conversion issues in legacy applications.

See Also DAY System Variable, p.557,
DTE() Function, p.422,
JUL() Function, p.463.

Examples

new_fmt$ String expression containing the format for the variable DAY.
Optional. Defaults to "MM/DD/YY".

current_fmt$ String expression (max 8kb) containing current DAY_FORMAT setting.

DD Insert current day
MM Insert current month
YY Insert current year (last two digits only)
YYYY Insert four digit year
AA Insert current year using 00-99 for 1900 through 1999, A0-A9 for 2000

through 2009, B0-B9 for 2010 through 2019, etc.

Example 1:
0010 PRINT DAY
0020 DAY_FORMAT "YYYY MM/DD"
0030 PRINT DAY
->RUN
11/15/00
2000 11/15

Example 2:
0010 LET X$="01/01/A0"
0020 DAY_FORMAT "MM/DD/AA"
0030 PRINT JUL(X$)
0040 PRINT DTE(10957:"%Y %Ml %D")
->RUN
 10957
2000 January 1

2. Directives DEF CLASS

ProvideX Language Reference V8.30 Back 65

DEF CLASS Directive DEF CLASS Define Object ClassDefine Object Class
Formats DEF CLASS class$ [UNIQUE][CREATE label [REQUIRED]][DELETE label[REQUIRED]]

Where:

Description DEF CLASS is a directive used in Object Oriented Programming (OOP) to declare
the start of a Class Definition. The DEF CLASS statement comprises a modular
construct that includes a series of OOP directives concluding with an END DEF
directive to mark the end of the class definition.

class$ specifies the class name that will refer to this type of object. Class names are
case-insensitive and forward/backward slashes are considered equivalent. Duplicate
names are not allowed within the system. An object declared as UNIQUE will have a
single instance created, and any subsequent attempt to create an instance returns the
same object identifier and increments the object reference count by one.

Optional initialization and/or cleanup routines can be placed under the default
ON_CREATE and ON_DELETE labels. You can override these labels via CREATE label
and DELETE label clauses in the class definition. Normally, object creation/deletion
logic is invoked when an object of this specific class is created/destroyed. That means,
if you have ON_CREATE logic for an object A and object B inherits it, then the
ON_CREATE for object A will not be executed on creation of object B. You can force
creation and/or deletion logic to be executed on inheritance by including the
keyword REQUIRED.

Class Definition

In order to use an object, you must first define its characteristics. Each object is
defined with a DEF CLASS statement. This basic construct is outlined below.

0010 DEF CLASS "class$" ...
0020 PROPERTY prop1, prop2, ...
0030 LOCAL prop1, prop2, ...
0040 FUNCTION method (param) "
0050 LIKE "otherclass"
0060 PROGRAM "interface_prog"
0070 PRECISION nnn
0080 END DEF

class$ Class name that will refer to this type of object.

CREATE label Optional keyword with line label for override of ON_CREATE logic

DELETE label Optional keyword with line label for override of ON_DELETE logic.

REQUIRED Optional keyword to force execution of ON_CREATE/ON_DELETE logic.

UNIQUE Optional keyword to force a single instance of an object in memory.

2. Directives DEF CLASS

ProvideX Language Reference V8.30 Back 66

All properties are declared by the PROPERTY directive. Methods available for an
object are defined via the FUNCTION directive. For more information on ProvideX
OOP syntax, refer to the ProvideX User’s Guide, Chapter 10.

Example The following is an example of the definition of the object "Customer":

0010 DEF CLASS "Customer"
0020 LIKE "Company"
0030 PROPERTY Limit,LastInvDate$
0040 FUNCTION Invoice()";Invoice"
0050 FUNCTION Edit()";Edit"
0060 END DEF
0110 On_Create: GOSUB Where_are_we; RETURN 1
0120 On_Delete: GOSUB Where_are_we; RETURN 1
0210 Invoice: GOSUB Where_are_we; RETURN 1
0220 Edit: GOSUB Where_are_we; RETURN 1
0310 Where_are_we:
0320 MSGBOX "In the Customer "+FNLabelName$+" logic","FYI"
0330 RETURN
8010 def fnLabelName$=mid(pgm(-3),pos(";"=pgm(-3)+";")+1)

See Also Object Oriented Programming, p.22
FUNCTION Declare Object Method, p.137
LIKE Inherit Properties, p.174
LOCAL Designation of Local Data, p.197
PROGRAM Create/Assign Program File, p.259
PRECISION Change Current Precision, p.248
PROPERTY Declare Object Properties, p.261
Data Integration, User’s Guide

2. Directives DEF GID/UID

ProvideX Language Reference V8.30 Back 67

DEF GID/UID Directives D EF G ID/UID Define Gr oup/User IDDefine Group/User ID
Formats 1. Define Group ID: DEF GID= groupID | groupname$ [,ERR=stmtref]

2. Define User ID: DEF UID= userID | username$ [,ERR=stmtref]

Where:

Description These directives allow you to override the effective UNIX/Linux user or group ID of
a session, if OS security allows it. If the value is *, the system reverts back to the
original effective user or group ID.

groupID Numeric UNIX/Linux group ID number

groupname$ UNIX/Linux group name.

userID Numeric UNIX/Linux user ID number

username$ UNIX/Linux user name.

stmtref Program line number or label to transfer control to.

Note: Whether or not you can switch to a different user is governed by the operating
system. If the OS does not allow the change, an error will be returned.

2. Directives DEF FN

ProvideX Language Reference V8.30 Back 68

DEF FN Directive DEF FN Def in e FunctionDefine Function
Formats 1. Single Line: DEF FNname[$]([LOCAL]argvar1[,argvar2, …])=expression[$]

2. Multi-Line: DEF FNname[$]([LOCAL]argvar1[,argvar2, …])
RETURN expression[$]
END DEF

Where:

Description Use the DEF FN directive to define single- or multi-line functions. These functions
are considered string or numeric depending on the type of variable used in the
function name.

In Execution mode, ProvideX skips past the function without executing it. ProvideX
resumes after the DEF FN directive, executing the rest of the code until it reaches the
statement that invokes FNname()... whereupon it applies the defined function.

Format 1: Single Line Function
DEF FNname[$]([LOCAL]argvar1[,argvar2, …])=expression[$]

In a single-line function assignment, expression defines the value to be returned by
the function. Include the optional keyword LOCAL to define argument variables as
local.

Examples 0010 DEF FNX(A,B)=A^B
0020 LET A=1, B=2
0030 PRINT A,B,FNX(3,4),A,B
0040 STOP
->RUN
 1 2 81 3 4

argvar ... Comma-separated list of variables that correspond to arguments
passed to the function or returned in the expression.

expression[$] String or numeric expression. In multi-line functions the
expression is the value returned. In single-line functions, the
expression defines the value of the function.

FNname[$] Name of the function with FN prefix. Use a valid string or numeric
variable name, e.g., FNX or FNABC$.

LOCAL Optional keyword. Indicates that an argument variable is local to
the function. Use LOCAL to prevent permanent changes to program
variables. ProvideX defers processing the LOCAL clause in functions
until all arguments are parsed.

2. Directives DEF FN

ProvideX Language Reference V8.30 Back 69

When FNX is invoked (as in PRINT FNX(3,4)), the values in the variable list are
assigned to the variables in the function definition.

Format 2: Multi-Line Function
DEF FNname[$]([LOCAL]argvar1[,argvar2, …])
RETURN expression[$]
END DEF

When ProvideX encounters a multi-line definition, execution skips the subsequent
statements until an END DEF directive is found. (Again, the function is not executed
until it is invoked.) Include the optional keyword LOCAL to define variables as local.

The RETURN expression specifies the value to be returned by the multi-line function.
To generate an error value in a multi-line function, use the ESCAPE directive
followed by your given value.

Example 0010 DEF FNX(A,B)
0020 IF A<0 OR B<0 ESCAPE 40 ! Variables' values must be >=0
0030 RETURN SQR(A^2+B^2) ! Length of hypotenuse
0040 END DEF
0100 PRINT FNX(7,8)
->RUN
 10.63

Note: The variables in the function definition's argument list represent actual
variables in the program. Their values are subject to change every time the function is
invoked. Unless you define variables as LOCAL, changes to the variables in your
program will be permanent. In the example above, variables A and B in the program
are changed by FNX(3,4), because they aren't defined as LOCAL.

2. Directives DEF MSG

ProvideX Language Reference V8.30 Back 70

DEF MSG Directive DEF MSG D efine Temporar y MessageDefine Temporary Message
Formats 1. Override Message for Number: DEF MSG(err_msg)="message"

2. Define Message & Name: DEF MSG(name$)="message"
3. Remove Message Override: DEF MSG(err_msg) DELETE
4. Remove Message Name: DEF MSG(name$) DELETE

Where:

Description The DEF MSG directive allows you to change system messages on-the-fly. It can be
used to temporarily override values returned by the MSG() function for specific
message numbers. It also allows the creation of text-based message names.

See Also MSG() Function, p.484
MSGBOX Display PopUp Message Box, p.212
MESSAGE_LIB Establish Message Library, p.208
Error Codes and Messages, p.828

Examples DEF MSG(11)="Your own syntax message"
DEF MSG(-1)DELETE ! Clear current MSG(-1)

message String containing message text associated with name$ or to override the
message text in nnn.

name$ New system message name.

err_msg Number of the error message to return. Numeric expression. If err_msg
is a positive integer, it returns the associated message, as described
under Error Codes and Messages, p.828. If err_msg is -1, it returns
extended or external error information.

2. Directives DEF OBJECT

ProvideX Language Reference V8.30 Back 71

DEF OBJECT Directive DEF OBJ ECT Define ObjectDefine Object
Formats 1. Invisible Object: DEF OBJECT obj_id, obj_name$ [;LICENSE=key]

[;FINALIZE=method] [,ERR=stmtref]

2. Visible Object: DEF OBJECT obj_id,@(col,ln,wth,ht) {, |=}obj_name$
[;LICENSE=key] [;FINALIZE=method] [,ERR=stmtref]

Where:

Description The DEF OBJECT directive is used primarily to create a new instance of a specified
COM object by placing a reference to the object obj_name$ into the supplied
numeric variable obj_id. This is a feature of the ProvideX Event Handling Interface
and Component Object Model (COM). (This directive is also used for implementation
of the ProvideX *SYSTEM and *XML interfaces).

Object Name Contents
The DEF OBJECT obj_name$ string may contain one of the following:

@(col,ln,
wth,ht)

Numeric expressions. Column and line coordinates for top left corner,
width in number of columns and height in number of lines.

obj_id Numeric variable that will be used to save the object reference.

key Optional license key. See Using Licensed Objects, p.72.

method Optional finalize method. See Finalize Method, p.73.

obj_name$ String expression identifying the object to be referenced, as well as
any object specific parameters. See Object Name Contents, below.

stmtref Optional program line number or label to transfer control to.

* Asterisk displays all registered COM controls on system.
CLSID Hexadecimal class identifier for object in the format

{hhhhhhhh-hhhh-hhhh-hhhhhhhhhhhh}.
progID Programmatic identifier name; e.g., Word.Document.
[DESIGN]filename.XML Indicates that a previously saved OLE/ActiveX control

definition should be loaded from the specified .XML file.
[DCOM]server;name Indicates that the object is located on a remote system. server

parameter is optional, and can be specified either by name,
or by IP address. If not supplied then the object is considered
local. name parameter is the CLSID or progID for the object.

[FILE]x:\filename Indicates that the object should be created using the
specified file name. An example of this would be a
Microsoft Word document file.

[GLOBAL]name Indicates that a reference to an object exposed by the use of
PvxMakeGlobal should be obtained. The name parameter
is the name used to expose the object.

2. Directives DEF OBJECT

ProvideX Language Reference V8.30 Back 72

Using Licensed Objects
Redistribution of a third party COM control may sometimes require the use of a
license file (usually identified by a.lic extension) for permitting access to the
control. The following steps outline how to extract the license key from the license
file, and how to make it available in a run-time environment:

1. On the system where the COM object and license file have been installed, obtain a
reference to the object without specifying the license information.

2. Query the PvxLicense$ property of the object for the license key. If the object is
licensed, the key data is returned as a string of hex characters.

3. Add the LICENSE=key data to the DEF OBJECT statement.

[GETOBJECT]name Indicates that ProvideX should bind to a running instance
of the named object. name is the CLSID or progID for the
object or a file-based moniker. File monikers are
commonly used when dealing with WMI, LDAP, and
related services in Windows.

[REGISTER]x:\filename;name
Ensures that the object information is properly registered
before attempting to create an instance of the object.
x:\filename parameter is the name of the executable file or
library that exposes the automation object. name parameter
is the CLSID or progID for the object.

[RUNNING]name Indicates that ProvideX should bind to a running instance of
the named object, where name is given as CLSID or progID.
An error occurs if the object is not currently running.

[RUNNING OR NEW]name
Indicates the same functionality as [RUNNING] syntax;
however, if the object is not currently running, ProvideX
attempts to create a new instance of the named object.

[PICTURE]* Indicates creation of an empty IPicture object.
[PICTURE]filename Indicates that an IPicture object should be created and the

specified image file should be loaded by the object.
[PICTURE][#]name;{BMP|CUR|ICO}

Indicates that an IPicture object should be created and
specified resource contents loaded by the object. For numeric
resources, name should be prefixed with a #; e.g., #101. The
image type is specified as the second parameter, and indicates
the resource group that contains the desired resource.

*XML Initializes ProvideX interface for parsing and serializing
XML documents. See *XML, p.764.

*SYSTEM Initializes object for simplifying event handling in
ProvideX. See *SYSTEM, p.751.

2. Directives DEF OBJECT

ProvideX Language Reference V8.30 Back 73

Finalize Method
A method of the object instance may be assigned to run upon release of the object. It
should not require any parameters to be passed to it. This purpose of this is to
simplify handling of an automation "server", such as a Word or Excel application,
that requires a Quit() method in order to shut down. This finalize method removes
the need for a Quit() (or similar method) to be called.

Format 1: Define Invisible COM Object
DEF OBJECT obj_id,obj_name$[,ERR=stmtref]

Use this format to create a link to an invisible object. This format associates the object
with the current window, yet it is hidden from view; e.g.,

0010 DEF OBJECT this_com_id,"Mabry.SoundX"

Once the definition is complete, this_com_id will contain a handle to the object.
This handle will be used to get and set properties and methods and service events. Note
that since the value returned in this_com_id is a handle (memory pointer) to the
object, it should not be changed by the application.

Format 2: Define Visible COM Object
DEF OBJECT obj_id,@(col,ln,wth,ht) {, |=}obj_name$[,ERR=stmtref]

This format defines a visible object and associates it with a location in the current
window. A comma or an equal sign may be used to assign coordinates; e.g.,

DEF OBJECT numvar,@(col,row,wide,high),"object_name",err=2000
DEF OBJECT numvar,@(col,row,wide,high)="object_name",err=2000

See Also DELETE OBJECT Remove Windows Object, p.84
ON EVENT Event Processing, p.228
Apostrophe Operator, p.823
COM Support, User’s Guide

Examples Upon successful execution of the DEF OBJECT statement, ProvideX will place the
object reference into the supplied numeric variable. Some examples of the DEF
OBJECT statement include the following:

DEF OBJECT X, "*"
DEF OBJECT X, "Word.Application", ERR=*NEXT
DEF OBJECT X, @(1,1, 70, 20)="Word.Document"
DEF OBJECT X, "[dcom]MyServer;Shell.Explorer"
DEF OBJECT X, @(10, 2, 20, 10)="[file]c:\Documents and Settings\Default

User\My Documents\test.doc"
DEF OBJECT X, "VCF1.VCF1Ctrl.1;License=8041207972768742028669631967"
DEF OBJECT X, "[running or new]Excel.Application"

The DEF OBJECT statement can also be used to bind child objects, which are
returned as the result of either a property access or method call.

2. Directives DEF systab=

ProvideX Language Reference V8.30 Back 74

DEF systab= Directives D EF systab= Define Syst em TablesDefine System Tables
Formats 1. Define Accent Conversion: DEF CVS(new_table$)

2. Define Date Table: DEF DTE(new_table$)

3. Define Lowercase Table: DEF LCS(new_table$)

4. Define Uppercase Table: DEF UCS(new_table$)

Where:

Description Use these DEF directives to define new system tables for Accent Conversion, Date,
Lowercase and Uppercase.

See Also CVS() Function, p.412,
DTE() Function, p.422,
LCS() Function, p.472,
UCS() Function, p.546.

Format 1: Define Accent Translation Table
Use the DEF CVS directive to set the values for the accent conversion table. The value of
each byte to be translated is used as an offset into the table. The character at the particular
offset is used in place of the original character. For more information, refer to the "T"
option under Key Definition Attributes, p.167 and the CVS() Function, p.412.

Format 2: Define Date Table

The DEF DTE directive uses a string made up of 46 comma-delimited fields. These
fields are used by the DTE function and should have the following values:

new_table$ String expression. Contains the new definition (contents) of the table.

Number of
Fields Field Contents

12 Long form month names (%Ml)
 7 Long form day names (%Dl)
 2 Long form lower-case am/pm (%pl)
 2 Long form upper-case AM/PM (%Pl)
12 Short form month names (%Ms)
 7 Short form day names (%Ds)
 2 Short form lower-case am/pm (%ps)
 2 Short form upper-case AM/PM (%Ps)

2. Directives DEF systab=

ProvideX Language Reference V8.30 Back 75

Formats 3 and 4: Define Lowercase and Uppercase Tables

The DEF LCS and DEF UCS directives both take a 256 character string and replace the
standard case conversion table with the string's value. Whenever ProvideX converts
the case of a character, it uses the character's binary value as an offset into the tables.

Warning: Be careful when changing the UCS conversion table because the ProvideX
compiler uses this table to convert keywords to upper case before scanning its syntax
tables. If you define an incorrect table, you may be unable to enter any subsequent
commands in ProvideX. See the list of Reserved Words , p.827.

2. Directives DEF sysvar=

ProvideX Language Reference V8.30 Back 76

DEF sysvar= Directives DEF sysvar= Def ine Syst em VariablesDefine System Variables
Formats 1.Set Contents of CTL Variable: DEF CTL = num

2.Set Contents of ERR Variable: DEF ERR = num

3.Set Contents of LFO Variable: DEF LFO = num

4.Set Contents of LFA Variable: DEF LFA = num

5.Set Contents of EOM Variable: DEF EOM = strvar$

6.Set Contents of RET Variable: DEF RET = nuim

Where:

Description Use these DEF formats to define the contents of the specified system variable:

See Also CTL System Variable, p.557,
ERR System Variable, p.560
LFO System Variable, p.564
LFA System Variable, p.563
EOM System Variable, p.559
RET System Variable, p.571.

num Numeric value for setting selected variable.

strvar$ String value for setting selected variable.

DEF CTL Numeric code (integer) that represents a signal of user input from the
keyboard or mouse.

DEF ERR Numeric value (integer) that indicates the last system-detected error.

DEF LFO Channel/file number of the last file opened.

DEF LFA Channel/file number of the last file or device accessed.

DEF EOM End-Of-Message character string that ended last input.

DEF RET Operating system's error code associated with the last operating call.

2. Directives DEFAULT

ProvideX Language Reference V8.30 Back 77

DEFAULT Directive DEFA ULT Branch If No Matching CaseBranch If No Matching Case
Format DEFAULT; logic$

Where:

Description Use the DEFAULT directive to create branch points to handle situations where there is
no corresponding CASE. If a matching case is not found and the DEFAULT is found,
execution continues at this point.

See Also SWITCH..CASE Branch Control, p.331
BREAK Immediate Exit of Loop, p.33
CASE Define Branch Points, p.42.

Examples 00100 PROCESS_TAXCODE:
00110 LiquorTax=0,SalesTax=0,ServiceTax=0
00120 SWITCH UCS(TaxCode$)
00130 CASE "X","Z" ! two codes are tax exempt
00140 BREAK ! stop processing for case "X" here
00150 CASE "L" ! liquor pays all liquor,sales and service tax
00160 LiquorTax=cost*LiquorTaxRate
00170 ! no break here, logic falls through
00180 CASE "S" ! pays sales and service tax
00190 SalesTax=cost*SalesTaxRate
00200 ! no break here, logic falls through
00210 CASE "V" ! service tax
00220 ServiceTax=cost*ServiceTaxRate
00230 BREAK ! end processing for this case and any that fell through
00240 DEFAULT ! enter here if case not found
00250 MSGBOX "Unknown tax code","Error"
00260 END SWITCH
00270 TotalTax=LiquorTax+SalesTax+ServiceTax
00280 RETURN

logic$ Procedure to handle default (undefined) cases in a case structure. It
doesn't have to be on the same line as the DEFAULT directive, but it
can be if you include the semicolon.

Note: Refer to SWITCH..CASE Branch Control, p.331, for complete syntax.

2. Directives DEFCTL

ProvideX Language Reference V8.30 Back 78

DEFCTL Directive DEFCTL D ef ine/R edef in e CTL ValuesDefine/Redefine CTL Values
Formats 1. Define/Delete CTL Values: DEFCTL [WINDOW] eom$={ctl_val | *}

2. Redefine CTL Value: DEFCTL [WINDOW | WINDOW+] ctl_val={alternate | *}

Where:

Description Use the DEFCTL directive to define additional CTL values; however, the replacement
only occurs if the original CTL code is rejected. Use the DEFCTL WINDOW format to
maintain the definition for the current window only. If WINDOW+ is used, the
definition will cascade to lower level windows.

Format 1: Define/Delete CTL Values

DEFCTL [WINDOW] eom$={ctl-val | *}

Use DEFCTL to define an additional CTL value to be returned for a given EOM
(End-of-Message) value or to delete one. The EOM string is the sequence of
characters received from the terminal to end the current input. The first character of
the string must be a non-printable character between 00 and $1F$, or $7F$; e.g.,

0010 DEFCTL 09=6 ! Set TAB key to return CTL=6
0020 DEFCTL $1B38$=7 ! Set HOME <esc>H to CTL=7
0030 DEFCTL 09=* ! Delete control value setting defined @line 0010

The normal setting for the TAB key is to return CTL = -1015.

0010 DEFCTL 09 = -1015

Positive CTL values will be returned to the program. Negative CTL values have
special significance to ProvideX. (Refer to the list of Negative CTL Definitions, at
the end of this document.

* Asterisk deletes previously defined CTL value (e.g., DEFCTL eom$=*).

alternate Alternate integer to set as the CTL value. Numeric expression.

ctl_val CTL variable's value. Numeric expression, integer.

eom$ EOM (End-of-Message) character sequence. Hex string expression
(e.g., $0D$ for the key).

WINDOW[+] Optional keyword,
WINDOW: CTL setting is for the current window only.
WINDOW+: DEFCTL cascades to apply to lower level windows.

Enter

2. Directives DEFCTL

ProvideX Language Reference V8.30 Back 79

Format 2: Redefine CTL Value

DEFCTL [WINDOW | WINDOW+] invalid_ctl={alternate | *}

Use this format of the DEFCTL directive to define alternate CTL values to be applied
whenever the specified CTL value is received. For example, the UP-ARROW key is
CTL=-1011. You can redefine it to return a CTL=3; e.g.,

0020 DEFCTL -1011=3 ! Return CTL 3 on up arrow

See Also CTL System Variable, p.557,
CTL() Function, p.410
Negative CTL Definitions, p.817

Creating a Hot Key

ProvideX allows you to create a hot key that will CALL a program if it is pressed
while the system is awaiting input.

To create such a hot key, define the control sequence that is generated by the key as a
negative CTL value in the range -10 through -999. Then create and save your hot
key program using the naming convention $CTL-num where num is the CTL value.
Remember in your hot key program not to disturb the environment (i.e., do not close
any files that are already open, but close any files you open in this program and
remove any windows you create).

For example, the keystroke -A returns 01, which is defined in MY_START_UP
program as a hot key:

1000 DEFCTL 01=-500

ProvideX will call $CTL-500 whenever anyone hits the hot key -A throughout
the current session.

During Conversions

When you convert BBx-style programs to ProvideX, it is sometimes necessary to
have function and edit keys return single-character values. To do this, set both the
'EL' and 'FL' mnemonics and then use DEFCTL to redefine the mapped values and
allow standard ProvideX functions to continue to operate. See also, 'EL' Mnemonic,
p.604, and the 'FL' Mnemonic, p.608.

Example The following example redefines function keys through to return a single hex
character ($F5$ through $F8$ respectively). It also maps some of the input edit keys
to single character codes.

Ctrl

Ctrl

F5 F8

2. Directives DEFCTL

ProvideX Language Reference V8.30 Back 80

0010 DEFCTL 000074=5 ! Reset F5 TO CTL=5
0100 ! ^ 100 - Map F5-F8 to return $F5$ through $F8$
0110 PRINT 'FL',"2"+CHR(4)+CHR(1)+$F5$, ! F5 = $F5$
0120 PRINT 'FL',"2"+CHR(5)+CHR(1)+$F6$, ! F6 = $F6$
0130 PRINT 'FL',"2"+CHR(6)+CHR(1)+$F7$, ! F7 = $F7$
0140 PRINT 'FL',"2"+CHR(7)+CHR(1)+$F8$, ! F8 = $F8$
0150 DEFCTL $F5$=5
0160 DEFCTL $F6$=6
0170 DEFCTL $F7$=7
0180 DEFCTL $F8$=8
0200 ! ^ 100 - Change Edit keys to single character
0210 PRINT 'EL',"2"+CHR(4)+CHR(1)+01, ! Home = 01
0220 PRINT 'EL',"2"+CHR(5)+CHR(1)+$1A$, ! End = $1A$
0230 PRINT 'EL',"2"+CHR(6)+CHR(1)+15, ! PGUP = 15
0240 PRINT 'EL',"2"+CHR(7)+CHR(1)+06, ! PGDN = 06
0250 PRINT 'EL',"2"+CHR(8)+CHR(1)+14, ! Insert = 14
0260 PRINT 'EL',"2"+CHR(9)+CHR(1)+18, ! Delete = 18
0270 DEFCTL 01=-1010 ! Home
0280 DEFCTL $1A$=-1018 ! End
0290 DEFCTL 15=-1014 ! PGUP
0300 DEFCTL 06=-1013 ! PGDN
0310 DEFCTL 14=-1009 ! Insert
0320 DEFCTL 18=-1007 ! Delete

2. Directives DEFPRT

ProvideX Language Reference V8.30 Back 81

DEFPRT Directive D EFPRT Define as Pr interDefine as Printer
Format DEFPRT (chan)col,ln

Where:

Description Use the DEFPRT directive to specify that a given channel refers to a printer. You can
specify the default maximum lines and columns supported by the printer. If you do
not designate the file as a printer, ProvideX does not apply printer mnemonics, and
the values for the MXC() and MXL() functions are not set.

You can use the DEFPRT directive for TCP files.

See Also MNEMONIC Define File Command Sequence, p.210.

Examples 0010 DEFPRT (LFO)80,25

chan Logical file number or channel of the file to define as a printer.

col Default maximum number of columns supported by the printer. This must
be an integer value, range 0 to 255.

ln Default maximum number of lines supported by the printer. This must be
an integer value, range 0 to 255.

2. Directives DEFTTY

ProvideX Language Reference V8.30 Back 82

DEFTTY Directive DEFTTY D efine Terminal SizeDefine Terminal Size
Format DEFTTY [(chan)]col,ln

Where:

Description Use the DEFTTY directive to designate that the logical file number refers to a
terminal. You can specify the default maximum lines and columns supported by the
terminal. If you do not designate the file as a terminal, Windows and other
mnemonics will not be supported.

See Also MNEMONIC Define File Command Sequence, p.210.

Examples 0010 DEFTTY (LFO)80,25

chan Channel or logical file number of the file to define as a terminal.

col Default maximum number of columns for the terminal. This must be an
integer value, range 0 to 255.

ln Default maximum number of lines for the terminal. This must be an integer
value, range 0 to 255.

Note: The number of lines has an additional limit based on a maximum of 20000
characters per window (i.e., the maximum number of lines is 20000/col).

2. Directives DELETE

ProvideX Language Reference V8.30 Back 83

DELETE Directive DELETE Remove Lines from Pr ogramRemove Lines from Program
Format DELETE [start_stmtref][,[end_stmtref]]

Where:

Description Use the DELETE directive to delete a range of statements from the current program.
For example, DELETE SECT1,450 deletes from line label SECT1: to line 0450,
inclusive.

If you only include a starting statement reference, only that statement is deleted; e.g.,

DELETE 510 ! Deletes statement 0510
510 ! Is the same as DELETE 510

If you include both a starting reference and a comma, all statements from the
reference to the end of the program are deleted. If you include a comma and an
ending reference, statements from the start of the program up to and including the
ending reference are deleted; e.g.,

DELETE 260, ! Deletes statements from line 0260 to program end
DELETE ,890 ! Deletes from program start, up to and including line number 0890

If you omit statement references, the complete program is deleted from memory.

Examples ->LIST
0010 REM "TEST"
0020 PRINT "TEST"
0030 STOP
->DELETE
->LIST

No program is in memory, so ProvideX doesn't return a listing and will report errors
if you try to EDIT or SAVE.

end_stmtref Last program statement to be deleted. Line label or number.

start_stmtref Starting program statement to be deleted. Line label or number.

2. Directives DELETE OBJECT

ProvideX Language Reference V8.30 Back 84

DELETE OBJECT Directive DELETE OBJECT Rem ove Windows ObjectRemove Windows Object
Format DELETE OBJECT com_id[,ERR=stmtref]

Where:

Description Use DELETE OBJECT to remove/disconnect associated Windows COM objects
(OCX/OLE/ActiveX) from the screen.

Example:

0010 DEF OBJECT handle,@(2,2,70,16)="Shell.Explorer"
0020 errcode=handle'Navigate2("www.pvx.com")
0030 input *
0040 DELETE OBJECT handle

For information on the creation of an OCX (Object Component eXtension) object, see
DEF OBJECT Define Object, p.71.

com_id Numeric variable to receive a handle (memory pointer to the COM
object).

stmtref Program line number or label to transfer control to.

Note: An OCX / OLE / ActiveX object is automatically destroyed when the window
it was defined in is dropped.

Note: The DELETE OBJECT and DROP OBJECT directives can be used interchangeably
regardless of the object being dropped. For further information, refer to the DROP
OBJECT Directive, p.104

2. Directives DICTIONARY

ProvideX Language Reference V8.30 Back 85

DICTIONARY Directive DICTIONARY Dat a Dict ionary AccessData Dictionary Access

Formats 1. Read: DICTIONARY READ(chan,fileopt)varlist

2. Write: DICTIONARY WRITE(chan,fileopt)varlist

3. Remove: DICTIONARY REMOVE(chan,fileopt)

Where:

Description The DICTIONARY directive allows Sage Software Canada Ltd. to access and maintain
the internal ProvideX data dictionary portions of the ProvideX databases.

Restricted: Use of the DICTIONARY directive is reserved exclusively for Sage Software
Canada Ltd. Its use is beyond the scope of this document and its syntax has been
provided here only for the sake of completeness.

chan Channel or logical file number of file containing the data dictionary to access.

fileopt File options. Supported options for DICTIONARY include:
ERR=stmtref Error transfer
IND=num Field number

<0 for external key
>0 for internal fields
=0 file information record

varlist Comma-separated list of variables and/or literals.

2. Directives DIM

ProvideX Language Reference V8.30 Back 86

DIM Directive D IM Define Ar rays and String sDefine Arrays and Strings
Formats 1. Define Array: DIM array_name[$](subscript_1[,subscript_2[,subscript_3]])

2.Drop Array: DIM array_name$

3. Define Composite String: DIM var$:IOL=iolref

4. Initialize String: DIM var$(len[,char$])[,...]

Where:

Description Use the DIM directive to define an array, to define a composite string or to initialize a
string. Refer to the DIM() Function, p.415, to read the total number, minimum number
and maximum number of elements in an array. See also System Limits, p.825.

Format 1: Define Array
DIM array_name[$](subscript_1[,subscript_2[,subscript_3]])

Use the DIM directive to define an array with one, two or three dimensions. Specify the
dimensions using the values in the DIM statement. The dimensions of the array are
defined as [minimum]:maximum. If you omit the minimum dimension, then ProvideX
uses the default minimum, 0 zero. When you refer to items in arrays, the lowest subscript
is the minimum value specified, the highest is the maximum value specified. You can
redefine existing arrays using the DIM statement. The values of all elements in the array
are automatically initialized to zero or null by the DIM statement.

The following example defines a three-dimensional array with three elements (0
through 2) in each dimension for a total of 27 elements:

DIM A(2,2,2)

array_name[$] Numeric or string variable to be dimensioned as an array.
char$ Value whose 1st character will be used to fill the variable up to the

length specified. String expression.
iolref Either a string variable containing the object code of an IOList or a

statement reference to an IOList (statement number or label).
len Desired length of the string variable. Numeric expression, integer.
subscript_1 1st dimensions (min:max) of array. Numeric expression, integers.
subscript_2 2nd dimensions (min:max) of array. Numeric expression, integers.
subscript_3 3rd dimensions (min:max) of array. Numeric expression, integers.
var$ Name of string variable to be defined or initialized.

Note: For numeric arrays you can use either parenthesis () or square brackets []
to define arrays or reference elements. For string arrays, use square brackets [] to
avoid confusion with substrings. All arrays have three subscripts. An array defined as
X$[4] has values 0:4 for subscript 1, 0:0 for subscript 2, and 0:0 for subscript 3.
However, specifying the unused subscripts is unnecessary.

2. Directives DIM

ProvideX Language Reference V8.30 Back 87

The following example defines dimension one with 10 elements (1 through 10).
Dimensions 2 and 3 are 0:0:

DIM CATS[1:10] !

Format 2: Drop Array Definition
DIM array_name[$]

An array definition will be dropped by using the DIM directive without
definitions/brackets; e.g., DIM A$ or DIM A. Issuing DIM A$[0] does not remove
the array definition from memory.

Format 3: Define Composite String
DIM var$:IOL=iolref

Use this format of the DIM directive to define a composite string variable consisting
of the fields specified in an IOList. The variable returns a string made up of the fields
you specified in the IOList. If you modify the variable (e.g., by adding a field)
ProvideX will modify the fields in the IOList. Field names in the IOList are prefixed
by the name of the variable and a dot (.); e.g.,

0010 DIM CST$:IOL=1000
1000 IOLIST NAME$,ADDR$,CITY$,ZIP

yields the string CST$ consisting of CST.NAME$, CST.ADDR$, CST.CITY$, and
CST.ZIP. Each field is separated by the SEP or delimiter in the default record
format.

You can use a CLEAR directive to reset a variable that is defined as a string template; e.g.,
CLEAR CST$. For more information refer to Composite Strings vs BBx Templates,
p.88, IOLIST Specify Variable List, p.165, and CLEAR Reset Variables, p.54.

The following example defines PRD$ as a 36 character string consisting of
PRD.DESC$ for 30 characters and PRD.COST for 6 digits with a scale of 2 (2 implied
decimal digits):

0010 DIM PRD$:IOL=2000
2000 IOLIST DESC$:[CHR(30)],COST:[NUM(6,2)]

Format 4: Initialize String With Fill Character

DIM var$(len[,char$])[,...]

Use the DIM directive to define a string variable of a specific length. You can also use
the DIM statement to define the value of the string variable. ProvideX uses the first
character of the value you set in the char$ string as the fill character for the string
being defined.

The fill character is repeated for the length of the string, as follows:

DIM A$(5,"*") is the same as DIM A$(5,"*-") ... both yield A$="*****"

2. Directives DIM

ProvideX Language Reference V8.30 Back 88

If a value is not given (or is null) then the string is initialized to spaces.

Combine this string initialization with the definition of string arrays (above) to
pre-initialize all the elements of a string array. For example, the DIM statement DIM
ACC_IDS$[10](6,"0") defines an array of 11 strings, each pre-initialized with 6 zeroes.

Composite Strings vs BBx Templates

ProvideX composite strings are made up of the variables you specify in the
composite string definition, whereas string templates are strings which are parsed to
obtain the various logical variables. This has the following impact, which you
should consider when you design applications:

• You can pass a variable that is part of a composite string (e.g., CST.NAME$) to a
subprogram and have a value returned in it. In a string template, however,
CST.NAME$ would be considered a substring which could not be altered by a
subprogram.

• There is no performance impact when referencing individual variables in a
composite string. There can be a performance impact when referencing logical
variables in a template, especially when the template has variable length fields. On
the other hand, when you reference the complete composite string, the string will
be reconstructed each time. The string template always exists in memory, with no
reconstruction required.

• Unlike string templates, composite strings can be reconstructed on the fly; e.g.,

0010 IOLIST NAME$,ADDR$,CITY$,AMT
0020 IOLIST NAME$,ADDR$,CITY$,ZIP$,AMT
0030 CST.ZIP$=""
0040 DIM CST$:IOL=0010
0050 READ RECORD (1)CST$
0060 DIM CST$:IOL=0020
0070 WRITE RECORD (1)CST$

The logic above automatically inserts CST.ZIP$ into the composite string while
preserving the other data elements. Note that composite string variables are not
implicitly cleared when the composite string is defined, whereas templates are.

• Since composite strings reference real variables, fields in composite strings have
data types associated with them. That is, in a composite string, ProvideX considers
CST.AMT, CST.AMT$, and CST.AMT% to be three different fields, whereas in a
string template these would all refer to the same field.

• ProvideX does not currently support subscripting with composite strings.

2. Directives DIRECT

ProvideX Language Reference V8.30 Back 89

DIRECT Directive D IRECT C reate File with Keyed AccessCreate File with Keyed Access
Format DIRECT filename$,max_len[,max_recs[,rec_size]][,ERR=stmtref]

Where:

Description Use the DIRECT directive to create a Direct file with an external key field. ProvideX
considers a Direct file to be the same as a Keyed file with an external key. If you use a
filename that already exists, ProvideX returns an Error #12: File does not
exist (or already exists). The maximum size of the key to the file is
mandatory along with the filename. The file type can be controlled by setting the
'KF'= System Parameter, p.671.

You can limit the number of records by specifying a maximum (an integer other than
zero). If you do attempt to set a maximum, then attempt to exceed this value (e.g., on
a WRITE statement) an Error #2 is generated. You can use zero (0) to create a
dynamic file, limited by physical file size limits and the amount of available drive
space.

If you include the maximum data length, it must be long enough to hold the
combined length of all the data fields and field separators for each record written to
the file.

WindX supports the use of this directive via the [WDX] tag; e.g., DIRECT
"[WDX]somefile.ext"... See [WDX] Direct Action to Client Machine, p.801.

See Also CREATE TABLE Create Keyed File (EFF), p.58
KEYED Create Single/Multi-Keyed File, p.166
File Types, User’s Guide

filename$ Filename of the DIRECT (Keyed) file. String expression. Mandatory.

max_len Maximum length of the key for all records in the file. Mandatory.
Numeric expression, integer.

max_recs Maximum number of records in the file. Optional numeric
expression. The default is zero (no limit). (Use a comma with no
value to set the default.)

If a positive value is supplied, ProvideX creates and pre-allocates
disk space for the file. With a negative value, ProvideX allocates
sufficient disk space for the file, but will set the max_recs count back
to zero (unlimited).

rec_size Maximum size of the data portion of each record (excluding the key).
Optional. Numeric expression. You can use:
No Value: Default is VLR with maximum size of 256.
Positive Integer: FLR of size specified.
Negative Integer: VLR with maximum length specified.

stmtref Program line number or label to transfer control to.

2. Directives DIRECT

ProvideX Language Reference V8.30 Back 90

Examples 0110 DIRECT A$+"-"+B$,10,100,50,ERR=1090
0200 DIRECT "CSTFLE",6,0,-128

Line 0200 creates a file with the following structure:
Keyed file: C:\Program Files\Sage Software\ProvideX\CST\CSTFLE
 Maximum Record size: 128 (variable)
 Maximum # records: (No limit)
 Current # records: 0
 Size of key block: 2048 bytes
 External key size: 6

2. Directives DIRECTORY

ProvideX Language Reference V8.30 Back 91

DIRECTORY Directive DIRECTORY Create SubdirectoryCreate Subdirectory
Format DIRECTORY name$[,ERR=stmtref]

Where:

Description Use the DIRECTORY directive to create a directory in the operating system's file
structure.

WindX supports the use of this directive via the [WDX] tag; e.g., DIRECTORY
"[WDX]somefile.ext"... For more information, see [WDX] Direct Action to Client
Machine, p.801.

Examples 0010 DIRECTORY "DATA"
0020 DIRECTORY "WRK."+STR(DEC(00+GID))
0030 DIRECTORY "/tmp/WRK1"
0040 DIRECTORY "/tmp/WRK1/WRK2"

name$ String variable contains the name of the directory to create.

stmtref Program line number or label to transfer control to.

Note: A subdirectory can only be created within an existing directory; therefore, WRK1
must exist in order to create WRK2.

2. Directives DISABLE

ProvideX Language Reference V8.30 Back 92

DISABLE Directive D ISABLE D isable Use o f Prefix Table EntryDisable Use of Prefix Table Entry
Format DISABLE (prefix[,ERR=stmtref])

Where:

Description Use the DISABLE directive to notify ProvideX that you do not want to use a given
prefix table entry. This directive is used primarily in the conversion to or from old
Business Basic languages where you could disable a specific disk drive.

To re-enable the prefix use the ENABLE directive.

See Also ENABLE Re-Enable Use of Prefix Table Entry, p.110,
PREFIX Set File Search Rules, p.249.

Examples ->PREFIX (1) "/disk1/data/"
->PREFIX (2) "/disk2/data/"
->DISABLE (1)

Causes ProvideX to ignore PREFIX (1).

prefix Numeric value of the prefix to disable. Numeric expression, integer.

stmtref Program line number or label to transfer control to.

Note: This directive is included in ProvideX for compatibility with other languages.

2. Directives DISABLE CONTROL

ProvideX Language Reference V8.30 Back 93

DISABLE CONTROL Directive DISABLE CONTROL Disable Cont rolDisable Control
Formats 1. Disable Single Control: DISABLE CONTROL ctl_id1[:sub_id][,ctl_id2[:sub_id]...][,ERR=stmtref]

2. Disable Multiple Controls: DISABLE CONTROL bin_list$[,ERR=stmtref]

Where:

Description Use the DISABLE CONTROL directive to notify ProvideX that you want the specified
control (button, check box, radio button, etc.) disabled. The bin_list$ expression will
support up to 30 controls (90 characters).

To re-enable the control use the ENABLE CONTROL directive.

Example 00010 print 'CS'
00020 button 10,@(1,1,20,2)="Show Message"
00030 obtain x
00040 if ctl=10 then msgbox "Hello World","Button Message"
00050 if ctl=4 then stop
00060 if ctl=1 then enable control 10; print @(24,1),"Enabled "
00070 if ctl=2 then disable control 10; print @(24,1),"Disabled"
00080 goto 0030

See Also ENABLE CONTROL Directive, p.111.

bin_list$ One or more three-byte binary strings identifying controls:
BIN(control_ID,2)+00 for most controls or
BIN(control_ID,2)+bin(sub_id,1) for radio buttons

ctl_id Value of the control(s) to disable. Numeric expression, integer. If you
include a list, use the comma as the separator.

stmtref Program line number or label to transfer control to.

sub_id Unique radio button ID. Numeric expression (range 1 to 254).

2. Directives DISABLE EVENT

ProvideX Language Reference V8.30 Back 94

DISABLE EVENT Directive D ISABLE EVENT Int ernal Event DisableInternal Event Disable
Formats 1. Timer Event: DISABLE EVENT ON TIM

2. Data Available on Channel Event: DISABLE EVENT ON DATA (chan)

3. On Close of Channel Event: DISABLE EVENT ON CLOSE (chan)

4. On Open Event: DISABLE EVENT ON OPEN

5. On Class Load Event: DISABLE EVENT ON LOAD CLASS

Where:

Description Use the DISABLE EVENT directive to disable the handling of various system events
within a ProvideX session. The generation and trapping of events requires that the
internal "*system.pvc" COM object be defined first.

See Also ENABLE EVENT Directive, p.112.

Example 00010 DEF OBJECT PvxComID,"*system" ! Activate support for System Events
00020 ENABLE EVENT ON TIM=2 ! Activate timer event at two second

intervals
00030 ON EVENT "TimeOut" FROM PvxComID PREINPUT 99 ! Establish how to

handle the event
00031 c=0
00040 WHILE 1
00050 INPUT *
00060 IF CTL=99 \
 THEN c++;
 PRINT "Timeout ",c;
 IF c>3 \
 THEN BREAK
00070 WEND
00075 DISABLE EVENT ON TIM ! Deactivate timer event
00077 DROP OBJECT PvxComID
00080 END

chan Channel or logical file number.

2. Directives DROP

ProvideX Language Reference V8.30 Back 95

DROP Directive DROP Remo ves Pr ogram fr om MemoryRemoves Program from Memory
Format DROP prog$[,ERR=stmtref]

Where:

Description Use the DROP directive to unload a program previously loaded into memory by the
ADDR directive. The memory used while the program was loaded is returned to the
system. ProvideX returns an Error #17: Invalid file type or contents if
you use a DROP statement for a program that is not currently loaded in memory.

See Also ADDR Load & Lock Program in Memory, p.30
Data Integration, User’s Guide.

Examples ->DROP "ARDATE"

prog$ Name of the program to be unloaded from memory. String expression.

stmtref Program line number or label to transfer control to.

Note: In Object Oriented Programming, DROP OBJECT can be used to delete an object and
DROP CLASS can be used to delete a class. See DELETE OBJECT and DELETE OBJECT for
more information.

2. Directives DROP_BOX

ProvideX Language Reference V8.30 Back 96

DROP_BOX Directive DROP_BOX Contro l D rop BoxControl Drop Box
Formats 1. Define/Create: DROP_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]

2. Remove: DROP_BOX REMOVE ctl_id[,ERR=stmtref]

3. Disable/Enable: DROP_BOX {DISABLE | ENABLE}ctl_id[,ERR=stmtref]

4. Hide/Show: DROP_BOX {HIDE | SHOW} ctl_id[,ERR=stmtref]

5. Force Focus: DROP_BOX GOTO ctl_id[,ERR=stmtref]

6. Signal on Focus: DROP_BOX SET_FOCUS ctl_id,ctl_val[,ERR=stmtref]

7. Load via Delimited String: DROP_BOX LOAD ctl_id,dlm_list$[,ERR=stmtref]

8. Load via Array: DROP_BOX LOAD ctl_id,array_name${ALL}[,ERR=stmtref]
Note: The curly braces enclosing {ALL} are part of the syntax.

9. Load/Delete Index Element: DROP_BOX LOAD ctl_id,index,{element$|*}[,ERR=stmtref]

10. Retrieve Element: DROP_BOX FIND ctl_id,index,var$[,ERR=stmtref]

11. Read Current String: DROP_BOX READ ctl_id,var$[,mode$][,ERR=stmtref]

12. Read Current Index: DROP_BOX READ ctl_id,var[,mode$][,ERR=stmtref]

13. Reset Using Selection: DROP_BOX WRITE ctl_id,element$[,ERR=stmtref]

14. Reset Using Index: DROP_BOX WRITE ctl_id,index[,ERR=stmtref]

15. Clear Current Selection: DROP_BOX WRITE ctl_id, ""[,ERR=stmtref]

16. Report All Changes: DROP_BOX AUTO ctl_id[,ERR=stmtref]

Where:

@(col,ln,
wth,ht)

Position and size of the drop box region when expanded. Numeric
expressions. Column and line coordinates for top left corner, width in
number of columns and height in number of lines. (Note that drop
box height, when not expanded, is governed by the system and is
roughly 1.5 times the standard graphic font height.)

array_name$ Name of array to load into drop box. String variable followed by {ALL}.

ctl_id Unique logical identifier for the drop box (any integer -32000 to +32000).
Avoid integers that conflict with keyboard definitions (e.g., 4 cancels CTL=4
for the key) or Negative CTL Definitions, p.817. Use this value with
the apostrophe operator to access various Drop Box Properties.

ctl_val CTL value to generate when the drop box gains focus.

F4

2. Directives DROP_BOX

ProvideX Language Reference V8.30 Back 97

Description Use the DROP_BOX directive to create and manipulate drop box control objects on
the screen. A drop box normally displays a single line on the screen with a
DOWN-ARROW on the right side. The user can select any element from a list of items you
assign to the drop box, but variable input is not allowed. That is, the user can only
select, not enter, values. To view the list, the user clicks on the DOWN-ARROW. When the
user selects a drop box item, the associated ctl_id is used to generate a CTL value.

ctrlopt Control options. Supported options for DROP_BOX include:
ERR=stmtref Error transfer
FNT="font,size[,attr]" Font name, size, optional properties.

Refer to the 'FONT' Mnemonic, p.609 for details.
KEY=char$ Hot key
MSG=text$ Message line
MNU=ctl CTL value associated with right-click menu event.
TBL=char$ Single character translation
TIP=text$ Mouse pointer message.

To change the colour, refer to the 'TC'= System Parameter, p.689.
OWN=name$ Name assigned for automated testing of this control.
OPT=char$ Attribute/behaviour settings:
"A" - Auto. Generate CTL signal when a new element is highlighted.
"B" - No border. Drop box will not have a border.
"d" - Permanently Disabled. Drop box cannot be enabled.
"D" - Initially Disabled. User cannot access the drop box.
"h" - Permanently Hidden. Drop box cannot be shown.
"H" - Initially Hidden. Drop box is initially hidden.
"G" - Global. Keep active on focus change to new/non-concurrent window.
"S" - Signal. Generate CTL value but without shifting focus.
"s" - Scroll. Allow scroll within resizable/scrollable dialogue box.
"T" - Strip trailing spaces.
"X" - Signal when focus exits from control.
"Z" - Cursor changes to "resize" pointer if within 4 pixels of control.

Some characters may be combined. Invalid settings are ignored.

dlm_list$ Delimited list of elements to load. String expressions.

element$ Single element to load. String expression. You can use the asterisk *
instead to delete an element. For instance, DROP_BOX LOAD 86,4,*
will remove element 4 from the DROP_BOX.

index Position of the element in the drop box. Numeric expression. Integers:
the index of the 1st element is 1.

mode$ String variable. ProvideX returns a single-character hex value in this
variable to report the last method / keystroke the user chose to
activate the drop box (01 for MOUSE-CLICK or $0D$ for).

var[$] Variable to receive value. String variable for element/numeric for index.

Enter

2. Directives DROP_BOX

ProvideX Language Reference V8.30 Back 98

Refer to VARDROP_BOX Control Variable Drop Box, p.354, if you need a drop box
that allows both variable input and selection from a list.

Because a drop box list is in drop down form, a drop box takes a smaller amount of space
on the screen than a comparable list box. In addition, ProvideX automatically supplies
vertical scrollbars if the number of elements overflows the drop-down box size. Combine
these features to optimize the screen design when display space is at a premium.

Drop Box Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
drop boxes are described in Chapter 7. Control Object Properties, p.704.

Format 1: Define/Create
DROP_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]

Use this format to define or create a drop box and give it a unique identifier in ctl_id.
You can use the FNT= option to establish the font for it. If you omit the font option,
ProvideX uses the system default font. Use FNT="*" to set the font as standard text
mode fixed font.

The following example creates a drop box that generates a CTL=100 when any item
is selected from it. It is loaded with the items Cat, Dog, and Pig.

0010 DROP_BOX 100,@(2,14,12,6)
0020 DROP_BOX LOAD 100,"Cat/Dog/Pig/"

Format 2: Remove
DROP_BOX REMOVE ctl_id[,ERR=stmtref]

Use the DROP_BOX REMOVE format to delete a drop box.

Format 3: Disable/Enable
DROP_BOX {DISABLE | ENABLE}ctl_id[,ERR=stmtref]

Use DROP_BOX DISABLE to gray out a drop box so that it will be visible but
inaccessible, to users. To reactivate it, use DROP_BOX ENABLE.

Format 4: Hide/Show

DROP_BOX {HIDE | SHOW} ctl_id[,ERR=stmtref]

With the DROP_BOX HIDE format, the drop box remains active, but is not displayed.
It is still accessible programmatically. Use the DROP_BOX SHOW format to restore
the display and user access.

2. Directives DROP_BOX

ProvideX Language Reference V8.30 Back 99

Format 5: Force Focus

DROP_BOX GOTO ctl_id[,ERR=stmtref]

Use the DROP_BOX GOTO format to reactivate and force focus to a drop box, ready
for the next user action.

Format 6: Signal on Focus

DROP_BOX SET_FOCUS ctl_id, ctl_val[,ERR=stmtref]

Use the DROP_BOX SET_FOCUS format to define an alternate CTL value to generate
whenever focus shifts to the drop box.

Formats 7, 8 and 9: Load a Drop Box

Use DROP_BOX LOAD to add or delete the elements listed in a drop box. To add
elements, you can load them from a delimited string, as an array of string elements, or
individually. If you load more items into the list than the drop down box can display
at one time (because of its physical size), ProvideX automatically supplies scrollbars.

DROP_BOX LOAD ctl_id,dlm_list$[,ERR=stmtref]

Load List. When you load a drop box from a delimited string, the last character in the
string must be the delimiter. That delimiter must be identical to the separator
between the elements in the string. For example, in the delimited string below, the
delimiter is the slash "/". It ends the string and separates the elements; e.g.,

DROP_BOX LOAD 12000,"Fox/Cat/Dog/Cow/Sheep/Horse/Pig/Elephant/Ant/"

To clear all elements from a drop box, use a null string; e.g.,

DROP_BOX LOAD 86, ""

DROP_BOX LOAD ctl_id,array_name${ALL}[,ERR=stmtref]

Load Array. Use this format to load a complete array into the drop box. Note that the
curly braces enclosing {ALL} are part of the syntax; e.g.,

DROP_BOX LOAD 16000,A${ALL}.

DROP_BOX LOAD ctl_id,index,{element$ | *}[,ERR=stmtref]

Load Element. When you load individual drop box elements, use an integer value to
state the index of the element before which to insert the element being loaded. For
instance, if index is 1, the new element will be inserted before 1, at the start of the list.
If index is 0 zero, the new element will be appended to the end of the list.

To delete or remove a specified element from a drop box, use an asterisk * in place of the
element string; e.g.,

DROP_BOX LOAD 86,4,* ! Deletes list element 4 from a box whose ctl_id is 86.

2. Directives DROP_BOX

ProvideX Language Reference V8.30 Back 100

Format 10: Retrieve Element

DROP_BOX FIND ctl_id,index,var$[,ERR=stmtref]

Use the string variable in DROP_BOX FIND to retrieve a specific element from a drop box.

Formats 11 and 12: Read Current Selection

Use the DROP_BOX READ formats to read which element the user has selected from
the drop box. You must read the user's selection before your application can use it.

Use the (optional) mode$ variable to have ProvideX return the user's method of
selecting an item from the drop box.

Some possible return values are:

01 for MOUSE-CLICK.
$0D$ for .
00 when the user 's away from the drop box.
00 when the user exits the control.
After this value is read, the value in mode$ is reset to 00 (null).

DROP_BOX READ ctl_id,var$[,mode$][,ERR=stmtref]

Read Current Element. With this format, ProvideX returns the string contents of the
user's currently selected element in var$ and, optionally, the user's method of
selection in mode$.

DROP_BOX READ ctl_id,var[,mode$][,ERR=stmtref]

Read Current Index. Use DROP_BOX READ to read the index of the user's current
selection and (optionally) the mode$ of selection.

Formats 13 and 14: Write Current Selection

Use the DROP_BOX WRITE formats described below to reset the items selected from
a drop box.

DROP_BOX WRITE ctl_id,element$[,ERR=stmtref]

Reset Using Selection. Resets the currently selected item to reflect the specified
element. If it does not exist, ProvideX returns an Error #11: Record not
found or Duplicate key on write.

DROP_BOX WRITE ctl_id,index[,ERR=stmtref]

Reset Using Index. Resets the current item to the specified index, which is the same
same as setting the 'CurrentItem property. If it does not exist, ProvideX returns an
Error #11: Record not found or Duplicate key on write.

Enter
Tab

2. Directives DROP_BOX

ProvideX Language Reference V8.30 Back 101

Format 15: Clear Current Selection

DROP_BOX WRITE ctl_id,"" [,ERR=stmtref]

Use this format to clear the currently selected entry in drop boxes.

Format 16: Report All Changes

DROP_BOX AUTO ctl_id[,ERR=stmtref]

Use the DROP_BOX AUTO format to have ProvideX generate a CTL value to report
all changes whenever the user highlights an element from a drop box list.

Example 0010 ! DROP_BOX Creation and Use
0020 PRINT 'CS'; LIST
0030 DROP_BOX 88,@(30,18,15,10)
0040 DROP_BOX LOAD 88,"CAT,DOG,PIG,FOX,"
0050 DROP_BOX WRITE 88,"CAT"
0060 LET D_BX=88
0070 SETCTL D_BX:READ_BOX
0080 DROP_BOX GOTO D_BX
0090 PRINT @(30,24),"Try Mouse and/or keyboard to select. END=<F4>"
0100 OBTAIN (0,SIZ=1,ERR=0100)@(0,0),'CURSOR'("off"),'ME',IN_VAR$,'MN'
0110 LET CT=CTL; IF CT=4 THEN GOTO END
0120 READ_BOX:
0130 DROP_BOX READ D_BX,ANIMAL$,STROKE$,ERR=0001
0140 DROP_BOX READ D_BX,IND_NUM
0150 PRINT @(30,20),"HTA(SELECTION) : ",HTA(STROKE$)," AND CTL=",CTL:"#####"
0160 PRINT @(30,21),"Index for ",ANIMAL$,@(44,21)," : ",IND_NUM,""
0170 GOTO 0100
0180 END:
0190 DROP_BOX REMOVE D_BX
0200 PRINT 'CS'

Note: This behavior can be altered by use of the '+N' & '-N' Mnemonics, p.623.

2. Directives DROP CLASS

ProvideX Language Reference V8.30 Back 102

DROP CLASS Directive DROP CLA SS D elet e C lass D ef initionDelete Class Definition
Format DROP CLASS class$

Where:

Description The DROP CLASS directive is used in Object Oriented Programming to delete a class
definition and all related information. Once a class definition is established, then it
may not be changed but it can be deleted and recreated using DROP CLASS.

Only class definitions that have no references to them may be deleted. This means
that no class can be deleted when:

• Any object exists which refers to this class.

• Any other class exists which refers to this class by its LIKE clause.

Any attempt to delete a class that has a reference to it will return an Error #50:
"Class in use or already defined".

All class definitions will be deleted when a START directive is issued. Either DROP
CLASS or DELETE CLASS can be used to delete a class definition.

See Also DEF CLASS Define Object Class, p.65
DROP OBJECT Delete Object, p.104
LOAD CLASS Pre-Load Class Definition, p.195
RENAME CLASS Change Name of Class, p.283
STATIC Add Local Properties at Runtime, p.329
NEW() Function, p.489
REF() Function, p.512
Data Integration, User’s Guide

class$ Name of the class to be deleted. String expression.

2. Directives DROP INDEX

ProvideX Language Reference V8.30 Back 103

DROP INDEX Directive D ROP INDEX Dr op Key f rom Keyed FileDrop Key from Keyed File
Format DROP INDEX {keynumber | keyname$} FROM filename$ [,ERR=stmtref]

Where:

Description The DROP INDEX directive drops keys from a ProvideX Keyed file without having to
rebuild the file. When dropping keys from a file:

• The key is removed from the data file and the space previously occupied by the
key table is made available for subsequent use within the file.

• Only one drop can be processed against a file at one time.
• Exclusive access to the file is required.
• The primary key is required and cannot be dropped.

See also ADD INDEX Add Key to Keyed File, p.29
RENAME..INDEX Rename Keys in Keyed File, p.285

Example DROP INDEX 3 FROM "cstfile"
DROP INDEX CustName FROM "cstfile"

filename$ Name of the file from which the key will be dropped. String
expression.

FROM Mandatory keyword, not case-sensitive.

keyname$ Name of the key to drop (if assigned). String expression.

keynumber Key number (KNO value) to drop.

stmtref Program line number or label to transfer control to.

2. Directives DROP OBJECT

ProvideX Language Reference V8.30 Back 104

DROP OBJECT Directive D ROP OBJECT Delete ObjectDelete Object
Format DROP OBJECT obj_id[,ERR=stmtref]

Where:

Description The DROP OBJECT directive is used in Object Oriented Programming to delete an object.

Only objects whose reference count is 1 can be deleted. Once an object is destroyed,
its identifier may be re-assigned to another object; although, this is not
recommended.

Objects are destroyed when the application issues a START directive.

REF (READ obj_id) returns the current reference count value. All calls to REF()
return the current reference count (or 0, if deleted).

See Also DEF CLASS Define Object Class, p.65
DROP CLASS Delete Class Definition, p.102
LOAD CLASS Pre-Load Class Definition, p.195
RENAME CLASS Change Name of Class, p.283
STATIC Add Local Properties at Runtime, p.329
NEW() Function, p.489
REF() Function, p.512
Data Integration, User’s Guide

obj_id Object Identifier

stmtref Program line number or label to transfer control to.

Note: The DELETE OBJECT and DROP OBJECT directives can be used interchangeably
regardless of the object being dropped. For further information, refer to the DELETE
OBJECT Directive, p.84

2. Directives DROP..ON

ProvideX Language Reference V8.30 Back 105

DROP..ON Directive DROP .. ON Drag and D ropDrag and Drop
Format 1. Define Drag & Drop: DROP source_ctl_id ON dest_ctl_id RETURN new_ctl_id

2. Remove Logic: DROP source_ctl_id ON dest_ctl_id REMOVE

3. Temporarily Disable: DROP source_ctl_id ON dest_ctl_id DISABLE

4. Re-Enable Drag & Drop: DROP source_ctl_id ON dest_ctl_id ENABLE

Where:

Description The Drag and Drop feature allows for copying or moving of information from one
object to another object. The drop event is triggered when a mouse is used to select
information from the source object, drag the selection to another object, and deposit
the information at the new location. The application is responsible for adding the
information to the destination object and removing it from the source object.

The available Drag From or source controls are multi-lines and various types of list
boxes, drop boxes, and grids.

The available Drop On or destination controls are buttons, check boxes, drop boxes,
grids, multi-lines, list boxes, radio buttons, tristate boxes. The highlighting of items
on which the drop will occur is not supported in simple or formatted list boxes;
however, this is supported in list view, report view, and tree view objects.

dest_ctl_id Unique numeric identifier for the destination control.

new_ctl_id The CTL signal that is generated when the drop occurs on the
destination object. Avoid integers that conflict with keyboard definitions
(e.g., 4 cancels CTL=4 for the key) or special negative CTL values set
by the system. See Negative CTL Definitions, p.817.

source_ctl_id Unique numeric identifier for the source control.

F4

Note: When using the DISABLE syntax, the cursor will still change indicating that the
drop is valid, however the signal indicating the drop took place is not generated.

2. Directives DUMP

ProvideX Language Reference V8.30 Back 106

DUMP Directive DUMP D isplay VariablesDisplay Variables
Format DUMP [(chan)][n|-n|*] [OBJECT obj_id]

Where:

Description Use the DUMP directive to get a listing of all variables/properties in use by the
current program/object. The output is sent to the specified file number. If you omit
the file number, the console, file (0), is the default. The output includes the value of
the system variable ERR, the current program name, line number, the
FOR/NEXT-GOSUB/RETURN stack, and all variables that contain data.

Examples The following illustrates the use of DUMP for listing variables in a program:
->DUMP
! ERR=0, CTL=0, RET=2
! Level=1
! PGN="C:\OTHER\PGMS\PVX\PVX_TESTS"
A$=$000000$+"T0 "+$0F0000000000000000$+"*"+$0100000700$+"CON
"+0000+"P"+190100000000+"P"+190000+"P"+$190000000000000000000000000
000
000
000$+"WINDOWS "
CUST$="<*> IOLIST NAME$,ADR1$,ADR2$"
CUST.ADR1$="123 SOME ST."
CUST.ADR2$="ANYTOWN SK S0M 0V0"
CUST.NAME$="M MOUSE"
DT$="04/01/99"
F$="abcd"
R$="ab"
X$="M MOUSE"+SEP+"123 SOME ST."+SEP+"ANYTOWN SK S0M 0V0"+SEP
%NORM_SCR$=ESC+"F7"+ESC+"B4"
%ST_ATTR$=$000007$
%W_MSG$=ESC+"F0"+ESC+"B6"

chan Channel or logical file number of the file to receive the dump / output
of all variables in use by the current program.

n|-n|* Value indicating dump level. A positive number indicates a specific level
to dump. A negative number represents one level below the current
number on the program stack; e.g., DUMP -1 at level 4 dumps level 3. An
asterisk dumps all levels in succession.

OBJECT Optional keyword for invoking a dump of an active OOP object. See
Data Integration, p.275 in the User’s Guide.

obj_id Object identifier of the object.

2. Directives DUMP

ProvideX Language Reference V8.30 Back 107

The following illustrates the use of DUMP OBJECT:

->DUMP OBJECT 100015
! Dump of OBJECT information
_Obj=100015
_Class$="*rpt/RptSort"
_Refcnt=1
! External Properties
Order$="A"
Length=6
Type$="S"
SegmentName$="AccountID"

2. Directives EDIT

ProvideX Language Reference V8.30 Back 108

EDIT Directive EDIT Edit Line in Pr ogramEdit Line in Program
Formats 1. Edit: EDIT stmtref{D[string] | C[string] | R[string] | [string]}

2. Edit using back apostrophe : `stmtref{D[string] | C[string] | R[string] | [string]}

Note: The square brackets above are part of the statement's syntax.

Where:

Description Use the EDIT directive to change an existing statement in a program. ProvideX builds
a new statement based on the commands you use in the EDIT directive. The new
statement then replaces the existing one, unless you change the line number. (In the
latter case, the original statement remains in the program at the original line number,
and the new or resultant statement is added to the program at the new line number.)

If you do not include parameters following the statement reference, ProvideX
displays the specified line so that you can edit it directly using the keyboard.

Four options are available in the EDIT directive.

Delete text from statement. Use the D option to scan along the original statement up
to and including the given string without copying the data to the new statement. The
result omits the deleted portion of the string from the new statement.

Copy text from current statement to the new statement. Use the C option to scan
along the original statement from the cursor up to and including the given string,
copying the data to the new statement.

Replace text from current line in the new statement. Use the R option to append the
given string to the new statement while advancing over the corresponding number
of characters in the original statement.

Add text to the new statement. This option adds the given string to the new
statement.

` Back Apostrophe. ProvideX accepts this as a substitute for typing EDIT.

[string] Add. String literal to add to the statement.

C[string] Copy. String literal contains the final character(s) of string to be copied.

D[string] Delete. String literal contains the final character(s) of the string to be deleted.

R[string] Replace. String literal is the new text to replace the existing string.

stmtref Program line number or label to transfer control to.

Note: The EDIT directive is used in Command mode.

2. Directives EDIT

ProvideX Language Reference V8.30 Back 109

After all options have been processed, any remaining portion of the original
statement is appended to the new statement.

Examples 0200 LET A=4*M; PRINT "ANSWER =",A
EDIT 200 C[=] D[*] C[A] R[nswer] [now]

After EDIT:

0200 LET A=M; PRINT "Answer now =",A

2. Directives ENABLE

ProvideX Language Reference V8.30 Back 110

ENABLE Directive ENA BLE Re-Enable Use o f Prefix Table EntryRe-Enable Use of Prefix Table Entry
Format ENABLE (prefix[,ERR=stmtref])

Where:

Description Use the ENABLE directive to notify ProvideX that you want a given prefix
reactivated. To disable a prefix use the DISABLE directive.

See Also DISABLE Disable Use of Prefix Table Entry, p.92,
PREFIX Set File Search Rules, p.249.

Example 0100 PREFIX (1) "/disk1/data/"
0500 DISABLE (1) ! Tell ProvideX to ignore PREFIX (1)
1000 ENABLE (1) ! Reactivate PREFIX (1)

prefix Numeric value of the PREFIX to re-enable. Numeric expression.

stmtref Program line number or label to transfer control to.

Note: This directive is used primarily in the conversion to or from old Business Basic
languages where you could DISABLE and ENABLE a specific disk drive.

2. Directives ENABLE CONTROL

ProvideX Language Reference V8.30 Back 111

ENABLE CONTROL Directive ENABLE CONTROL Enable Custom Cont rolEnable Control
Format 1. Enable Single Control: ENABLE CONTROL ctl_id1[:sub_id][,ctl_id2[:sub_id]...][,ERR=stmtref]

2. Enable Multiple Controls: ENABLE CONTROL bin_list$[,ERR=stmtref]

Where:

Description Use the ENABLE CONTROL directive to notify ProvideX to reactivate the specified
control (button, check box, etc.). To disable the control use the DISABLE CONTROL
directive.

See Also DISABLE CONTROL Directive, p.93.

Example 00010 print 'CS'
00020 button 10,@(1,1,20,2)="Show Message"
00030 obtain x
00040 if ctl=10 then msgbox "Hello World","Button Message"
00050 if ctl=4 then stop
00060 if ctl=1 then enable control 10; print @(24,1),"Enabled "
00070 if ctl=2 then disable control 10; print @(24,1),"Disabled"
00080 goto 0030

bin_list$ One or more three-byte binary strings identifying controls:
BIN(control_ID,2)+00 for most controls or
BIN(control_ID,2)+bin(sub_id,1) for radio buttons

ctl_id Value of the control(s) to enable. Numeric expression, integer. If you
include a list, use the comma as the separator.

stmtref Program line number or label to transfer control to.

sub_id Unique radio button ID. Numeric expression (range 1 to 254).

2. Directives ENABLE EVENT

ProvideX Language Reference V8.30 Back 112

ENABLE EVENT Directive ENA BLE EVENT Int er nal Event EnableInternal Event Enable
Formats 1. Timer Event: ENABLE EVENT ON TIM

2. Data Available on Channel Event: ENABLE EVENT ON DATA (chan)

3. On Close of Channel Event: ENABLE EVENT ON CLOSE (chan)

4. On Open Event: ENABLE EVENT ON OPEN

5. On Class Load Event: ENABLE EVENT ON LOAD CLASS

Where:

Description Use the ENABLE EVENT directive to enable the handling of various system events
within a ProvideX session. The generation and trapping of events requires that the
internal "*system.pvc" COM object be defined first.

See Also DISABLE EVENT Directive, p.94
WAIT FOR EVENT Directive, p.373

Example 00010 DEF OBJECT PvxComID,"*system" ! Activate support for System Events
00020 ENABLE EVENT ON TIM=2 ! Activate timer event at two second

intervals
00030 ON EVENT "TimeOut" FROM PvxComID PREINPUT 99 ! Establish how to

handle the event
00031 c=0
00040 WHILE 1
00050 INPUT *
00060 IF CTL=99 \
 THEN c++;
 PRINT "Timeout ",c;
 IF c>3 \
 THEN BREAK
00070 WEND
00075 DISABLE EVENT ON TIM ! Deactivate timer event
00077 DROP OBJECT PvxComID
00080 END

chan Channel or logical file number.

2. Directives END

ProvideX Language Reference V8.30 Back 113

END Directive END Halt Progr am ExecutionHalt Program Execution
Format END

Description Use the END directive to halt the currently running program. If the current program
is a subprogram, then control is immediately passed back to the calling program.
Otherwise all open files are closed, a RESET operation is performed, and the next
location counter is set to the start of the program.

If an application is invoked directly by an operating system command that specifies
a lead program, then the END directive performs the function of a QUIT and
automatically returns the user to the operating system. If the application is RUN
from Command mode, ProvideX returns to Command mode.

When you use the END directive in a compound statement, it must be the final
directive. (Exception: A remark can follow the END directive.)

The *END label emulates an END directive for use as a statement reference. The END
directive is functionally identical to the STOP directive.

See Also QUIT Terminate ProvideX, p.264,
RELEASE Terminate ProvideX, p.279,
STOP Halt Program Execution, p.330,
Labels/Logical Statement References , p.816
Called Procedures, User’s Guide

2. Directives END DEF

ProvideX Language Reference V8.30 Back 114

END DEF Directive END D EF End Def init ion of Mult i-lin e FunctionEnd Definition of Multi-line Function
Format END DEF

Description Use the END DEF directive to mark the end of a multi-line function or DEF CLASS
statement. In Execution mode, when ProvideX encounters a DEF FN directive for a
multi-line function, it skips forward until it encounters an END DEF directive. (That
is, control is transferred to the line or statement after the end definition.) If you use
an END DEF directive without a preceding DEF FN directive, ProvideX returns an
Error #45: Referenced statement invalid.

It is also used to mark the conclusion of Class Definition (DEF CLASS statement) in
Object Oriented Programming, p.22.

See Also RETURN Subroutine/Function Return, p.291
ESCAPE Interrupt Program Execution, p.122
DEF FN Define Function, p.68.
DEF CLASS Define Object Class, p.65.
Data Integration, User’s Guide.

2. Directives END SWITCH

ProvideX Language Reference V8.30 Back 115

END SWITCH Directive END SWITCH End Br anching of a Pr ogramEnd Branching of a Program
Format END SWITCH

Description Use the END SWITCH directive to stop the branching that has been activated in an
application by a SWITCH directive.

See Also SWITCH..CASE Branch Control, p.331,
BREAK Immediate Exit of Loop, p.33,
CASE Define Branch Points, p.42,
DEFAULT Branch If No Matching Case, p.77.

Examples 00100 PROCESS_TAXCODE:
00110 LiquorTax=0,SalesTax=0,ServiceTax=0
00120 SWITCH UCS(TaxCode$)
00130 CASE "X","Z" ! two codes are tax exempt
00140 BREAK ! stop processing for case "X" here
00150 CASE "L" ! liquor pays all liquor,sales and service tax
00160 LiquorTax=cost*LiquorTaxRate
00170 ! no break here, logic falls through
00180 CASE "S" ! pays sales and service tax
00190 SalesTax=cost*SalesTaxRate
00200 ! no break here, logic falls through
00210 CASE "V" ! service tax
00220 ServiceTax=cost*ServiceTaxRate
00230 BREAK ! end processing for this case and any that fell through
00240 DEFAULT ! enter here if case not found
00250 MSGBOX "Unknown tax code","Error"
00260 END SWITCH
00270 TotalTax=LiquorTax+SalesTax+ServiceTax
00280 RETURN

Note: For complete syntax, refer to SWITCH..CASE Branch Control, p.331.

2. Directives END WITH

ProvideX Language Reference V8.30 Back 116

END WITH Directive END WITH End Br anching of a Pr ogramEnd Branching of a Program
Format END WITH

Description Use the END WITH directive to signal the end of a WITH construct.

See Also WITH Object Reference Construct, p.382

Note: For complete syntax, refer to WITH Object Reference Construct, p.382.

2. Directives END_IF

ProvideX Language Reference V8.30 Back 117

END_IF Directive END_IF End IF D ir ect iveEnd IF Directive
Formats 1. End IF Before Line Ends: IF expression THEN ... ELSE ... END_IF ...

2. End IF using FI: IF expression THEN ... ELSE ... FI ...

Where:

Description Use END_IF (or FI) to terminate an IF directive before the end of a statement or line.
When an END_IF directive follows an IF directive, execution resumes immediately
after the END_IF directive, regardless of whether the condition was found to be true
or false.

See Also IF..THEN..ELSE Test Condition, p.157.

Example 00100 PRINT "The customer has ",
00200 IF bal<=0 \
 THEN PRINT "NO", \
 ELSE PRINT "$",bal, \
 END_IF ;
 PRINT " credit available"
->BAL=0
->RUN
The customer has NO credit available.

->BAL=1.98
->RUN
The customer has $ 1.98 credit available

expression Condition to control processing.

... Directives, processing.

Note: FI is an accepted substitute for END_IF. Refer to the IF..THEN..ELSE directive
for complete syntax.

2. Directives ENDTRACE

ProvideX Language Reference V8.30 Back 118

ENDTRACE Directive END TRA CE End Trace Out putEnd Trace Output
Formats 1. End Trace: ENDTRACE

2. End Tracing of Windows Host Program: ENDTRACE SERVER

Where

Description Use the ENDTRACE directive to stop the tracing of program statements (activated by
a previous SETTRACE directive).

See Also SETTRACE Enable Program Tracing, p.324

Examples 0010 SETTRACE
0020 DEFCTL -1011=3 ! Return CTL 3 on up arrow
0030 INPUT "Enter name:",N$
0040 ON CTL GOTO 0050,0030,0030,0060,0060
0050 INPUT "Enter Addr:",A$
0060 ENDTRACE ; PRINT "DONE"; END

-:run
0010 SETTRACE
0020 DEFCTL -1011=3 ! Return CTL 3 on up arrow
0030 INPUT "Enter name:",N$
Enter name: ! User hit up arrow
0040 ON CTL GOTO 0050,0030,0030,0060,0060
0060 ENDTRACE ; PRINT "DONE"; END
DONE

SERVER For internal use only.

2. Directives ENTER

ProvideX Language Reference V8.30 Back 119

ENTER Directive ENTER Specify Argument sSpecify Arguments
Format ENTER [arglist][,ERR=stmtref]

Where:

Description Use ENTER in a called program to define the total number, relative positions and
types of variables it will receive. These are arguments passed to the subprogram via
the calling program's CALL statement.

The variables in the calling program's CALL statement must match those in the
subprogram ENTER statement exactly. That is, each argument in the CALL statement
must correspond by position and in type (numeric or string) to a variable in the
ENTER statement. Otherwise, ProvideX returns Error #36: ENTER parameters
don't match those of the CALL.

If the calling program is passing a complete numeric array, the name of the array
must be specified, followed by {ALL} in both the ENTER and CALL statements
(curly brackets are part of the syntax).

Where a CALL statement specifies a simple variable, all changes made to the variable
ENTERed in your subprogram will be reflected in the calling program when the
subprogram terminates. You can protect a simple variable in either the CALL or
ENTER statement by placing the argument inside parentheses –this turns the variable
into an expression, which has the effect of making it read only.

String templates cannot be passed if they are defined prior to the ENTER statement in
the called program.

See Also CALL Transfer to Subprogram, p.40
Called Procedures, User’s Guide.

Examples In calling program:

0170 CALL "SUBR",LEN(A$),N,A$,T{ALL}

In subprogram "SUBR":

0020 ENTER A,B,Z$,N{ALL}

arglist Variables in to receive arguments passed from the calling program. Use:

• a comma-separated list of simple numeric and/or string variables, not
subscripts/substrings,

• IOL=ioltref (e.g., ENTER IOL=8000), or

• a complete numeric array (e.g., ENTER ARRAY_NAME{ALL})

stmtref Program line number or label to transfer control to.

Restrictions: You can only use this directive in called programs (subprograms).

2. Directives ERASE

ProvideX Language Reference V8.30 Back 120

ERASE Directive ERASE D elete File/D irectory fr om SystemDelete File/Directory from System
Format ERASE name$[,ERR=stmtref]

Where:.

Description Use the ERASE directive to delete the file or directory you name. The disk space that
was used by the file or directory is returned to the system. If you erase a file, all data
in the file is lost.

WindX supports the use of this directive via the [WDX] tag; e.g., ERASE
"[WDX]somefile.ext"... For more information, see [WDX] Direct Action to
Client Machine, p.801.

See Also Creating, Deleting, and Renaming Data Files, User’s Guide.

Examples 0010 ERASE "PRNTFL"
0030 ERASE "SRTFL1",ERR=0040

name$ Name of file or directory to be deleted from the system. String
expression. To erase a file from a program library, use [LIB], p.781.

stmtref Program line number or label to transfer control to.

Restrictions: A directory can only be deleted if it does not contain any files. ProvideX
is subject to OS rules for the deletion of files or directories. In some operating systems,
the ERASE directive is not accepted and will not delete the directory.

Note: This directive does not apply to any file segments for a multi-segmented file.

2. Directives ERROR_HANDLER

ProvideX Language Reference V8.30 Back 121

ERROR_HANDLER Directive ERROR_HANDLER D efine Generic HandlerDefine Generic Handler
Formats 1. Define/Remove Generic Handler: ERROR_HANDLER [prog$[;entry$]]

2. Find Current Name: ERROR_HANDLER READ var$

Where:

Description Use the ERROR_HANDLER directive to assign a generic error-handling program to be
invoked internally by the system whenever an error occurs that is not already
handled (i.e., by an ERR= statement reference or a SETERR directive). If the system is
unable to properly load and execute the specified error-handling program, ProvideX
will display Error #54: Unable to Load Error Handler.

See Also START Restart ProvideX, p.328.

Format 1: Define/Remove Generic Handler
ERROR_HANDLER [prog$]

This defines an error-handling program to take corrective action and then return to
the offending statement via an EXIT directive. If you have an error handler program
in place when an error occurs without handling instructions, ProvideX calls this
program to deal with it.

If you use an EXIT ERR directive to return from the error-handling program, the normal
error processor is invoked and control can be transferred to Command mode.

To cancel the current error handler, omit the program name (i.e., use
ERROR_HANDLER). The error handler program remains in effect until a START
directive is executed. The following is a typical START_UP program:

0010 PREFIX "===/ MISC/"
0020 IF WHO<>"BOSS" THEN SETESC OFF
0030 ERROR_HANDLER "*ERROR"
0040 ! The asterisk marks "*ERROR" as a Sage Software Canada Ltd. utility

Format 2: Find Current Name
ERROR_HANDLER READ var$

Use the READ format to find out the name of the program currently in effect as the
error handler; e.g.,

-:ERROR_HANDLER READ A$
-:?a$
*error

;entry$ Optional entry label in the error-trapping program. Define once per session.

prog$ Name of the error-trapping program. String expression. Omit the name
to cancel the current error handler.

var$ String variable. Receives the name of the current error handler.

2. Directives ESCAPE

ProvideX Language Reference V8.30 Back 122

ESCAPE Directive ESCAPE Interr upt Progr am ExecutionInterrupt Program Execution
Format ESCAPE [err_val]

Where:

Description When you use the ESCAPE directive in Execution mode, ProvideX suspends
execution of the current program, lists the current statement (the line number with
the ESCAPE directive), and returns you to Command mode. Use the RUN directive to
have the program resume where it left off.

Simplify the debugging process by placing ESCAPE statements strategically in your
program. When execution is suspended, you are returned to Command mode, where
you can evaluate execution and the values of variables, etc. (up to the line where you
placed the ESCAPE in your application).

If you use ESCAPE in Command mode, ProvideX lists the next statement to be processed,
if any. If you specify an error value, the ESCAPE directive will generate an error with that
specific error value. Use this to provide an error exit in a multi-line function.

The *ESCAPE label emulates an ESCAPE directive for use as a statement reference.

See Also DEF FN Define Function, p.68
Labels/Logical Statement References , p.816

Example 0100 PRINT "BEGIN"; ESCAPE; PRINT "DONE"

When run would yield

BEGIN
0100 PRINT "BEGIN"; ESCAPE; PRINT "DONE"
1> Command mode prompt
Entry of a 'RUN' command would yield: DONE

err_val Optional numeric value to be placed in the ERR variable. (ProvideX
interprets this as an error code and the system logic kicks in.)

Note: The 'XT' system parameter is automatically reset to prevent session termination
when the ESCAPE directive is used in a program.

2. Directives EXECUTE

ProvideX Language Reference V8.30 Back 123

EXECUTE Directive EXECUTE Execute Basic Inst ructionExecute Basic Instruction
Format EXECUTE statement$[,ERR=stmtref]

Where:

Description Use EXECUTE to embed Command mode statements directly into a program. A
typical use of this directive is to modify the current program dynamically. When
used in a compound statement, EXECUTE must be the last directive in the line.

Examples 0010 LET X$=LST(PGM(TCB(4)+1));EXECUTE X$(5),ERR=*END
0100 IF WDX THEN EXECUTE "[WDX]SET_PARAM ’SD’"

statement$ Character string to be processed by the system as if entered in
Command mode. String expression.

stmtref Program line number or label to transfer control to.

Note: By default ProvideX changes the current program. If the EXECUTE directive
starts with a line number, ProvideX modifies the current program and the line becomes
part of the current program, possibly overwriting the existing code. However, if the
system parameter 'EX' is on, it modifies the program at level 1 (the main level).

Note: Under WindX, you can use EXECUTE "[WDX]..." to encapsulate a directive
that is not supported across a WindX connection. See [WDX] Direct Action to Client
Machine, p.801.

2. Directives EXIT

ProvideX Language Reference V8.30 Back 124

EXIT Directive EXIT Ter minate Subprogr am and Ret urnTerminate Subprogram and Return
Format EXIT [ERR | err_val]

Where:

Description Use the EXIT directive in a subprogram to terminate the subprogram and return
control to the initiating program.

You can have the subprogram return an error code value to the calling program by using
EXIT ERR or by specifying the error value following the EXIT directive. Use an integer
from 0 to 32767 for the error value. To have the calling program process an error value
other than zero, use the ERR= option in the CALL directive (or use SETERR numeric
expression). If the value is 0 zero, ProvideX does not retry processing.

When you use EXIT in a compound statement, it must be the final directive:

9000 PRINT "Subroutine done"; EXIT

See Also CALL Transfer to Subprogram, p.40
PERFORM Call Subprogram, Pass Variables, p.243
Called Procedures, User’s Guide.

Examples 10000 ! In subprogram "SUBPR"
10005 TEST_EXIT:
10010 SETERR UNKNOWN_ERROR
10020 ENTER TEST$
10030 LET T=NUM(TEST$(5,6))
10040 EXIT
10050 UNKNOWN_ERROR:
10060 EXIT ERR

err_val Numeric expression whose value will be returned as an error status to
the program initiating the subprogram (e.g., via a CALL directive).

Restriction: You can only use this directive in subprograms. Otherwise, ProvideX
returns Error #37: Directive can only execute in subprogram.

2. Directives EXITTO

ProvideX Language Reference V8.30 Back 125

EXITTO Directive EXITTO End Lo op, Transfer Cont rolEnd Loop, Transfer Control
Format EXITTO [stmtref]

Where:

Description The EXITTO directive terminates the currently active FOR..NEXT, GOSUB..RETURN,
REPEAT..UNTIL or WHILE..WEND loop prematurely and transfers control to the
statement number indicated.

EXITTO lets you terminate one of these processes early by removing its associated
entry from the top of the stack. If there is no active entry on the stack, ProvideX
returns Error #27: Unexpected or incorrect WEND, RETURN, or NEXT.

When used in a compound statement, EXITTO must be the final directive.

See Also FOR..NEXT Loop While Incrementing, p.134
GOSUB.. Execute Subroutine, p.141
REPEAT..UNTIL Repetitive Execution, p.287
WHILE..WEND Repeat Statements, p.375
Flow Overrides, User’s Guide.

Example 00010 BEGIN
00020 FOR i=1 TO 10
00030 INPUT x
00040 IF CTL=4 \
 THEN EXITTO 0060
00050 acc+=x
00060 NEXT i
00070 IF i>1 \
 THEN avg=acc/(i-1)
00080 PRINT avg

stmtref Program line number or label to transfer control to.

2. Directives EXTRACT

ProvideX Language Reference V8.30 Back 126

EXTRACT Directive EXTRACT Read and Lock DataRead and Lock Data
Format EXTRACT (chan[,fileopt])varlist

Where:

Description Use EXTRACT to read data from the file you specify as the channel. When ProvideX
reads the data, it is split into one or more fields (either separated by the current
delimiter or in an embedded IOList format) with the contents of the first field placed
into variable 1, the second field into variable 2, and so on.

ProvideX automatically converts numeric data when moving it into numeric
variables while processing the EXTRACT directive. Numeric data converted during
an EXTRACT directive does not use the 'DP' Decimal Point Symbol or 'TH'
Thousands Separator system parameters for European decimal settings.

If you want a field to be skipped, use an asterisk * as a place holder for a variable name.

If you specify more variables than there are fields in the record, ProvideX will
initialize the additional variables to either zero (if a numeric variable) or a null string
(if a string variable). The EXTRACT directive will access the record where the file
pointer is pointing, or it will take the record specified using the KEY= or IND=
options. The file pointer remains on the extracted record after it is read.

Use the KNO= option to change the current file access key.

chan Channel or logical file number of the file from which to read the data.

fileopt Supported file options (see also, File Options, p.810):
BSY=stmtref Traps Error #0: Record/file busy
DOM=stmtref Missing record transfer
END=stmtref End-Of-File transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key
KNO=num | name$ File access key number (num) or name (name$)
REC=name$ Record prefix (REC=VIS(string$) can also be used)
RNO=num Record number
RTY=num Number of retries (one second intervals)
SIZ=num Number characters to read
TBL=stmtref Data translation table
TIM=num Maximum time-out value in integer seconds.

varlist Comma-separated list of variables, literals, and IOL= options.

2. Directives EXTRACT

ProvideX Language Reference V8.30 Back 127

See Also FIND Locate and Read Data, p.131,
READ Read Data from File, p.271,
EXTRACT RECORD Read-Lock Data Record, p.128,
READ RECORD Read Record from File, p.275
KEY() Function, p.470.

Note: EXTRACT locks the record being read to prevent other users from using a FIND,
FIND RECORD, READ, READ RECORD, EXTRACT RECORD or another EXTRACT to access
it. This lock stays active until the next I/O request for the same file or until the file is closed.
Using a KEY= option or READ, FIND or EXTRACT statement to retrieve the next record
while a record is locked will result in the locked record being returned instead. You can
enable read access for records that have been extracted by setting the 'XI' parameter.

2. Directives EXTRACT RECORD

ProvideX Language Reference V8.30 Back 128

EXTRACT RECORD Directive EXTRACT RECORD Read- Lock Data RecordRead-Lock Data Record
Format EXTRACT RECORD (chan[,fileopt])var$

Where:

Description Use the EXTRACT RECORD directive to read a record from the file you specify
(channel). ProvideX will return the record's complete data portion in the string
variable you specify.

Apply the EXTRACT RECORD statement when dealing with native-mode operating
system files, when exchanging data with non-ProvideX applications, or when you
want to read a complete record (including data field separators). This directive will
access the record where the file pointer is pointing, or it will take the record specified
using the KEY= or IND= options. The file pointer remains on the extracted record
after it is read.

Use the KNO= option to change the current file access key.

See Also FIND Locate and Read Data, p.131,
READ Read Data from File, p.271,
EXTRACT Read and Lock Data, p.126
KEY() Function, p.470.

chan Channel or logical file number of the file from which to read the data.

fileopt Supported file options (see also, File Options, p.810):
DOM=stmtref Missing record transfer
END=stmtref End-Of-File transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key
KNO=num | name$ File access key number (num) or name (name$)
REC=name$ Record prefix (REC=VIS(string$) can also be used)
RNO=num Record number
RTY=num Number of retries (one second intervals)
SIZ=num Number characters to read
TBL=stmtref Data translation table
TIM=num Maximum time-out value in integer seconds.

var$ String variable. Receives the contents of the record being read.

Note: This directive locks the record being read to prevent other users from using a
FIND, FIND RECORD, READ, READ RECORD, EXTRACT RECORD or another EXTRACT
RECORD to access it. This lock remains active until the next I/O request for the same
file or until the file is closed. Using a KEY= option or READ, FIND or EXTRACT statement
to retrieve the next record while a record is locked will result in the locked record being
returned instead. You can enable read access for records that have been extracted by setting
the 'XI' parameter.

2. Directives EXTRACT RECORD

ProvideX Language Reference V8.30 Back 129

Examples 0010 OPEN (1) "OLDFIL"
0020 OPEN (2) "NEWFIL"
0030 LOCK (2)
0040 EXTRACT RECORD (1,END=1000) R$
0050 WRITE RECORD (2) R$
0060 GOTO 0040
1000 CLOSE
1010 END

2. Directives FILE

ProvideX Language Reference V8.30 Back 130

FILE Directive FILE Create New File from File Descript orCreate New File from File Descriptor
Format FILE file_info[,ERR=stmtref]

Where:

Description Use the FILE directive to define a file based on the contents returned by the FID() or
FIB() functions. These functions return character strings with the file type, size, and
format.

See Also FIB() Function, p.434,
FID() Function, p.438,
PURGE Clear Data from a File, p.263,
REFILE Clear Data from File, p.278
[WDX] Tag, p.801
Creating, Deleting, and Renaming Data Files, User’s Guide

Examples 0010 OPEN (2)"PRNTFL"
0020 F$=FID(2)
0030 CLOSE (2)
0040 ERASE "PRNTFL"
0050 FILE F$
0060 OPEN (2)F$(25,60)

file_info Contents provide the internal file description for the file to create.
String expression.

stmtref Program line number or label to transfer control to.

Warning: The FILE directive will not recreate an embedded data dictionary. When you
have an embedded data dictionary, use a PURGE or REFILE directive instead, to clear
the data from an existing file and preserve the dictionary.

Note: The format of the FID() value will depend on the current emulation mode you
are using for ProvideX. To avoid potential problems when running in emulation
modes, use the value returned from the FIB() function instead of the FID() function.

Note: This directive is not supported by WindX. When you need to create files on a
WindX PC, encapsulate the command in an EXECUTE "[WDX]..." directive.

2. Directives FIND

ProvideX Language Reference V8.30 Back 131

FIND Directive FIND Locate and Read DataLocate and Read Data
Format FIND (chan[,fileopt])varlist

Where:

Description Use FIND to read data from the file (channel) you specify. When ProvideX reads the
data, it's split into one or more fields (either separated by the current delimiter or
defined by an embedded format with headers, etc.). The contents of the first field are
placed in variable 1, the second field in variable 2, and so on.

ProvideX automatically converts numeric data when executing a FIND statement and
moving numerics into variables. Numeric data converted during a FIND directive does
not use the 'DP' Decimal Point Symbol or 'TH' Thousands Separator system
parameters for European decimal settings.

If you want to skip a field, use an asterisk * as a place holder for the variable name. If
you include more variables in a FIND directive than there are fields in the record,
ProvideX initializes the additional variables to either zero (for a numeric variable) or
a null string (for a string variable). If successful, FIND advances the file position to
the next record (or the record you specify if you use a KEY= or IND= option). Use
the KNO= option to change the current file access key.

See Also EXTRACT Read and Lock Data, p.126
READ Read Data from File, p.271.

Examples 0410 FIND (1,ERR=1000,DOM=1200)A,B,*,*,E$

chan Channel or logical file number of the file from which to read the data.
fileopt Supported file options (see also, File Options, p.810):

BSY=stmtref Traps Error #0: Record/file busy
DOM=stmtref Missing record transfer
END=stmtref END-OF-FILE transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key
KNO=num | name$ File access key number (num) or name (name$)
REC=name$ Record prefix (REC=VIS(string$) can also be used)
RNO=num Record number
RTY=num Number of retries (one second intervals)
SIZ=num Number of characters to read
TBL=stmtref Data translation table
TIM=num Maximum time-out value in integer seconds.

varlist Comma-separated list of variables, literals, and IOL= options.
stmtref Program line number or label to transfer control to.

Note: If the record is not found when reading using a KEY= or IND= option, the
current file position is not changed (unlike READ).

2. Directives FIND RECORD

ProvideX Language Reference V8.30 Back 132

FIND RECORD Directive FIND RECORD Locat e & Read Data RecordLocate & Read Data Record
Format FIND RECORD (chan[,fileopt])var$

Where:

Description Use the FIND RECORD directive to read a record from the file (channel) you specify.
The record's complete data portion will be returned in the string variable you name.

Apply the FIND RECORD statement when dealing with native-mode operating
system files, when exchanging data with applications other than ProvideX, or when
you want to read a complete record including data-field separators.

If successful, FIND RECORD advances the file position to the next record (or the
record you specify in a KEY= or IND= option). Use the KNO= option to change the
current file access key.

See Also EXTRACT Read and Lock Data, p.126
READ Read Data from File, p.271.

Examples 0020 OPEN LOCK (2)"NEWFIL"
0030 FIND RECORD (1,END=1000)R$
0040 WRITE RECORD (2)R$
0050 GOTO 0030
1000 CLOSE (1),(2)
1010 END

chan Channel or logical file number of the file from which to read the data.

fileopt Supported file options (see also, File Options, p.810):
DOM=stmtref Missing record transfer
END=stmtref End-of-File transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key
KNO=num | name$ File access key number (num) or name (name$)
RNO=num Record number
RTY=num Number of retries (one second intervals)
SIZ=num Number of characters to read
TBL=stmtref Data translation table
TIM=num Maximum time-out value in integer seconds.

var String variable. Receives the contents of the record being read.

Note: If the record is not found when reading using a KEY= or IND= option, the
current file position is not changed (unlike READ).

2. Directives FLOATING POINT

ProvideX Language Reference V8.30 Back 133

FLOATING POINT Directive FLOATING POINT Swit ch t o Scientific Not ationSwitch to Scientific Notation
Format FLOATING POINT

Description Use the FLOATING POINT directive to have ProvideX start using scientific notation
with all numeric data. In scientific notation, a number is represented as a fraction
times ten to some power (e.g., .nnnnn*10^xx is displayed as .nnnnnExx).

In FLOATING POINT mode, no rounding is done on numeric calculations. If the
numeric output is unformatted, ProvideX uses scientific notation (e.g., .314159E+01).

Use the PRECISION directive to end FLOATING POINT mode.

See Also BEGIN Reset Files and Variables, p.32,
CLEAR Reset Variables, p.54,
PRC System Variable, p.569
PRC() Function, p.503
PRECISION Change Current Precision, p.248,
RESET Reset Program State, p.288.

Examples 0030 FLOATING POINT
0040 A=5/3
0050 PRINT A
RUN
 .16666666666667E+01
0010 PRECISION 2 ! Sets precision to two
0020 ROUND ON ! Sets rounding default mode
0030 A=5/3
0040 FLOATING POINT
0050 PRINT A
-:RUN
 .167E+01

Note: FLOATING POINT notation will change to standard decimal notation during a
RESET operation.

2. Directives FOR..NEXT

ProvideX Language Reference V8.30 Back 134

FOR..NEXT Directive FOR..NEXT Loop While IncrementingLoop While Incrementing
Format 1. Conventional Syntax: FOR var=first TO last [STEP val] ..NEXT [var]

2. Simplified Syntax: FOR var ..NEXT [var]

Where:

Description Use the FOR directive (either conventional or simplified iteration format) to define
the start of a repetitive loop of instructions in a program. If you specify a variable
with a NEXT directive, it must match the variable in the FOR directive. The NEXT
directive can appear anywhere in the program except where it would be executed
inside another FOR/NEXT loop, a GOSUB/RETURN routine, a WHILE/WEND loop,
or a REPEAT/UNTIL loop. The control variable can be omitted from the NEXT
directive because the increment/decrement of the FOR var is assumed automatically.
However, the NEXT var is useful for readability purposes, especially if it appears
within a nested loop structure.

Use the EXITTO directive to halt a FOR/NEXT loop without performing all iterations.
When ProvideX executes an EXITTO directive, it removes the top entry from the
FOR/NEXT stack and ends the current FOR/NEXT loop.

Format 1: For Loop, Conventional Syntax
FOR var=first TO last [STEP val] ..NEXT [var]

When using conventional syntax, the keyword TO is required in order to define first
and last values in the loop.

first Initial value of the variable var. Numeric expression.

last Ending value of the variable var (value that ends the loop when achieved).
Numeric expression.

NEXT Directive to end the loop. Optional var must match current FOR var.

TO Keyword required for Format 1, not case-sensitive.

STEP Optional keyword, not case-sensitive. Sets specific increment/decrement
value (default is 1).

val Optional value by which the variable will be incremented/decremented
with each pass through the loop. The default is 1.

var Numeric control variable to be incremented/decremented with each pass
through the loop.

2. Directives FOR..NEXT

ProvideX Language Reference V8.30 Back 135

The STEP value, if specified, is evaluated and saved as the increment (or decrement if
negative). A default STEP value of 1 one is used when the increment/decrement is not
declared. An increment of 0 zero is invalid and results in an Error #44: Invalid
step value.

After the FOR directive is executed, the current program statement position is saved
and execution continues. When ProvideX encounters NEXT with the same variable as
in the FOR directive (or no variable name) it increments/decrements the value. If the
new value does not exceed the end value (or fall below it, if decremented), control
transfers back to the FOR directive to continue the loop. Otherwise the FOR/NEXT
loop ends.

Examples:

0010 FOR I = 1 TO 10
0020 PRINT I,
0030 NEXT I
yields: 1 2 3 4 5 6 7 8 9 10

The following example strips trailing spaces from the A$:

0030 A$=......
0040 GOSUB 1000
......
1000 IF A$="" THEN I=0; RETURN
1010 FOR I=LEN(A$) TO 1 STEP -1
1020 IF A$(I,1)<>" " THEN EXITTO 1040
1030 NEXT
1040 RETURN

This uses nested FOR/NEXT loops to generate the string B$ from A$ reversed:

0010 INPUT "Enter character string:",A$
0020 IF A$="" THEN STOP
0030 B$=A$
0040 FOR I=1 TO LEN(A$)
0050 FOR J=LEN(A$) TO 1 STEP -1
0060 B$(I,1)=A$(J,1)
0070 NEXT J; NEXT I
0080 PRINT "The answer is: ", B$
0090 GOTO 0010

Note: The test to determine if the loop will be terminated occurs when the NEXT
directive is encountered; therefore, if the initial value of the loop control variable
exceeds the ending value, the loop will execute once.

2. Directives FOR..NEXT

ProvideX Language Reference V8.30 Back 136

Format 2: For Loop, Simplified Syntax
FOR var ..NEXT [var]

This format executes the logic immediately following the FOR by the number of times
specified in the numeric value var; therefore, FOR 1 will execute the loop once, and
FOR 5 will execute the loop 5 times. A value of zero causes the loop to be skipped. An
error is generated if the numeric value is not an integer or it is less than zero.

If var is a simple numeric variable, the system will first set var to 1, then increment
up to its initial value. When var = 5, the loop will execute 5 times, with var starting at
1 and incrementing by 1 through each iteration to 5. At the completion of the loop,
var will equal its initial value. Regardless of whether a simple numeric variable is
used, TCB(19) will contain the current iteration count during the loop.

Example 1:

N = LEN(X$)
FOR N
 IF X$(N,1) = "X" THEN X$(N,1) = "Y"
NEXT

Example 2:

TOT = 0
FOR DIM(READ MAX(Balance))
 TOT += Balance[TCB(19)]
NEXT

Should a loop using a defined variable be prematurely exited (via BREAK, POP, or
EXITTO), the variable will remain at its last value; e.g.,

N = 10
FOR N
 IF X$[N] = "" BREAK
 ...
NEXT

When the IF condition is satisfied and the FOR loop is exited via the BREAK, the
value in N will be the index into the array.

See Also BREAK Immediate Exit of Loop, p.33,
CONTINUE Initiates Next Iteration of Loop, p.57
EXITTO End Loop, Transfer Control, p.125
Loop Structures, User’s Guide.

2. Directives FUNCTION

ProvideX Language Reference V8.30 Back 137

FUNCTION Directive FUNCTION Declare Object Met hodDeclare Object Method
Formats 1. Declare Method: FUNCTION method(args) logic

2. Method with PERFORM Behaviour: FUNCTION PERFORM method(args) logic
3. Local Method: FUNCTION LOCAL method(args) logic
4. COM Event Method: FUNCTION method(args) logic FOR EVENT {event$|SAME}
5. End Method Declaration: FUNCTION END
Where:

Description The FUNCTION directive is used to declare a method for an object in Object Oriented
Programming (OOP). Associated logic is to be called when the method is invoked; e.g.,

FUNCTION Find(X$) LookupCust
...
LookupCust:
ENTER Cst_id$
... ! Logic to find the client
RETURN sts ! Return value indicates success

Alternatively, the function logic can directly follow the FUNCTION declaration; e.g.,

FUNCTION Find(X$)
ENTER Cst_id$
... ! Logic to find the client
RETURN sts ! Return value indicates success.

The declaration ends with a FUNCTION END directive for the method itself, by the
start of the next method declaration, or when END DEF is reached at the end of the
object definition; e.g.,

DEF CLASS "MyObj"
FUNCTION MyFirstMethod()
a=b, d=f

(args) Optional list of arguments to be used in the logic when the method is
actually invoked. Parentheses are required with/without arguments.

END Keyword indicating the end of a method declaration.

event$ Name of the corresponding COM event.

FOR EVENT Keywords indicating that method is associated with given COM event.

LOCAL Keyword indicating that method is only to be called within the object.

logic Procedure associated with method. Method should return a value; if
not, the system forces 0 or " ".

method Name of method that the object can perform. (In Object Oriented
Programming, functions are referred to as methods.)

PERFORM Keyword indicating that logic is to be loaded/executed as in a PERFORM.

SAME Keyword to use if the method name matches event$ name.

2. Directives FUNCTION

ProvideX Language Reference V8.30 Back 138

if etc
FUNCTION MySecondMethod()
a=b, d=f
if etc
FUNCTION END
END DEF

Every method should return a value. The value can take the form of a string or
numeric value depending on the name associated with the function (string functions
must end with $). If no RETURN value is specified, then the system will return a
value of zero for numeric functions and "" (null) for string functions.

When arguments are used in the definition, then the type/number should normally
match variables in the application code. Multiple definitions of the same method
name can be specified, as long as each method has a different parameter list. In order
to determine which method to actually use, ProvideX attempts to match up the
parameter lists specified with the variables provided in the application.

If an asterisk * is used in the definition in place of the argument list (e.g., FUNCTION
readbykey(*)), the method will be invoked regardless of the type/number of
variables to be matched in the corresponding logic.

FUNCTION PERFORM indicates that the function logic is to be loaded and executed
(as in a PERFORM directive). All variables will be shared with the calling program.

FUNCTION LOCAL indicates that the function is only to be called internally from
within the object. It cannot be called externally.

Examples FUNCTION Find(X$) LookupByName
FUNCTION Find(X) LookupByNumber
...
LookupByName:
ENTER Cst_id$
... ! Logic to find the client by name
RETURN ...
LookupByNumber:
ENTER Cst_id
... ! Logic to find the client by number
RETURN ...

See Also DEF CLASS Define Object Class, p.65
ON EVENT Event Processing, p.228
Data Integration, User’s Guide.

Note: As a general rule of thumb, methods should return a non-zero value when
successfully executed. This allows for logic such as:
IF NOT(Cst'Find("ABCD")) THEN GOTO Bad_cust.

Note: The PERFORM format violates the general rules of OOP encapsulation.

2. Directives GET_FILE_BOX

ProvideX Language Reference V8.30 Back 139

GET_FILE_BOX Directive GET_FILE_BOX Ask f or FilenameAsk for Filename
Formats 1. Create File Box: GET_FILE_BOX path$,dir$,window$[ex_list$[,def_ex$]][,ERR=stmtref]

2. Check File Box: GET_FILE_BOX READ path$,dir$,window$[ex_list$[,def_ex$]][,ERR=stmtref]

3.Write to File Box: GET_FILE_BOX WRITE path$,dir$,window$[ex_list$[,def_ex$]][,ERR=stmtref]

4. Multiple Selection: GET_FILE_BOX READ LIST path$,dir$,window$[ex_list$[,def_ex$]][,ERR=stmtref]

5.Directories/Folders Only: GET_FILE_BOX DIRECTORY path$,dir$,prompt$[,root$][,ERR=stmtref]

Where:

Description Use the GET_FILE_BOX directive to display a standardized window for the user,
allowing the entry or selection of a file or directory in the system.

Format 1: Create
GET_FILE_BOX path$,dir$,window$[ex_list$[,def_ex$,]][,ERR=stmtref]

Use this format to select a file. If the initial directory string is null, ProvideX uses the
current directory. Use the form Description|*.XXX, to list standard file extensions.
You can include multiple extensions, comma-delimited (with the last extension
terminated by a comma). If desired, choose a character other than a comma to
delimit each entry. ProvideX uses the last character in ex_list$ (the comma or your
choice) as the delimiter.

dir$ Initial directory to display. String expression.
def_ext$ Default file extension to apply when creating a file. Optional. String

expression.
ex_list$ List of file extensions. Optional. String expression. Comma (or any

character) as delimiter.
path$ String variable that contains the file path. Initialize this prior to

executing this directive. See the note, below.
prompt$ Text appearing above the directory display.
root$ For Windows XP or later. Optional highest level directory in which

browsing can occur. (This parameter overrides dir$.)
stmtref Program line number or label to transfer control to.
window$ Window title. String expression.

Note: GET_FILE_BOX is supported when you use WindX with UNIX file systems and
supported calls to [WDX]. See [WDX] Direct Action to Client Machine, p.801.

Note: The path$ variable will receive the full pathname of the file selected. Because
its initial contents will be used as the default pathname, initialize it prior to executing
this directive.

2. Directives GET_FILE_BOX

ProvideX Language Reference V8.30 Back 140

Format 2: Check
GET_FILE_BOX READ path$,dir$,window$[ex_list$[,def_ex$,]][,ERR=stmtref]

Use the READ format to make sure that the file you want returned exists; e.g.,

0010 GET_FILE_BOX READ X$,"C:\Program Files\Sage
Software\ProvideX\","File to View"

Format 3: Write
GET_FILE_BOX WRITE path$,dir$,window$[ex_list$[,df_ex$,]][,ERR=stmtref]

Use the WRITE format to save or rewrite the file. If you do this and a user selects a
file that already exists, ProvideX will confirm that the file is to be overwritten prior
returning to the program; e.g.,

0010 GET_FILE_BOX WRITE X$,LWD,"Report file",
"Report files|*.RPT,All files|*.*,","RPT"

This allows the user to have a filename with the default extension .RPT and gives
the user a list of files of two types—Report files (*.RPT) and All files (*.*).

Format 4: Multiple Selection
GET_FILE_BOX READ LIST path$,dir$,window$[ex_list$[,df_ex$,]][,ERR=stmtref]

Use LIST to specify multiple selections for GET_FILE_BOX READ. If a single entry is
selected, then path$ will contain the full path of the file (as with a GET_FILE_BOX
READ). If more than one entry is selected, then path$ will consist of the full path of
the first item terminated by SEP, followed by a comma-delimited list of the other
selected files.

Format 5: Directories/Folders Only
GET_FILE_BOX DIRECTORY path$,dir$,prompt$[,root$][,ERR=stmtref]

Use this format to select a directory/folder from a list. The contents of prompt$ is
displayed inside the dialog box above the directory display. The dialog box caption
reads: "Browse for folder".

For Windows XP or later. The optional root$ parameter sets the highest level
directory in which browsing can occur (overriding what is set in dir$). The terms
"My Computer" and "My Documents" can be used as well as the full path to an
existing folder.

Note: Windows ignores selected directories. This format is not supported in the text
version of GET_FILE_BOX.

2. Directives GOSUB

ProvideX Language Reference V8.30 Back 141

GOSUB Directive GOSUB.. Execut e Subr outineExecute Subroutine
Format GOSUB stmtref

Where:

Description Use GOSUB to access a subroutine embedded in your current program. The current
location in the program is saved on a stack and control is passed to the statement
number or label you specify (or if no statement exists with the number specified, to the
next higher statement). ProvideX continues execution from there until a RETURN is
executed. Then it returns control to the position saved on the stack.

If you want to exit from a GOSUB subroutine without returning to the calling point,
you can use the EXITTO directive to remove the return point from the stack. You must
use either a RETURN or an EXITTO directive to terminate each GOSUB subroutine.

Do not place a RETURN directive inside a FOR..NEXT loop or a WHILE..WEND loop.
There is no limit (apart from memory space) to the number of GOSUB..RETURN
entries that you can have on the stack.

See Also RETURN Subroutine/Function Return, p.291
Called Procedures, User’s Guide

Examples D$="",D1$="",D2$=""
-:/
0100 INPUT "Enter starting date DD/MM/YY: ",D$
0110 GOSUB 1000
0120 LET D1$=D$
0130 INPUT "Enter ending date DD/MM/YY: ",D$
0140 GOSUB 1000
0150 LET D2$=D$
0160 PRINT "DONE"; STOP
1000 REM Subroutine
1010 IF LEN(D$)<>8 THEN GOTO 1090
1020 IF D$(3,1)<>"/" OR D$(6,1)<>"/" THEN GOTO 1090
1030 LET D=NUM(D$(1,2),ERR=1090),M=NUM(D$(4,2),ERR=1090),Y=NUM(D$(7,2),ERR=
1030:1090)
1040 IF D<1 OR D>31 THEN GOTO 1090
1050 IF M<1 OR M>12 THEN GOTO 1090
1060 RETURN
1090 PRINT "Invalid. Restart.."
1100 EXITTO 0100
-:RUN
Enter starting date DD/MM/YY: 05/03/99
Enter ending date DD/MM/YY: 31/03/99
-:DONE

stmtref Program line number or label to transfer control to.

Note: The BEGIN, CLEAR, RESET, STOP, and END directives reset all entries in the
GOSUB..RETURN stack.

2. Directives GOTO

ProvideX Language Reference V8.30 Back 142

GOTO Directive GOTO Tr ansfer within Pr ogramTransfer within Program
Format GOTO stmtref

Where:

Description Use the GOTO directive to have ProvideX transfer execution to the given statement
number or label. If the line doesn't exist, then the statement with the next higher
number will be used.

The GOTO directive can be used in either Execution or Command mode. In
Command mode, the GOTO directive causes execution to begin at the statement
number specified upon execution of the next RUN directive.

If you use GOTO in a compound statement, it must be the final directive.

Examples In Execution mode:

0010 INPUT "Enter a number: ",A
0020 IF A=0 THEN PRINT "DONE"; STOP
0030 PRINT A," multiplied by 2 is ",A*2
0040 GOTO 0010

In Command mode:

-:GOTO 10
-:RUN
Enter a number: 1
1 multiplied by 2 is 2
Enter a number: 3
3 multiplied by 2 is 6
Enter a number: 0
DONE

-:

stmtref Program line number or label to transfer control to.

2. Directives GRID

ProvideX Language Reference V8.30 Back 143

GRID Directive GRID C ontrol GridControl Grid
Formats 1. Define/Create: GRID ctl_id,@(col,ln,wth,ht)[,ctrlopt]

2. Remove: GRID REMOVE ctl_id[,ERR=stmtref]
3. Disable/Enable: GRID {DISABLE | ENABLE} ctl_id[,ERR=stmtref]
4. Lock/Unlock: GRID {LOCK | UNLOCK} ctl_id,col,row[,width,height][,ERR=stmtref]
5. Hide/Show: GRID {HIDE | SHOW} ctl_id[,ERR=stmtref]
6. Force Focus: GRID GOTO ctl_id[,col,row][,ERR=stmtref]
7. Signal on Focus: GRID SET_FOCUS ctl_id, ctl_val[,ERR=stmtref]
8. Add Row/Column: GRID ADD ctl_id,col,row[,ERR=stmtref]
9. Load: GRID LOAD ctl_id,col,row,contents$[,ERR=stmtref]

10. Delete Row/Column: GRID DELETE ctl_id,col,row[,ERR=stmtref]
11. Clear: GRID CLEAR ctl_id,col,row[,width,height][,ERR=stmtref]
12. Read First Cell: GRID READ ctl_id,col,row,var$,eom$[,ERR=stmtref]
13. Read Next: GRID READ NEXT ctl_id,col,row,var$,eom$[,ERR=stmtref]
14. Select Range: GRID SELECT ctl_id,col,row[,width,height][,ERR=stmtref]
15. Select Read: GRID SELECT READ ctl_id,col,row[,ERR=stmtref]
16. Select Read Next: GRID SELECT READ NEXT ctl_id,col,row[,ERR=stmtref]
17. Select Reset: GRID SELECT RESET ctl_id[,ERR=stmtref]
18. Find or Retrieve: GRID FIND ctl_id,col,row,var$[,ERR=stmtref]
19. Write Setting: GRID WRITE ctl_id,col,row,contents$[,ERR=stmtref]
20. Report all Changes: GRID AUTO ctl_id[,ERR=stmtref]

Where:

@(col,ln,
wth,ht)

Position and size of the grid region on the screen. Numeric
expressions. Column and line coordinates for top left corner, width in
number of columns and height in number of lines.

col,row Column and row refer to cell location / coordinates. Numeric
expressions.

contents$ Value(s) to be written to the cell(s) or settings. String expression(s).

ctl_id Unique logical identifier for the grid (any integer -32000 to +32000). Avoid
integers that conflict with keyboard definitions (e.g., 4 cancels CTL=4 for
the key) or Negative CTL Definitions, p.817. Use this value with the
apostrophe operator to access various Grid Properties.

ctl_val Alternate CTL value.

ctrlopt Control options. Supported options for GRID include:
ERR=stmtref Error transfer
FMT=def$ (See Format Definition, p.145)

F4

2. Directives GRID

ProvideX Language Reference V8.30 Back 144

GRID OPT= Settings
Available attribute/behaviour settings are listed below. Some characters may be
combined. Invalid settings are ignored.

Description Use the GRID directive to create a table of cells in columns and rows; i.e., a
spreadsheet input format. (For simpler tables use a LIST_BOX Report View, p.189.)
The GRID control object is a two-dimensional array of multi_line input fields
(default), check_boxes, buttons, drop_boxes or any combination of these control objects.
Each cell can be of a different type. The GRID treats as a null any value that has a
length of 0 or consists of zero "0", comma "," or dot "." characters. For some GRID
syntax (e.g., GOTO and FIND), both column and row coordinates are required (to act
as pointers to a particular cell). For other syntax, one or both of the values can be zero
"0". The following chart shows how ProvideX interprets the column and row values.

FNT="font,size[,attr]" Font name, size, optional properties. Refer to
the 'FONT' Mnemonic, p.609 for details.
MNU=ctl CTL value associated with right-click menu event.
OPT=char$ (See GRID OPT= Settings)
SEP=char$ Delimiter character. Hex or ASCII string value; e.g.,
GRID 7050,@(5,5,35,15),SEP=":" ...
GRID 7050,@(5,5,35,15),SEP=$3A$...
GRID 7050,@(5,5,35,15),SEP=MY_SEP$...

The default delimiter is the SEP character (e.g., $8A$).

eom$ EOM (End-of-Message) character sequence. Hex string expression
(e.g., $0D$ for the key).

stmtref Program line number or label to transfer control to.

var$ String variable. Receives cell values returned for FIND and READ.

"A" Auto signal is on. ProvideX returns a signal on changes.
"B" Grid has no border or frame.
"D" Disabled. Grid is not accessible to the user.
"G" Global. Keep active when focus changes to a new/non-concurrent window.
"H" Hide. Grid is not displayed but is accessible programmatically.
"s" Scroll. Grid can scroll within a resizable/scrollable dialogue box.
"T" Strip trailing spaces. (Supported only by GRID WRITE).
"X" Signal on exit. Signal when focus exits from the grid.
"Z" Cursor changes to "resize" pointer if within 4 pixels from the edge of the control.

Enter

Column, Row Values How ProvideX interprets these ...

col=0, row=0 All columns and rows respectively; i.e., GRID DELETE
100,0,0 deletes the entire grid whose control ID is 100.

col=1, row=1 The topmost cell is 1,1

2. Directives GRID

ProvideX Language Reference V8.30 Back 145

When setting a grid property, setting both the row and column to zero allows you to
set that property as a default for the entire grid (or for a specified column if the row
is set to zero and column is set to a non-zero number). If a specific row (row=n,
column=0) or an individual cell (row=n, column=n) is specifed, then defaults no
longer apply to these cells (rows cannot have default settings, but you can set values
for all cells in the row), so if a new property default is set for a column or the entire
grid, then the row or individual cells will be excluded.

Format Definition
The FMT=def$ option allows you to define the format for cells in the grid. In the
following syntax, the round and square brackets are part of the format:

FMT=[col_title](cell_type:col_name$) Alignment Width

Where:

Example:

"[Client ID](Multi_line:CST_ID$)L10 [Name](Normal:CST_NAME$)L10"

col and/or row = -1 By default, there are also column and row headers you
can gain access to using column and/or row = -1. You
cannot include these headers in any range specifications.

col=n, row=0

(col <> 0, row = 0
or omitted)

Entire column; i.e., GRID DELETE 100,3,0 deletes
column 3 of the grid whose control ID is 100. GOTO and
FIND formats of the grid directive require both column and
line coordinates. You cannot omit the row in those formats.

col=0, row=n

(col = 0 or omitted,
 row <> 0)

Entire row; i.e., GRID DELETE 100,0,2 deletes row 2 of
the grid whose control ID is 100. GOTO and FIND formats
of the grid directive require both column and line
coordinates. You cannot omit the column in those formats.

col=n, row=n

(col and row are <> 0)

Column and row; i.e., GRID DELETE 100,3,2 deletes
both an entire column (column 3) and an entire row (row 2) of
the grid whose control ID is 100. GRID GOTO 100,3,2
sets focus on the cell located in column 3, row 2.

Column, Row Values How ProvideX interprets these ...

Note: Each cell in a grid represents a minimum of 140 bytes of information. In a
client-server, this volume can be very costly in a low-bandwidth situation.

Alignment Alignment character: L (left), C (centred), R (right). Default: L.

cell_type Cell type for the column. The default cell type is "Normal". See
Cell Types for a list of available cell types.

col_title Text string appearing as the title in the top row of the grid.

col_name$ Column name. This can be a string or numeric variable.

width Width of the column in .

2. Directives GRID

ProvideX Language Reference V8.30 Back 146

Grid Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. Most cell attributes are only accessible through the
implementation of properties. For example, drag and drop functionality requires the
'DraggedColumn, 'DraggedRow, 'DroppedOnColumn, and 'DroppedOnRow.

The complete list of properties available for manipulating a grid are described in
Chapter 7. Control Object Properties, p.705.

Cell Types
The following cell types can be assigned using the FMT= option in the GRID directive or
via the 'Celltype$ grid object property:

Note: In order to access many grid properties, cell(s) must be identified first using the
'Column and 'Row properties. See Grid Property Access, p.734.

"Button" Cell works like a button if clicked. Cell can be changed if not
locked (on double click). Set 'Lock property to 1 to achieve
standard button behaviour for cell.

"CheckBox" Check box with no 3D effect ('Value=0 or 1,'Text=label).
"CheckBoxRaised" 3D check box that looks raised.
"CheckBoxRecessed" 3D check box that looks recessed.
"CheckMark" Check box that uses a check mark.
"CheckMarkRaised" Raised check box that uses a check mark.
"CheckMarkRecessed"Recessed check box that uses a check mark.
"DropBox" Text cell that, when editing, allows user to make selection

from a drop down list. The drop list is loaded from the
'Text$ property.

"DropBoxHideBtn" Same as "DropBox", but the drop down button is shown
only when focus is on the cell.

"Ellipsis" Normal text cell that will show "…" if text exceeds
displayable area. - can be used to force a new line
in the cell (inserts $0D0A$ into cell value).

"EllipsisDrop" Same as "Ellipsis", but forces the cell to drop vertically
only during an edit. - can be used to force a new
line in the cell (inserts $0D0A$ into cell value).

"Lookup" Small button at the right side of cell used to invoke lookup -
button image is defined via the cell’s 'Bitmap property. If no
image is given, button shows three dots.

"LookupHideBtn" Same as "Lookup", but indicates that the button is hidden
when the cell is not selected.

"Multi_line" Normal text cell that can contain multiple lines of text.
- can be used to force new line (value $0D0A$).

"Normal" Normal text cell containing one line of data.
"Query" Same as "Lookup", but user is unable to edit the cell.

Ctrl Enter

Ctrl Enter

Ctrl Enter

2. Directives GRID

ProvideX Language Reference V8.30 Back 147

Scroll Modes
The 'AutoTrack property allows you to control the behaviour of vertical and
horizontal scrolling on a grid. The following modes are available:

The following table lists the available 'AutoTrack property codes and their associated
horizontal-vertical scroll modes (Normal=N, Scrolltracking=S, and Joystick= J):

"QueryHideBtn" Same as "LookupHideBtn", but user is unable to edit the cell.
"SingleLine" Normal text cell that allows for a single line of entry, expanding

the cell horizontally according to the overlap rules. It does not
allow vertical expansion, like a multiline.

"UseTextNormal"
"UseTextSingleLine"
"UseTextEllipsis"

Similar to "Normal","SingleLine" and"Ellipsis"
respectively, except value of 'Text$ property is displayed. Edit
the'Value$ property to edit the cell.

"VarDropBox" Text cell that, when editing, allows user to make a selection
from a drop-down list or enter any other value. Drop list
selections are loaded using 'Text$ property.

"VarDropBoxHideBtn" Same as "VarDropBox", but the drop down button is
shown only when focus is on the cell.

Normal Dragging the scrollbar thumb (knob) does not update the grid display
until it is released. This is the default mode for scrollbars in ProvideX. It
offers the quickest way to scroll through large amounts of data, but
lacks the visual reference provided by Scrolltracking (below).

Scrolltracking Dragging the scrollbar thumb (knob) continuously updates the grid
display as it is being moved. This mode makes it is easier to see the data
relative to the thumb location, but scroll movement may be sluggish
depending on how large the data is.

Joystick This mode works similar to a joystick. It scrolls by one row at a time and
the thumb/knob always returns to the center of the scrollbar once it is
released from dragging. (Supported for vertical scrolling only).

Mode HScroll VScroll
0 N N
1 N S
2 S N
3 S S
4 N J
5 S J

Note: Normal and scrolltracking modes would normally be used when the number of
rows in the data source is known. Use Joystick mode for when the number of rows in
the data source is not known.

2. Directives GRID

ProvideX Language Reference V8.30 Back 148

Format 1: Define/Create

GRID ctl_id,@(col,ln,wth,ht)[,ctrlopt]

Use this format to create your grid. The value in ctl_id is a unique identifier for your grid.
This value is used to generate a CTL value whenever the grid is selected and changed.

Format 2: Remove Grid

GRID REMOVE ctl_id[,ERR=stmtref]

Use this format to delete an entire grid.

Format 3: Disable/Enable

GRID {DISABLE | ENABLE} ctl_id[,ERR=stmtref]

Use the GRID DISABLE format to disable a grid so that it will be visible but
inaccessible to users. To reactivate it, use GRID ENABLE.

Format 4: Lock/Unlock

GRID {LOCK | UNLOCK} ctl_id,col,row[,width,height][,ERR=stmtref]

Use the GRID LOCK format to allow/deny access to a range of cells in the grid. The user
cannot change the cell's value, but if the cell is a button control the user can still click on
it. Use the GRID UNLOCK format to release the locked range of cells for other processes.

Reminder: If you use zero (0) as your value for both column and row, ProvideX
interprets that as all columns and rows, respectively and will lock/unlock the entire grid.

You can also use a grid control object's properties to lock or unlock cells (by setting
the 'Row, 'Column and 'Lock properties). Set your 'Lock value to 1 (lock) or 0
(zero to unlock). The default background colour for locked cells is LIGHT GRAY
(standard button face colour). Use the 'BackColour property to override this. See
Grid Properties, p.146.

Format 5: Hide/Show

GRID {HIDE | SHOW} ctl_id[,ERR=stmtref]

With the GRID HIDE format, the grid remains active, but is not displayed. It is still
accessible programmatically. Use the SHOW format to restore the display and user access.

Note: The current functionality for the 'Sort and 'Sort$ properties will override
locked rows.

2. Directives GRID

ProvideX Language Reference V8.30 Back 149

Format 6: Force Focus

GRID GOTO ctl_id[,ERR=stmtref]

Use GRID GOTO directive (without col,row) to reactivate and force focus to the first
cell of your grid, ready for the next user action.

GRID GOTO ctl_id,col,row[,ERR=stmtref]

Use this format to go to a specific cell address (other than the first cell) and set the focus
on that cell, ready for the user's next action. You must include both column and row
coordinates in this format of the directive (not zero values).

Format 7: Signal on Focus

GRID SET_FOCUS ctl_id, ctl_val[,ERR=stmtref]

Use the GRID SET_FOCUS format to define an alternate CTL value to generate
whenever focus shifts to the grid.

Format 8: Add Row/Column

GRID ADD ctl_id,col,row[,ERR=stmtref]

Use the GRID ADD format to add a row or column of blank cells to your grid. At
least one of the col,row values must be other than 0 zero.

Format 9: Load

GRID LOAD ctl_id,col,row,contents$[,ERR=stmtref]

Use GRID LOAD to load contents$ into the grid from a string variable or expression.
You must include both the column and the row for the address at which the load is
to start. If column and row are both 0 zero then the grid is cleared first.

ProvideX can load a number of columns and rows of data at a time. Column and row
separators are mandatory. Set the column separator using the SEP= option. Set your
row separator by including it as the last character in your data string. (ProvideX
treats the last character in the string as your row separator.)

Adding a New (Bottom) Row: Use row=0 to add a new row to the bottom of a grid;
i.e., GRID LOAD ctl,1,0,data$+ESC ! (Using ESC as the row delimiter)

Format 10: Delete Col/Row
GRID DELETE ctl_id,col,row[,ERR=stmtref]

Use the GRID DELETE format to delete a column or row from your grid. You can
identify a column to delete, a row to delete, or both.

Reminder: If you use zero (0) as your value for both column and row, ProvideX
interprets that as all columns and rows, respectively and will delete the entire grid.

2. Directives GRID

ProvideX Language Reference V8.30 Back 150

Format 11: Clear
GRID CLEAR ctl_id,col,row[,width,height][,ERR=stmtref]

Use the GRID CLEAR format to clear or reset the contents of a range of cells to the
default (empty). You can clear a column or a row or both.

Reminder: If you use zero (0) as your value for both column and row, ProvideX
interprets that as all columns and rows, respectively and will clear the entire grid.

Format 12: Read First Cell

GRID READ ctl_id,col,row,var$,eom$[,ERR=stmtref]

Use var$ in the GRID READ format to receive the modified cell address and value of the
first selected cell. If the cell doesn't exist, an Error #2: END-OF-FILE on read or
File full on write. If there is more to read, the CTL event is re-posted.

The eom$ string tells you which input sequence ended the message (e.g., $0D$ for
the key).

GRID READ directive must include both column and row addresses. ProvideX returns
a queue of cells that have been changed and generates an additional CTL event after a
read to ensure that no events are lost. There can be a problem due to potential race
conditions when the host is unable to keep up with the user input. To circumvent this,
ProvideX returns Error #2: END-OF-FILE on read or File full on write
if the queue is empty

Format 13: Read Next

GRID READ NEXT ctl_id,col,row,var$,eom$[,ERR=stmtref]

Use the string var$ in the GRID READ NEXT format to receive the modified cell
address and value of the next (not first) selected cell. If this cell doesn't exist,
ProvideX returns an Error #2: END-OF-FILE on read or File full on write. If
there is more to read, no CTL event is re-posted. The CTL value is posted when
another cell is changed. The eom$ string tells you what input sequence ended the
message (e.g., $0D$ for the key)

Formats 14, 15, 16, 17: Select Read/Reset

Use the following formats to select ranges of cells to READ or to RESET (to remove cells
from the SELECT state). GRID SELECT can be used to control cell selection. (When you
SELECT a range of cells, the given cells are added to the list of selected cells.)

Enter

Note: Under NOMADS, the read is automatic and should not be done by your
application. The data read is placed in the standard input variable with
control_name.row and control_name.col containing the associated cell
information.

Enter

2. Directives GRID

ProvideX Language Reference V8.30 Back 151

To determine which cells are selected: use GRID SELECT READ to obtain the first
selected cell, then use GRID SELECT READ NEXT to get subsequent cells.

Reminder: If you use a zero (0) in both col and row, ProvideX interprets that to mean
"all cells" and will select the entire grid.

GRID SELECT ctl_id,col,row[,width,height][,ERR=stmtref]

Select Range. This format selects a range of cells from your grid.

GRID SELECT READ ctl_id,col,row[,ERR=stmtref]
Select Read. Use this to read the first selected cell. If the cell doesn't exist, ProvideX
returns Error #11: Record not found or Duplicate key on write.

GRID SELECT READ NEXT ctl_id,col,row[,ERR=stmtref]

Select Read Next. Use this format to read the next (not the first) selected cell. When
ProvideX encounters a GRID SELECT READ NEXT after the last selected cell is
returned, it reports
Error #2: END-OF-FILE on read or File full on write.

GRID SELECT RESET ctl_id[,ERR=stmtref]

Select Reset. This format removes all cells from the SELECT state. There is no way to
remove cells from the selected state individually.

Format 18: Find or Retrieve

GRID FIND ctl_id,col,row,var$[,ERR=stmtref]

Use a string var$ in the GRID FIND format to return the value for a specific cell.

Format 19: Write Setting

GRID WRITE ctl_id,col,row,contents$[,ERR=stmtref]

Use GRID WRITE to update your grid by writing settings to specified cells.

Reminder: If zero (0) is used for both col and row, then the value specified in
contents$ will be written to each cell in the grid.

Format 20: Report all Changes

GRID AUTO ctl_id[,ERR=stmtref]

Use this format to have ProvideX return a CTL value whenever the current selection is
changed. You can use the values in your applications to track a users' selections.

Example The example on the following page demonstrates how you can use a combination of
GRID directives and GRID control object properties to perform various functions
(formatting, loading, retrieving, etc.).

2. Directives GRID

ProvideX Language Reference V8.30 Back 152

0010 ! GRIDDEMO - Grid demo program
0020 BEGIN ;
0020:PRINT 'CS',"Grid Demonstration"
0030 GRID 10,@(3,3,70,15)
0040 GRID LOAD 10,0,0,""
0050 FOR R=1 TO 10
0060 LET R$=""
0070 FOR C=1 TO 10
0080 LET R$+=STR(C*R)+SEP
0090 NEXT
0100 GRID LOAD 10,1,0,R$
0110 NEXT
0120 LET X=10
0130 FOR I=1 TO 10;
0130:LET X'ROW=-1,X'COLUMN=I;
0130:LET X'VALUE$="Col "+STR(I);
0130:NEXT
0140 FOR I=1 TO 10;
0140:LET X'ROW=I,X'COLUMN=-1;
0140:LET X'VALUE$="Row "+STR(I);
0140:NEXT
0150 LET X'COLUMN=-1,X'COLUMNWIDTH=6
0160 LET X'COLUMN=2,X'ROW=0,X'LOCK=1
0170 LET X'COLUMN=3,X'ROW=0,X'COLUMNWIDTH=7,X'CELLTYPE$="Button",X'LOCK=1
0180 LET X'COLUMN=4,X'ROW=0,X'COLUMNWIDTH=7,X'CELLTYPE$="CheckMarkRecessed"
0190 LET X'COLUMN=5,X'ROW=0,X'COLUMNWIDTH=7,X'CELLTYPE$="DropBox",
0190:X'TEXT$="car/pig/dog/"
0200 LET X'COLUMN=6,X'ROW=0,X'COLUMNWIDTH=7,X'CELLTYPE$="DropBoxHideBtn",
0200:X'TEXT$="car/pig/dog/"
0210 LET X'COLUMN=7,X'ROW=0,X'COLUMNWIDTH=7,X'BITMAP$="!bug"
0220 LET X'COLUMN=8,X'ROW=0,X'ALIGN$="C"
0230 LET X'COLUMN=9,X'ROW=0,X'ALIGN$="R"
0240 LET X'COLUMN=0,X'ROW=2,X'BACKCOLOUR$="LIGHT CYAN"
0250 LET X'COLUMN=0,X'ROW=3,X'BACKCOLOUR$="LIGHT YELLOW"
0260 LET X'ROW=8;
0260:FOR I=1 TO 10;
0260:LET X'COLUMN=I;
0260:LET X'BACKCOLOUR$="RGB:"+STR(RND(200)+55)+" "+STR(RND(200)+55)+
0260:" "+STR(RND(200)+55);
0260:NEXT
0270 LET X'ROW=9;
0270:FOR I=1 TO 10;
0270:LET X'COLUMN=I;
0270:LET X'TEXTCOLOUR$="RGB:"+STR(RND(200)+55)+" "+STR(RND(200)+55)+
0270:" "+STR(RND(200)+55);
0270:NEXT
0280 FOR I=1 TO 10;
0280:LET X'COLUMN=I,X'ROW=I,X'FONT$="Arial,1,BI";
0280:NEXT
0290 INPUT X$;
0290:IF CTL=4
0290:THEN STOP
0300 IF CTL<>10
0300:THEN PRINT "Recv'd CTL=",CTL;
0300:GOTO 0290
0310 GRID READ 10,C,R,ZZ$,E$
0320 PRINT @(0,20),'CL',"Col=",C," Row=",R," Dta=",ZZ$," Eom=$",HTA(E$),"$",
0330 GOTO 0290

2. Directives H_SCROLLBAR

ProvideX Language Reference V8.30 Back 153

H_SCROLLBAR Directive H_SCROLLBAR Cont rol Horizontal Scroll BarControl Horizontal Scrollbar
Formats 1. Define/Create: H_SCROLLBAR ctl_id,@(col,ln,wth,ht)[,ctrlopt]

2. Define at Edge of Window: H_SCROLLBAR ctl_id WINDOW[,ctrlopt]

3. Remove: H_SCROLLBAR REMOVE ctl_id[,ERR=stmtref]

4. Disable/Enable: H_SCROLLBAR {DISABLE | ENABLE} ctl_id [,ERR=stmtref]

5. Hide/Show: H_SCROLLBAR {HIDE | SHOW} ctl_id[,ERR=stmtref]

6. Force Focus: H_SCROLLBAR GOTO ctl_id[,ERR=stmtref]

7. Read: H_SCROLLBAR READ ctl_id,setting,max,[rgn_chg][,arrow_chg][,ERR=stmtref]

8. Update: H_SCROLLBAR WRITE ctl_id,marker,max[,ERR=stmtref]

Where:

@(col,ln,
wth,ht)

Position and size of the horizontal scrollbar region. Numeric
expressions. Column and line coordinates for top left corner, width in
number of columns and height in number of lines.

arrow_chg Amount to increase/decrease the H_SCROLLBAR setting when the user
selects the arrow at the left/right edge of the horizontal scrollbar.
Numeric expression. (Default: 1)

ctl_id Unique logical identifier for a horizontal scrollbar (any integer -32000 to
+32000). Avoid integers that conflict with keyboard definitions (e.g., 4
cancels CTL=4 for the key) or Negative CTL Definitions, p.817. Use
this value with the apostrophe operator to access various Horizontal
Scrollbar Properties.

ctrlopt Control options. Supported options for H_SCROLLBAR include
ERR=stmtref Error transfer
OWN=name$ Name assigned for automated testing of this control.
OPT=char$ Attribute/behaviour settings:
"D" - Disabled. User cannot access the scroll bar.
"G" - Global. Keep active on focus change to new/non-concurrent window.
"H" - Hide. Do not display the scroll bar.
"A" - Auto. Generate CTL signal for each movement.
"s" - Scroll. Allow scroll within resizable/scrollable dialogue box.

Some characters may be combined. Invalid settings are ignored.

marker H_SCROLLBAR setting. Numeric expression between 1 and the
maximum, max.

max Logical maximum value of the H_SCROLLBAR. Numeric expression.

rgn_chg Amount to increase/decrease the H_SCROLLBAR setting when the user
selects the region left/right of the marker. Numeric expression. (Default:
max width.)

F4

2. Directives H_SCROLLBAR

ProvideX Language Reference V8.30 Back 154

Description Use the H_SCROLLBAR directive to create a horizontal scrollbar for a window. Your
program logic can read and adjust a value by increments to control logical column
position within a record every time the user moves the horizontal scrollbar control object.

Horizontal Scrollbar Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
horizontal scrollbar are described in Chapter 7. Control Object Properties, p.708.

Format 1: Define/Create
H_SCROLLBAR ctl_id,@(col,ln,wth,ht)[,ctrlopt]

When you create the H_SCROLLBAR, the value in ctl_id is the unique identifier for it.
This value is used to generate a CTL value whenever a user selects and moves the
horizontal scrollbar; e.g.,

0010 H_SCROLLBAR 10000,@(5,20,70,1)

The example above defines a scrollbar 70 columns wide and one line high, starting at
column 5 on line 20. Whenever the horizontal scrollbar is selected a CTL value
10000 will be generated.

Format 2: Define at Edge of Window
H_SCROLLBAR ctl_id WINDOW[,ctrlopt]

Scrollbars can appear either within the current window or at the edge of the
window. Use the WINDOW keyword to have your horizontal scrollbar appear at the
edge of the window.

Format 3: Remove
H_SCROLLBAR REMOVE ctl_id[,ERR=stmtref]

Use the H_SCROLLBAR REMOVE format to delete the horizontal scrollbar.

Format 4: Disable/Enable
H_SCROLLBAR {DISABLE | ENABLE} ctl_id [,ERR=stmtref]

Use the H_SCROLLBAR DISABLE format to gray out a horizontal scrollbar so that it
will be visible but inaccessible to users. To reactivate it, use H_SCROLLBAR ENABLE.

setting Numeric variable to receive the current scrollbar setting.

stmtref Program line number or label to transfer control to.

Note: Once a new position is selected, you must read it before your application can
use the value to update the actual horizontal scrollbar position.

2. Directives H_SCROLLBAR

ProvideX Language Reference V8.30 Back 155

Format 5: Hide/Show
H_SCROLLBAR {HIDE | SHOW} ctl_id[,ERR=stmtref]

With the H_SCROLLBAR HIDE format, the scrollbar remains active, but is not
displayed. It is still accessible programmatically. Use the SHOW format to restore the
display and user access.

Format 6: Force Focus
H_SCROLLBAR GOTO ctl_id[,ERR=stmtref]

Use the H_SCROLLBAR GOTO format to reactivate and force focus to a horizontal
scrollbar, ready for the next user action.

Format 7: Read
H_SCROLLBAR READ ctl_id,setting,max,[rgn_chg][,arrow_chg][,ERR=stmtref]

Use the H_SCROLLBAR READ format to read the H_SCROLLBAR settings. For
example, to read the horizontal scrollbar position relative to 1000:

0120 H_SCROLLBAR READ 100,X,1000

Format 8: Update
H_SCROLLBAR WRITE ctl_id,marker,max[,ERR=stmtref]

Use the H_SCROLLBAR WRITE format to update or write the H_SCROLLBAR settings.

See Also V_SCROLLBAR Control Vertical Scrollbar, p.365,
Chapter 7. Control Object Properties, p.701.

Examples 0100 ! 100 - Horizontal Scroll Bar Example

0110 LET VAL=1,MX=400,BJMP=25,SJMP=1
0120 H_SCROLLBAR 101,@(5,16,18,1)
0130 H_SCROLLBAR 102,@(5,18,45,2)
0140 H_SCROLLBAR 103,@(5,21,60,3)
0150 H_SCROLLBAR 104 WINDOW
0160 INPUT (0,HLP="H_SCROLLBAR")@(60,18),"Select...: ",'CL',X$
0170 IF CTL<101 OR CTL>104 THEN GOTO 0210
0180 H_SCROLLBAR READ CTL,VAL,MX,BJMP,SJMP
0190 H_SCROLLBAR WRITE CTL,VAL,MX
0200 PRINT @(60,19),"Selection:",CTL,":",STR(VAL),'CL',; GOTO 0160
0210 IF CTL=0 OR CTL>=3 THEN STOP ELSE GOTO 0160

2. Directives HIDE

ProvideX Language Reference V8.30 Back 156

HIDE Directive HIDE Hide Cont rolHide Control
Format HIDE ctl_id

Where:

Description Use the HIDE directive to hide the specified control from display. The control must
be either on the current window or on a global control (e.g., *100). It will still be
active for purposes of reading/writing but the user cannot see, nor can the program
set focus to, the control.

To re-display a control object, use the SHOW directive.

See Also SHOW Show Control, p.326.

Examples 0010 BUTTON BTN_VISA,@(10,10,10,2)="&Visa Info"
0020
0100 READ (1,KEY=CST_ID$)IOL=0110
0110 IOLIST CST_TERM$,*,*,INV_DT$
0120 GOSUB 1000
...
1000 IF CST_TERM$="VISA" THEN SHOW BTN.VISA ELSE HIDE BTN.VISA
1010 RETURN

ctl_id Unique numeric CTL identifier for the object (button, list box, etc.) to be
hidden. Numeric expression, integer.

2. Directives IF..THEN..ELSE

ProvideX Language Reference V8.30 Back 157

IF..THEN..ELSE Directive IF..THEN..ELSE Test C onditionTest Condition
Format 1. Set Conditions: IF expression THEN.. [ELSE..] [END_IF or FI]

2. Set Conditions, Multiple Lines: IF expression THEN {...} [ELSE {...}] [END_IF or FI]

Where:

Description Use the IF directive to control the execution of various ProvideX statements based on
the result of a Boolean expression. Refer to examples on the following page. If the value
returned by the numeric expression is not zero (true) then ProvideX continues
execution with the directives following the THEN clause up to the end of the
statement, or until an ELSE clause is encountered. If the value returned is 0 zero
(false), execution of the statement continues with the directives following the ELSE
clause (if you use it) or with the next statement.

The expression would normally include a logical operator (such as an equals =, less-than
symbol <, or the LIKE Operator, p.822), but you can use any numeric expression.

All statements within an IF..THEN..ELSE structure exist on the same line. These
statements can only span multiple lines if they are enclosed within curly brackets. A
matched set of open/closed brackets must be provided for each set of directives (
missed brackets can cause unexpected results).

Internally, when the system detects a { following the THEN clause it will continue
execution up to the next } (if true) or skip forward to it (if false). The same holds true
for the processing of the ELSE clause. Curly braces should only be used with ELSE if
they are also used with THEN. You can imbed multiple levels of mult-lined IF
directives via curly braces; however, it is important not to lose consistency.

Using END_IF
An optional END_IF (or FI) clause can be used to terminate the current IF structure
and/or to execute a common closing statement. This is particularly useful for
separating ELSE clauses in a nested IF..THEN..ELSE structure. Once the statements
that follow an END_IF clause are executed, control will fall through to the next line, or
(if nested) to the preceding level of IF..THEN..ELSE.

See Also END_IF End IF Directive, p.117
SWITCH..CASE Branch Control, p.331
LIKE Operator, p.822
Decision Structures, User’s Guide.

{...} Curly braces indicating that the statements within can span multiple
lines. Must be included with both THEN and ELSE clauses (when used).

END IF Optional terminator for the IF..THEN..ELSE structure.
ELSE Statement executed when expression is false.
FI Optional terminator (identical to END IF).
THEN Statement executed when expression is true.
expression Numeric expression to be tested for zero.

2. Directives IF..THEN..ELSE

ProvideX Language Reference V8.30 Back 158

Examples Simple IF Statement
00010 INPUT "Enter a number: ",a
00020 INPUT "Enter another: ",b
00030 IF a>b \
 THEN PRINT "First one is larger";
 STOP
00040 IF b>a \
 THEN PRINT "Second one is larger";
 STOP
00050 PRINT "Both numbers are the same"
00060 STOP
-:RUN
Enter a number: 123.45
Enter another: 123.56
Second one is larger

Compound IF Statement:
00010 FOR i=1 TO 30
00020 PRINT i," is divisible by ",
00030 IF MOD(i,2)=0 \
 THEN IF MOD(i,3)=0 \
 THEN PRINT "both" \
 ELSE PRINT "2" \
 ELSE IF MOD(i,3)=0 \
 THEN PRINT "3" \
 ELSE PRINT "neither"
00040 NEXT i
00050 STOP
RUN
1 is divisible by neither
2 is divisible by 2
3 is divisible by 3
4 is divisible by 2
...
28 is divisible by 2
29 is divisible by neither
30 is divisible by both

Multiple Line IF Statement.

00010 IF A = B THEN {
00020 LET C = D
00030 PRINT "A equals B"
00040 } ELSE {
00050 LET X = Y
00060 PRINT "A was not identical to B"
00070 }

2. Directives INDEXED

ProvideX Language Reference V8.30 Back 159

INDEXED Directive IND EX ED Create Indexed FileCreate Indexed File
Format INDEXED filename$,[max_recs],rec_size[,SEP=char$][,ERR=stmtref]

Where:

Description Use the INDEXED directive to create a file that can be accessed either sequentially or
by record number (index).

Make the record size long enough to contain the maximum record length (i.e., the
combined length of the data fields plus field separators). If you use a filename that
already exists, ProvideX returns an Error #12: File does not exist (or
already exists).

Use the SEP= option to set the default separator for a given file. Use any character
from 00 to FF, or use SEP=*. When the asterisk * is set as the value, fields will
not be delimited. ProvideX writes records to the file with field type and length
headers. This feature may provide better results in overall file performance.

WindX supports the use of this directive via the [WDX] tag; e.g., INDEXED
"[WDX]somefile.ext"... For more information, see [WDX] Direct Action to
Client Machine, p.801.

See Also File Types, User’s Guide.

Examples 0110 INDEXED A$+"-"+B$,100,50,ERR=1090
0200 INDEXED "CSTFLE",,140

Line 0200 creates a file with the following structure:

Indexed file: C:\Program Files\Sage Software\ProvideX\CST\CSTFLE
 Maximum Record size: 140
 Maximum # records: (No limit)
 Current # records: 0

char$ Separator character. Hex or ASCII string value.

filename$ Name of the indexed file to create. String expression.

max_recs Maximum number of records in the file. Optional numeric
expression. Default is no initial allocation of file space, with no limit
as to final size. 0 zero indicates that the number is dynamic. A positive
value indicates that the file is pre-sized to the specified number of
records – an Error #2: END-OF-FILE on read or File full
on write will be generated if an attempt is made to add more than
this specified number of records, or access an IND= value above this
limit.

rec_size Maximum size of the data portion of each record.

stmtref Program line number or label to transfer control to.

2. Directives INPUT

ProvideX Language Reference V8.30 Back 160

INPUT Directive INPUT Get In put fr om TerminalGet Input from Terminal
Format INPUT [EDIT] ([chan][,fileopt])varlist

Where:

Description Use the INPUT directive to issue prompts to and receive input from a terminal
device. You would normally use the logical file number to refer to a terminal. Input
from the user is stored in a variable specified. ProvideX treats any literals or
expressions included in the statement as prompts. When a numeric variable is
specified, numeric data must be received. Non-numeric input in response to a
numeric variable (other than commas and decimals) will cause an Error #26:
Variable type invalid.

If you use the EDIT clause, the current values for the variables are loaded into the input
buffer so that the user can edit them.

Use a format mask with the INPUT directive to control the input. To do this, append
a colon and the mask to the given variable in varlist. If you omit a format mask for a
numeric in an INPUT statement, the 'DP' Decimal Point Symbol and 'TH' Thousands
Separator system parameters are ignored for European decimal settings.

If an INPUT EDIT statement has both a format mask and a validation list, make sure
that the validation list contains only entries that are possible. For example, if the
format mask indicates that the input value must be a single character, do not use a
null ("") value in the validation list.

Instead, valid input for "no value" could be a blank / space in this instance, as in:

0030 INPUT EDIT (0,ERR=0030)@(10,10),VAR$:"A":("Y"=0040,"N"=0050,""=0060)

chan Channel or logical file number of the file from which to get terminal input.

fileopt Supported file options (see also, File Options, p.810):
ERR=stmtref Error transfer
HLP=string$ Help message identifier
IND=num Position cursor to specified column number.
LEN=num Limit on input size
SIZ=num Number of characters to read (number of screen columns)
TBL=stmtref Data translation table
TIM=num Maximum time-out value in integer seconds.

When screen positions are tight, you can combine the LEN= and SIZ=
options to have ProvideX supply a scrolling input field. For example, to
allow a user to enter 60 characters in a field where you only have room for
30 on the screen: INPUT (0,LEN=60,SIZ=30)"Name....:",N$

varlist Comma-separated list of variables, literals, Mnemonics, IOL= options,
and/or location functions '@(...)'. Include Data Format Masks to filter
data being received.

2. Directives INPUT

ProvideX Language Reference V8.30 Back 161

Use the IND= option to set the position of the cursor in the INPUT field. Use
IND(chan) to obtain the position where the cursor was left after the INPUT.

See Also ACCEPT Read Single Keystroke, p.28
OBTAIN Get Hidden Terminal Input, p.227
'ME' Mnemonic, p.620
'BI' Mnemonic, p.590
Data Format Masks , p.813
Input Statements, User’s Guide.

Examples 0010 INPUT 'CS',@(5,5),"Enter customer number:",C ...
0100 INPUT EDIT "Enter value:",INV_AMT:"$##,##0.00"

Use IND=X as a parameter for the INPUT statement to set the starting point in an
input field. For example, to start the input at the tenth character of A$:

-> A$="Now is the time"
-> INPUT EDIT (0,IND=10) A$

Use IND(0) to find out the character position where the user terminated input. For
example, if the user enters "Now is the time", and presses and the cursor
moves to the 10th position, just after the "e" in "the". Then, if the user presses
or any other function key to terminate the input, the value returned in IND(0) is 10.

Home Tab
Enter

2. Directives INSERT

ProvideX Language Reference V8.30 Back 162

INSERT Directive INSERT Insert New Recor d in FileInsert New Record in File
Formats INSERT (chan[,fileopt])varlist

Where:

Description The INSERT directive is used to write a new record to a file (channel/logical file
number). The syntax for this directive is identical to the WRITE Directive, p.383;
however, INSERT only writes a record if does not exist and will return an error if the
record already exists.

INSERT may be used against Keyed, Memory, ODBC, and OCI files. When IND= is used
with *MEMORY*, this directive inserts a new index.

See Also WRITE RECORD Write Record, p.386
WRITE Add/Update Data in File, p.383
UPDATE Update Existing Record in File, p.351

chan Channel or logical file number of the file to which to write.

fileopt Supported file options (see also, File Options, p.810):
BSY=stmtref Traps Error #0: Record/file busy
DOM=stmtref Missing record transfer
END=stmtref END-OF-FILE transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key
REC=name$ Record prefix (REC=VIS(string$) can also be used)
RTY=num Number of retries (one second intervals)
TIM=num Maximum time-out value (support write operations for
TCP channels).

stmtref Program line number or label to transfer control to.

varlist Comma-separated list of variables, literals, and IOL= options.

2. Directives INVOKE

ProvideX Language Reference V8.30 Back 163

INVOKE Directive INVOKE Execut e Operating Syst em CommandExecute Operating System Command
Formats INVOKE [HIDE] [WAIT] [CONTROL] command$ [,ERR=stmtref]

Where:

Description The INVOKE directive enables a statement in a program to be processed by the
operating system as if it were entered as a command from the terminal. It provides
access to most operating system utilities and facilities from within a ProvideX
program.

In Execution mode, character strings are passed from a program to the operating
system. In Command mode, entering a line of code that starts with a quotation mark
(i.e., "statement") is the same as using the word INVOKE to start the directive.

In Windows, to accommodate the way Windows searches for programs and
determines the type of program to run, it is best to identify the type of file in the
command line (e.g., "XCOPY.EXE" or "MYJOB.BAT"). Under WindX, use INVOKE
"[WDX]...". See [WDX] Direct Action to Client Machine, p.801. If the operating
system command does not use a window when invoked, ProvideX will not wait for
the command to finish as there is no focus change to wait for.

If you are not concerned about the return status of a command and are running PVX
UNIX and PVX Windows, there is no difference between using an INVOKE directive
and the SYS() function. When SYS() is used under Windows, ProvideX waits for the
spawned task to complete or for the program to be reactivated via the mouse. When
the INVOKE directive is used under Windows, ProvideX spawns the task and
continues without waiting for the task to complete.

command$ String expression to be passed to the operating system command
processor for execution.

CONTROL Optional keyword allows a program to invoke an external program
on Vista with the Run as Administrator option. (Windows-only)

HIDE Optional keyword will minimize the invoked task when it starts.
(Windows-only)

WAIT Optional keyword causes the ProvideX session to wait until the
application terminates or the user reactivates the task. (Windows-only)

stmtref Program line number or label to transfer control to.

Note: In Command mode, ProvideX interprets a statement as an INVOKE directive if
it begins with an double quotation mark (").

Tip: Use the SYS() function instead of the INVOKE directive if you wish to test the
successful conclusion of an operating system command.

2. Directives INVOKE

ProvideX Language Reference V8.30 Back 164

Use INVOKE WAIT directive to wait for the task, which is the same as using the
SYS() function. Use INVOKE HIDE to spawn a task in a minimized window.

INVOKE CONTROL launches the task on Windows Vista specifying Run As
Administrator. Also, if INVOKE WAIT is used on Windows Vista, ProvideX will first
try to launch without requesting Administrator rights. If the launch fails with
ERROR_ELEVATION_REQUIRED, ProvideX will retry the launch with the "Run As
Administrator option.

The Windows options WAIT, CONTROL, and HIDE, are simply ignored by ProvideX if
used under UNIX/Linux.

The INVOKE directive can be also used to have the operating system treat a character
string from a program as an operating system command from the terminal; e.g.,

0010 INVOKE ENV("COMSPEC")+" /K DIR C:\WINDOWS"

The ENV("COMSPEC") function determines the correct command processor to be
used.

If the OS command fails on an INVOKE, the program will continue processing unless
an ERR= clause was included in the statment. Generic error traps, such as SETERR or
ERROR_HANDLER do not get triggered by INVOKE related errors.

Background Tasks in ProvideX
Use INVOKE to start a background process in ProvideX.

Under UNIX, output generated by the OS command may result in strange display
behaviour. In particular, ProvideX will not know where the cursor is, nor be able to
restore the screen if a window is pushed/popped. This is because the output from
the OS command is not intercepted by ProvideX and is therefore unknown to it.

When you INVOKE another copy of ProvideX under UNIX, we recommend that you
also redirect stdin, stdout, and stderr to null files; e.g.,

INVOKE ARG(0)+"program >/dev/null 2>/dev/null </dev/null"

See Also SYS() Function, p.529.

Note: ARG(0) returns the name of the 'pvx' executive as entered in the original
command line. Please make sure that this is an absolute pathname or that ProvideX
can be found in the system path search rules.

2. Directives IOLIST

ProvideX Language Reference V8.30 Back 165

IOLIST Directive IOLIST Specify Variable Lis tSpecify Variable List
Formats 1. Define List: IOLIST {parm[:[format]...}

Note: The inner set of brackets enclosing [,format] are part of the syntax.

Where:

Description Use IOLIST to define a common I/O parameter list (IOLIST). ProvideX ignores the
IOLIST directive when it encounters it during program execution until it is used in
conjunction with file I/O directives (e.g., READ, WRITE, etc.) and composite string
definitions. For more information, see File Handling in the ProvideX User's Guide.

Examples 0010 OPEN (20)"CSTFLE"
0020 READ (20,KEY=C$)IOL=1000
0030 LET J=J+10
0040 WRITE (20,KEY=C$)IOL=1000
0050 WRITE (21)IOL=1010
...
1000 IOLIST C$,C1$,C2$,C3$,J,K,L,M
1010 IOLIST C$:[CHR(10)],C1$:[CHR(40)]

parm Set of parameters to be used in an input/output directive. This includes
variables, literals, Mnemonics, IOL= options, and/or location functions
'@(...)'.

format Defines how the field is formatted. Options include:
CHR(len) Variable length string (pad output).
CHR(dlm) Variable length string (delimited). Default record limit is 10240

for composite IOLists with the CHR field definition.
DEC([SEP,SIZ=]len[,scl]) Fixed length, explicit decimal, sign maintained.

Optional SEP,SIZ= clause allows for padded numeric fields
followed by a field separator. Numeric fields are padded
with leading spaces.

LEN(len) Fixed length string.
STR(dlm) Quoted String.
NUM(len[,scl])

Fixed length numeric.
BIN(len[,scl]) Binary numeric.
INT(len[,scl]) Unsigned integer numeric.
BCD(len[,scl]) Packed decimal numeric.

Where:
len is the length of the field in the record.
dlm is the string whose first character delimits the field.
scl is the optional scaling factor to apply to the number (e.g., 2 indicates

that 1.34 is output as 134).

Note: IOLIST must be the only directive in a statement.

2. Directives KEYED

ProvideX Language Reference V8.30 Back 166

KEYED Directive KEYED Create Single/Multi-Keyed FileCreate Single/Multi-Keyed File
Format KEYED filename$,[,extkey_len][,key_def$][,max_recs[,rec_size]][,fileopt]

Where:

filename$ Name of the Keyed file to create. String expression.
extkey_len Numeric expression. Length of the external key for all records in the file

(maximum 127 characters).
key_def$ String expression defining the key. The Keyed file can be single- or

multi-keyed. A key definition is made up of one or more key field
definitions ranging 0 to 15 for FLR/VLR files or 0 to 255 for EFF files. Use
integers for specific field numbers, or 0 zero for record-based offsets. The
key definition formats are as follows:

Single key field:
[["keyname":]field:offset:len[:"attr"]]

Composite key fields (using the + operator):
[["keyname":]field:offset:len[:"attr"]]+[field:offset:len[:"attr"]]

Multi-keyed alternate key fields are comma-delimited:
[["keyname":]field:offset:len[:"attr"]], [["keyname":]field:offset:len[:"attr"]]
Where:
keyname Name of key assigned for use in KNO=name$ options.
field Integer, 1 to number of fields (0 = record-based offset).
offset Starting position within the field (integer, 1 to 3839).
len Number of characters in the key field (integer, max. 127)
"attr" Attribute characters, see Key Definition Attributes, p.167

: Colon - the separator for elements in a key segment.

The maximum total size for an external key is 127 characters. The
maximum length for internal or alternate keys is 240 characters.

Note: The outer set of square brackets in the above formats are part of the
syntax; the inner brackets indicate optional syntax items (i.e., the brackets
enclosing the optional [:"attr"] are not part of the syntax).

max_recs Maximum number of records the file is allowed. Optional numeric
expression. The default is zero (no limit). (Use a comma with no value
to set the default.) If a positive value is supplied, ProvideX creates
and pre-allocates disk space for the file. With a negative value,
ProvideX allocates sufficient disk space for the file, but will set the
max_recs count back to zero (unlimited).

rec_size Maximum size of the data portion of the record (excluding the key). A
negative value creates a variable-length record (VLR) data file with the
maximum record length equal to the positive value of this field. A positive
value creates a fixed-length record (FLR) formatted file.

2. Directives KEYED

ProvideX Language Reference V8.30 Back 167

Key Definition Attributes
Optional key definition attribute characters "attr" can be used to refine key segment
definitions; e.g., KEYED "MES_FACTURES",[1:1:40:"T"],[2:1:40:"TCD"].

If you do not specify size, the default is VLR with a maximum record size
of 256. The maximum block size for a VLR file is 31KB and the maximum
record size is 31000 bytes. Attempting to create a VLR file with a record size
more than 31000 bytes results in an FLR file with the requested record size.

fileopt Supported file options (see also, File Options, p.810):
BSZ=num Block size. Numeric expression (1 - 63).
ERR=stmtref Error transfer.
SEP=char$ Default field separator character. Hex or ASCII string value.
OPT=char$ Single character settings:
"C" - Compressed. Adds simple compression to record data.
"X" - Extended Record Size. Extends record sizes up to 2GB per record.
"0" - Create VLR/FLR files (default if 'KF'=0)
"1" - Create EFF Files with 2GB limit.
"2" - Create EFF Files without 2GB limit (supported platforms).
"Z" - Set ZLib Compression for VLR and EFF Files.
Note: OPT="2" generates Error #99: Feature not supported
on platforms that do not offer Large File Support (LFS). Using options
"Z" and "C" together will result in an Error #32.

Note: Only one of the auto-increment options ("#", "+" or "I") can be used per file.

Character Definition
"#" Auto-increment - Space filled string. (VLR/EFF only)
"+" Auto-increment - Zero filled string. (VLR/EFF only)
"-" Support signed binary integers as key segments. This option cannot

be used in conjunction with the following segment options on the
same segment: "#", "+", "C", "D", "I", "L", "T", "U", "Z".

"A" Ascending key (assumed).
"C" Force uppercase for individual key segments to create

case-insensitive keys; e.g.,
KEYED "filename",[1:1:10:"C"],[2:1:40:"L"]+[1:1:10:"C"]

Note: The conversion tables for upper/lowercase conversions are
located in the ProvideX message file *MLFILE.EN. You can set these
tables using the DEF UCS and DEF LCS directives and retrieve values
using the UCS(*) and LCS(*) functions.

"D" Descending order (default is ascending).

2. Directives KEYED

ProvideX Language Reference V8.30 Back 168

Description Use the KEYED directive to create a file with one or more keys. If the first field in the
directive after the filename is a number, ProvideX creates an external file key (i.e., an
index to the file). If the first field in the directive is a key definition enclosed in
square brackets [], then ProvideX uses only internal key fields instead.

ProvideX considers the first key specified for a Keyed file to be the primary key.
Every record must have a unique primary key. You can have duplicate secondary
keys from record to record.

"I" Binary auto-increment (VLR/EFF only). Field (1, 2, or 4 bytes in length)
will be auto-incremented as records are added to the file. Key must be
record-based; i.e., field is 0 and offset is location in record.

"K[:n]" Null key suppression (VLR/EFF only). n is the hex value of the character to
suppress if all characters match (defaults to 00 if not specified). If the
entire key evaluates to null, the key will not be a part of this key tree. This
cannot be used on a primary key or in conjunction with the "N" option.

"L" Force lowercase for individual key segments to create
case-insensitive keys. See the example and note in "C", above.

"N[:n]" Null segment suppression (VLR/EFF only). n is the hex value of the
character to suppress if all characters match. If any segment within the
key evaluates to null, the key will not be a part of this key tree. This
cannot be used on a primary key or in conjunction with the "K" option.

"S" Swapped (same as SWP() type 7, Intel x86 style swapping only
VLR/EFF only).

"T" Force automatic accent translation for individual key segments (i.e.,
to translate accented/extended characters to their non-accented
counterparts). You'll find this useful for sorting multilingual
characters into a single unified sort sequence;e.g.,

KEYED "filename",[1:1:40:"T"],[2:1:40:"TCD"]

Note: The conversion tables for accent translations are located in the
ProvideX message file *MLFILE.EN. You can set this table using the
DEF CVS directive and retrieve values using the CVS(*) function.

"U" If you declare an alternate key segment as unique, then no duplicate
keys are allowed on writing a record. (ProvideX generates Error
#11: Record not found or Duplicate key on write.) If
you designate any segment in a key definition as unique, then the
entire key will be unique.
Note: The primary key must always be unique.

"Z" Zero terminated strings (VLR/EFF only). This will consider a null
byte (00) in a string as the end of the data within the field, and will
ignore any data between the null byte and the end of the key field.
(Also known in C as a Z-string.)

Character Definition

2. Directives KEYED

ProvideX Language Reference V8.30 Back 169

For VLR/FLR files, there is a maximum of 16 key fields allowed on a file with a
maximum of 96 data components making up the 16 keys. There is no limit (other
than the maximum of 96 key components) to the number of fields that comprise a
single key. For EFF, there is a maximum of 255 keys allowed on a file with a
maximum of 255 data components making up the 255 keys. The initial implementation
of EFF (in Version 6) is limited to 96 keys and 96 segments.

If a given filename already exists, ProvideX returns Error #12: File does not
exist (or already exists).

Use the SEP= option to set the default separator for a given file. Use any character
from 00 to FF, or use SEP=*. When the asterisk * is your value, the fields will
not be delimited. ProvideX writes records to the file with field type and length
headers. This feature can provide better results in overall file performance.

For more information refer to DIRECT Create File with Keyed Access, p.89, and
Multi-Keyed Files in the ProvideX User's Guide.

If you see the message Corrected Missing Key when ProvideX attempts to
WRITE, UPDATE, or REMOVE a record in a Keyed file where a change to the primary
or alternate key table is needed (e.g., for an alternate key to a customer name when
the name changes or for removal of all keys when a record is deleted), the message
indicates that the key entry to be changed was not found. This is not a fatal message,
but usually means that the file has been corrupted in some way. You should check
the file using *UFAC or try to recover it using *UFAR (ProvideX utilities).

Key Block Size and Performance
ProvideX stores a maximum of 255 keys per block, with block sizes ranging from
1Kb to 32Kb. The maximum key block size for a variable record length file is 31Kb,
while the maximum for a fixed record length file is 32Kb and an EFF file is 63Kb. The
size of the key block also governs the size of the blocks used to store data records. As
with key blocks, the maximum number of records per data block is limited to 255.

By default, ProvideX uses the size of the primary key to determine the optimum key
block size to a maximum of 4Kb when creating a file. This calculation involves
taking the (size of the primary key + 5 bytes) multiplied by a maximum of 255
entries, then rounding up to the nearest Kb to a maximum of 4Kb. The block size
can be overridden by using the BSZ= option on the KEYED directive. This can be
used to optimize the usage of key and/or data blocks to improve performance. For

Note: By default, the KEYED directive will create variable-length record (VLR) data files
or fixed-length record (FLR) formatted files; however, by setting the 'KF' system parameter
("KF"=2) or by setting OPT="2" in the syntax, KEYED can also be used to create Enhanced
File Format (EFF) files on platforms that support Large File System (LFS), 64-bit
addressing. For more information on EFF refer to the CREATE TABLE Directive, p.58.

Note: WindX supports the use of this directive via the [WDX] tag; e.g., KEYED
"[WDX]somefile.ext"... See [WDX] Direct Action to Client Machine, p.801.

2. Directives KEYED

ProvideX Language Reference V8.30 Back 170

example, using a BSZ=1 improves the performance on WANs (Wide Area Networks)
by reducing the overall network traffic when accessing Keyed files.

The number of keys stored per block also affects the number of active levels on the key
tree. Storing a smaller number of keys per block results in additional levels of blocks on
the key tree, whereas a larger number of keys often results in fewer levels. Having fewer
levels translates into improved performance as this reduces overall network traffic. For
example, a key size of 50 would yield a maximum of 74 keys per block using a 4Kb block
size while an 8Kb block size would accommodate 148 keys per block. In a 4K file, three
levels on the key tree would be capable of managing 405,224 records (74*74*74) and
3,241,792 records (148*148*148) for an 8K block size.
Keys have the following limits:
• Maximum external key size is 127 bytes.
• Maximum internal or alternate key size is 240 bytes.

• Maximum segment size is 127 bytes.

Variable Length Records
When using variable length record or EFF files, ProvideX will not pad the record to
the record size with extra null characters (as is done with fixed length record files).
The record data is stored using its exact length. This allows for much denser files, by
avoiding the null padding on each record. Files are smaller thus when doing reads of
large portions of the file, less disk accesses have to be performed because the records
fit into a much smaller space and disk cache is better utilized.

In addition, with a variable length keyed file, the maximum record size is a logical
maximum and not a physical one. A VLR file will simply allow you to write records
from 0 to the maximum record size defined. Anything beyond the maximum record
size causes an Error #1: Logical END-OF-RECORD reached. This design
allows the maximum record size for a variable length record file to be increased at
any time through the use of system utilities, *UFAM.

Only VLR files support file segmentation, which allows you to have files that total a
logical size of up to about 248 GB. Refer to the 'MB'= System Parameter, p.674.

See Also CREATE TABLE Create Keyed File (EFF), p.58
DIRECT Create File with Keyed Access, p.89
SYSTEM_JRNL File System Journalization, p.334
ADD INDEX Add Key to Keyed File, p.29
DROP INDEX Drop Key from Keyed File, p.103
RENAME..INDEX Rename Keys in Keyed File, p.285
SORT Create File for Sorting, p.327
Accessing Data Files, p.22
File Types, User’s Guide

Note: For VLR and EFF files, the BSZ= must be large enough to accomodate the record
size; e.g., 4Kb block size for a 4000-byte record. You no longer have to use BSZ= in a
Keyed file definition if defining record sizes over 4000 bytes. ProvideX now calculates
the minimum block size necessary.

2. Directives KEYED

ProvideX Language Reference V8.30 Back 171

Examples KEYED A$+"_"+B$,10,100,50,ERR=1090 creates a Keyed file with this structure:

 Maximum Record size: 50
 Maximum # records: 100
 Current # records: 0
 Size of key block: 3072 bytes
 External key size: 10

KEYED "CSTFLE1",6,,140 also creates a file with an external primary key (6 bytes).

KEYED "CSTFLE2",6,[1:1:10],,500 creates a file with an external primary key
(6 bytes) and a single internal alternate key.

KEYED "CSTFLE3",[1:1:6],[2:1:10],,500 creates a multi-keyed file with 2
internal alternate keys. Below, the alternate key 0 (field 1) is the primary key:

 Keyed file: C:\OTHER\MANUALS\PVX\CST\CSTFLE3
 Maximum Record size: 500
 Maximum # records: (No limit)
 Current # records: 0
 Size of key block: 2048 bytes
 External key size: 0
 Alt. key 0: [1:1:6]
 Alt. key 1: [2:1:10]

KEYED "CSTFLE4",6,[2:1:10]+[1:1:6] creates a file with an external primary
key, and a composite internal alternate key:

 Keyed file: C:\OTHER\MANUALS\PVX\CST\CSTFLE4
 Maximum Record size: 256 (Variable)
 Maximum # records: (No limit)
 Current # records: 0
 Size of key block: 2048 bytes
 Record Expansion factor: 10%
 External key size: 6
 Alt. key 1: [2:1:10]+[1:1:6]

To use a variable for the key definition:

X$="[1:1:6],[2:1:10]"; KEYED "CSTFLE",X$,,500
X$="6,[1:1:6],[2:1:10]"; KEYED "CSTFLE",X$,,500

2. Directives KEYED LOAD

ProvideX Language Reference V8.30 Back 172

KEYED LOAD Directive KEYED LOAD Load and Repair Keyed FileLoad and Repair Keyed File
Format KEYED LOAD (chan,[KNO=num | name$])

Where:

 Description This directive is used to rebuild the key tables of a file which is currently open on a
channel. KEYED LOAD (chan) rebuilds all key trees. To rebuild a specific key chain,
use the file access key value KNO=num | name$. KEYED LOAD will identify
duplicate primary or unique keys.

The file does not have to be locked for KEYED LOAD to work. KEYED LOAD rebuilds
the key chains within the file without using more disk space, while the file is in use,
and while the file is being updated by others. KEYED LOAD is much faster than *UFAR
in repairing key trees.

However, it performs much faster if the file is locked, and if there is sufficient ram
available for its key block buffering operations. Also, KEYED LOAD will update the
number of records for fixed length files if the file is locked.

Once the KEYED LOAD command is completed, TCB(67) will be set to one of the
following values:

> 0 represents the number of keys reloaded.

- 1 indicates that a different number of keys were encountered on different key
chains. This may or may not indicate that the file being re-loaded has physical
damage that KEYED LOAD is unable to correct; i.e., the file can be reloaded on
the fly while others are adding records, and therefore the number of keys on a
given key chain may have changed while KEYED LOAD was working.

Example ->open (1)"datafile.dat"
->keyed load (1)
Done - loaded key number 0 with 263 keys
Done - loaded key number 1 with 263 keys
Done - loaded key number 2 with 263 keys
Done - loaded key number 3 with 263 keys
Done - loaded key number 4 with 263 keys
Done - loaded key number 5 with 263 keys

chan Channel or logical file number of the file to be read/repaired.

num Key number (0-15 for VLR/FLR files, 0-255 for EFF files).

name$ Name of the key (if assigned). String expression.

Note: KEYED LOAD reports invalid file type when used on Sort files. KEYED LOAD
will not operate on files opened in Read-Only mode.

2. Directives LET

ProvideX Language Reference V8.30 Back 173

LET Directive LET Assign Value to VariableAssign Value to Variable
Format [LET] var[$]=expression,[var[$]=expression,...]

Where:

 Description Use the LET directive to set a variable to the value of an expression. If the variable is
numeric, use a numeric expression. If it is a string variable, use a string expression.
You can use substrings with string variables. (Specify the starting position and
optional length.)

The word L E T is optional in Command mode. ProvideX assumes use of the LET
directive when it encounters a directive starting with a variable. You can include
multiple LET directives in one statement by using comma delimiters. In this case, if
you use the word L E T, it only occurs once, before the first assignment.

You can initialize, copy, or manipulate a complete array by specifying {ALL}
following the variable name. {ALL} can be used on both sides of an equation. Note
that the curly brackets { } are part of the syntax.

Examples 0080 LET A$="THIS IS AN EXAMPLE"
0100 A$(1,4)="WHAT",A$(19)="!",Z$=""
0110 A$(5,4)=Z$

If Z$ is more than 4 characters, A$(5,4) is set as the first 4 characters of Z$. If Z$ is
less than 4 characters, the A$(5,4) value is Z$ plus space-padding up to a length of
4 characters:

RUN
-:?A$
WHAT AN EXAMPLE!

Other Examples:
-: Z4=A+4.5,Z5=Z4*.85
-: LET D$=DAY,T=TIM*3600
-: DIM A[30]; LET A{ALL}=A{ALL}*4

var Numeric or string variable to be set to the value of the expression.

expression Numeric or string expression whose value will be assigned to the
variable.

2. Directives LIKE

ProvideX Language Reference V8.30 Back 174

LIKE Directive LIKE Inher it Propert iesInherit Properties
Format LIKE "otherclass", "otherclass", ...

Where:

 Description The LIKE directive is used in Object Oriented Programming (OOP) to inherit the
properties from one or more other classes. All properties and methods are inherited
from the specified classes.

When multiple occurrences of the same property/function are found within the
inheritance, the first class declared in the LIKE directive takes precedence.

Example DEF CLASS "Company"
FUNCTION Delete()
REMOVE (fileno, KEY=COMP_ID$)
RETURN 1
END DEF

DEF CLASS "Client" FUNCTION Delete()
IF AMT_OWING <> 0 RETURN 0
REMOVE (fileno, KEY=CUST_ID$)
RETURN 1
END DEF

DEF CLASS "Dealer"
LIKE "Client", "Company"
END DEF

The Dealer class of objects would use the "Client" 'Delete() method, since it
was declared first.

See Also DEF CLASS Define Object Class, p.65
FUNCTION Declare Object Method, p.137
LOCAL Designation of Local Data, p.197
PROGRAM Create/Assign Program File, p.259
PRECISION Change Current Precision, p.248
PROPERTY Declare Object Properties, p.261
Data Integration, User’s Guide

otherclass Name of a class to inherit properties from.

2. Directives LINE_SWITCH

ProvideX Language Reference V8.30 Back 175

LINE_SWITCH Directive LINE_SWITC H Redirect Conso le Input /Out putRedirect Console Input/Output
Formats 1. Switch File (0): LINE_SWITCH chan [,ERR=stmtref]

2. Switch File (0): LINE_SWITCH [device$,ERR=stmtref]

Where:

Description Use the LINE_SWITCH directive to switch all I/O currently sent to channel or logical
file number 0 (zero, the terminal) to another device. Its primary purposes are to
allow for secondary users on a PC or to provide remote maintenance capability.

While the LINE_SWITCH is in effect, the original device is disabled. ProvideX will
expect to receive all input from and send all output to the new device designated as
file or channel 0 zero.

Use a LINE_SWITCH directive with no parameters to restore communications with
the original device on channel (logical file number) 0 and CLOSE the alternate file.

Examples -> LINE_SWITCH "PORT2" ! Defines/opens PORT2 as logical file number (0)
-> LINE_SWITCH ! Closes PORT2, restores terminal/console as logical file

#(0)

chan Channel or logical file number to which to redirect file 0 zero input and
output.

device$ Name of the device to which to switch file 0 zero. String expression.

stmtref Program line number or label to transfer control to.

2. Directives LIST

ProvideX Language Reference V8.30 Back 176

LIST Directive LIST List Pr ogram Statement sList Program Statements
Formats 1. List a Range of Lines: LIST [EDIT] [(chan,fileopt)][from_stmt][,[to_stmt]]

2. List a Range of Lines: / [EDIT] [(chan,fileopt)][from_stmt][,[to_stmt]]

Where:

Description The LIST directive converts program statements from the internal (compiled) format
to a readable listing that can be sent to a file or to the screen. This directive gives you
a listing of the contents of a program's statements as they were entered into the
system originally. That is, it will return a series of directives, variables, and
operators, with line numbers.

The listing will not necessarily match exactly the way in which a statement was
entered in the first place, but will be syntactically the same. For instance, if you
entered 510 A$="Example" and then used the LIST directive, ProvideX would
return 0510 LET A$="Example".

If you use the LIST directive with no file number or options, the output will be
displayed on your screen. You can direct the output of the LIST directive to any serial
or indexed file or to a device (e.g., a printer or terminal). For more information, see
File Handling in the ProvideX User's Guide.

/ or \ Use either of the slashes (forward or back) as a substitute for typing
LIST. ProvideX also accepts LSIT (i.e., mis-typed version).

EDIT Use the optional keyword EDIT with the LIST directive to have
ProvideX both logically break the lines and indent them. Refer to the
'LE' System Parameter, p.672, for more information.

chan Channel or logical file number to receive the readable listing of the
contents of a program.

fileopt Supported file options (see also, File Options, p.810):
END=stmtref End-Of-File transfer
ERR=stmtref Error transfer
IND=num Record index
TBL=stmtref Data translation table.

from_stmt Starting statement to list. Optional. If you omit this, the default is to
LIST from the start of the program.

to_stmt Ending statement to list. Optional. If you omit this, the default is to
LIST to the end of the program.

stmtref Program line number or label to transfer control to.

2. Directives LIST

ProvideX Language Reference V8.30 Back 177

If the output of a list command goes to your terminal, the listing stops to allow you
to read the program page by page. To continue the listing, simply hit the key.
To stop the listing, use the key. All other input is discarded.

If the listing of a statement exceeds the maximum allowed length of a record for a
given file (e.g., 80 for terminals), the statement will be broken into multiple segments
(records/lines). The first n characters (where n is the maximum segment length) will
be contained in the first segment with each subsequent n characters up to the end of
the statement sent in subsequent segments. Each continuation segment will be
prefixed by the line number followed by a colon ":" and a space.

Coloured Syntax Displays
If the 'CS' system parameter is on, your listing will be displayed with a different
colour for each syntax element. For more information, refer to the 'CS' System
Parameter, p.660 and the '*H' Mnemonic, p.613. There is a command line utility
called COLOUR (or COLOR) that can be used to display or alter the current settings.
Type COLOUR or COLOR at a ProvideX prompt to display online help for this utility.

Highlighted Search Strings
If search has been implemented for the currently-loaded program, and the 'LM'
parameter is on, the system will automatically highlight the search string when the
program is listed. For a description of the search utility syntax, refer to
Punctuation/Syntax , p.25.

Examples Given a file with twenty character records,

0020 PRINT "The quick brown fox licked the dog"

becomes

0020 PRINT "The quic
0020: k brown fox li
0020: cked the dog"

Enter
F4

Note: If a semicolon (;) is used as the first character of a line, ProvideX will hide the
line from listings making it appear as if it did not exist. The line will execute correctly,
but it cannot be viewed via the LIST directive.

LIST Directive Result:
LIST 30 Lists line 0030
/ 30 Also lists line 0030
LIST 30,100 Lists lines 0030 to 0100
LIST 30, Lists lines from 0030 to the end of the program
LIST,WRAP_UP Lists lines up to and including the statement with label WRAP_UP
LIST Lists entire program
LIST (1) Lists entire program to logical file #(1), which can be a

file/device (e.g., a printer).

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 178

LIST_BOX Directive LIST_BOX Cont rol Lis t BoxControl List Box
Formats 1. Define/Create: LIST_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]

Includes Formatted, List View, Report View, and Tree View list box formats.

2. Remove: LIST_BOX REMOVE ctl_id[,ERR=stmtref]
3. Disable/Enable: LIST_BOX {DISABLE | ENABLE} ctl_id[,ERR=stmtref]
4. Hide/Show: LIST_BOX {HIDE | SHOW} ctl_id[,ERR=stmtref]
5. Force Focus: LIST_BOX GOTO ctl_id[,ERR=stmtref]
6. Signal on Focus: LIST_BOX SET_FOCUS ctl_id, ctl_val,[,ERR=stmtref]
7. Load via Delimited String: LIST_BOX LOAD ctl_id,dlm_list$[,ERR=stmtref]
8. Load Via Array: LIST_BOX LOAD ctl_id,array_name${ALL}[,ERR=stmtref]

Note: The curly braces enclosing {ALL} are part of the syntax.
9. Load/Delete Index Element: LIST_BOX LOAD ctl_id,index,{element$ | *}[,ERR=stmtref]

10. Find Element: LIST_BOX FIND ctl_id,index,var$[,ERR=stmtref]
11. Read Current Selection: LIST_BOX READ ctl_id,var$[,mode$][,ERR=stmtref]
12. Read Current Index: LIST_BOX READ ctl_id,var[,mode$][,ERR=stmtref]
13. Write Current Selection: LIST_BOX WRITE ctl_id,element$[,ERR=stmtref]
14. Write Current Index: LIST_BOX WRITE ctl_id,index[,ERR=stmtref]
15. Clear Current Selection: LIST_BOX WRITE ctl_id, ""[,ERR=stmtref]
16. Report All Changes: LIST_BOX AUTO ctl_id[,ERR=stmtref]

Where:

@(col,ln,
wth,ht)

Position and size of the list box region. Numeric expressions. Column
and line coordinates for top left corner, width in number of columns
and height in number of lines.

array_name$ Name of array to load into list box. String variable followed by {ALL}.
ctl_id Unique logical identifier for the list box (any integer -32000 to +32000).

Avoid integers that conflict with keyboard definitions (e.g., 4 cancels
CTL=4 for the key) or Negative CTL Definitions, p.817. Use this
value with the apostrophe operator to access various Dynamic
Properties.

ctl_val CTL value to generate when the list box gains focus.
ctrlopt Control options. Supported options for LIST_BOX include:

ERR=stmtref Error transfer
FMT=def$ Define more elaborate List Box Styles, p.182.
FNT="font,size[,attr]" Font name, size, optional properties

Refer to the 'FONT' Mnemonic, p.609 for more details.
KEY=char$ Hot key
MNU=ctl CTL value associated with right-click menu event.
MSG=text$ Message line

F4

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 179

LIST_BOX OPT= Settings
Available attribute/behaviour settings are listed below. Single characters may be
combined. Invalid settings are ignored. Some settings are also used to define specific
list view control types (OPT="r" for Report Style or OPT="l" for List Style), and tree
view controls (OPT="e").

OPT=char$ (See LIST_BOX OPT= Settings)
OWN=name$ Name assigned for automated testing of this control.
SEP=char$ Delimiter character. Hex or ASCII string value.
TBL=char$ Single character translation
TIP=text$ Mouse pointer message.

To change the colour, refer to the 'TC'= System Parameter, p.689.
dlm_list$ Delimited list of elements to load. String expressions.
element$ Single element to load. Maximum string size 8kb. Use the asterisk *

instead, to delete an element. For instance, LIST_BOX LOAD 86,4,*
removes element 4 from LIST_BOX 86.

index Position of the element in the list box. Numeric expression. Integers:
the index of the 1st element is 1.

mode$ String variable. ProvideX returns a single-character hex value in this
variable to report the last method / keystroke the user chose to
activate the list box (01 for MOUSE-CLICK or $0D$ for).

stmtref Program line number or label to transfer control to.
var[$] Receives the value of the selected element (string variable) or index

(numeric variable).

"!" Exclamation Mark. (Tree View only). Data has bitmaps or icons; e.g.,
0020 LIST_BOX 100,@(10,10,10,10),OPT="e,!"

If the OPT= setting includes "!" (as above), you can use LIST_BOX LOAD
statements to define bitmaps or icons for individual elements of a tree view.
ProvideX displays the bitmap or icon to the left of the related element.
Include the image filename in LIST_BOX WRITE statements to select
(highlight) a tree view element with a bitmap or icon; e.g.,
0030 LIST_BOX LOAD 100,"{Cat.bmp}Cat/{Dog.bmp}Dog/{Hog.ico}Pig/"

or
0040 LIST_BOX WRITE 100,"{Cat.bmp}Cat"

Bitmaps or icons you define for individual elements using LIST_BOX LOAD
statements will override any default bitmaps or icons (defined using FMT=).

"#" Pound Sign. Users can select more than one entry from the list box. (This option is
not supported for tree view.) If OPT="#", and items were loaded in a single
string, then when you read/write the element(s) highlighted in the list box, the
item(s) will be returned in the variable using either the delimiter from the
LIST_BOX LOAD statement or, as default delimiter, the SEP character.

Enter

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 180

Example:
0010 PRINT 'CS'; BEGIN; LIST
0020 LIST_BOX 100,@(2,16,12,6),OPT="#"
0030 LIST_BOX LOAD 100,"Cat/Dog/Pig/"; WAIT 1
0040 ! If you read the ITEMS$ now, the returned value is null:
0050 LIST_BOX READ 100,ITEMS$;WAIT 1; PRINT ITEMS$+"Before Write"
0060 LIST_BOX WRITE 100,"Cat"; WAIT 1 ! Select "Cat"
0070 LIST_BOX READ 100,ITEMS$; PRINT ITEMS$
0080 LIST_BOX LOAD 100,2,*; WAIT 1 ! Removes "Dog"
0090 LIST_BOX WRITE 100,2 ! Select second item
0100 LIST_BOX READ 100,ITEMS$; WAIT 1; PRINT ITEMS$
0110 ESCAPE
-:run
Before Write
Cat/
Cat/Pig/

"|" Pipe (Tree View only). Show connecting lines.

LIST_BOX 100,@(10,10,10,10),OPT="e,|"

If OPT="|", the tree view displays connecting lines between various nodes of
the tree.

"~" Tilde. Standard and formatted list boxes only. No height adjustment.
Normally, a list box displays an integral number of lines. If OPT="~", the list
box will not be forced to show only complete lines. ProvideX will truncate the
last line horizontally (i.e., displaying a partial line to ensure that the height of
the list box matches the size you defined).

"A" Auto signal is on. ProvideX returns a signal on all changes in the list box.

"b" Suppress column heading or expansion and collapse (Report View and Tree
View only). In a report view, "b" suppresses the column header; e.g.,
LIST_BOX 100,@(10,10,10,10),OPT="r,b"

When you use "b" for a tree view, the "+" and " -" buttons (for the expansion
and collapse of the tree) are suppressed; e.g.,

LIST_BOX 100,@(10,10,10,10),OPT="e,b"

"B" List box has no border or frame.

"d" List box is permanently disabled. (Cannot be enabled.)

"D" or "1". List box is initially disabled.

"e" Define Tree View. By default, a tree view shows the data as a tree with tree level
"+" and " -" buttons (for the expansion and collapse of the tree). A tree view
displays and maintains the data in sorted order. When you add elements to a tree
view list box, ProvideX automatically creates and inserts the elements. Bitmaps
or icons are optional. See Tree View, p.192.

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 181

"E" Edit Mode - (Tree View only). This enables automatic editing; i.e., the user can
double click on an item to change its value. The editing of items does not
support the following input options:
- Format mask processing
- Justification (right/centre)
- Password masking
- Input start at end (append text)
- Force numeric or uppercase
- Reverse input
- Input length limitations
- Signal on all keystrokes.

"G" Global. Keep active when focus changes to a new/non-concurrent window.

"h" List box is permanently hidden. (Cannot be shown.)

"H" List box is initially hidden.

"l" Define List View. Lowercase L defines a list view list box. This list box style
displays a single-element list over multiple columns. (Columns wrap from the
bottom of one to the top of the next column.) An optional bitmap/icon can be
placed to the left of the data element. See List View, p.189.

"p" Highlight partial matches (Report View and Tree View only). WRITE
directives with strings are interpreted as selecting/highlighting items whose
leading characters match the data you are writing. That is, if "ABC" is
entered, then the first item starting with “ABC” will be highlighted (or all
items starting with "ABC" if OPT="#" is set to allow multiple selections); e.g.,
LIST_BOX 100,@(10,10,10,10),OPT="l,p,#"
 or
LIST_BOX 100,@(10,10,10,10),OPT="r,p"

"q" Disable sorting (Report View and Tree View only) .
In list view (report style), that suppresses the use of the column header to sort
data; e.g.,
LIST_BOX 100,@(10,10,10,10),OPT="r,q"

In tree view, items added to the list are always added at the end of their
respective trees; e.g.,
LIST_BOX 100,@(10,10,10,10),OPT="e,q"

"r" Define Report View. Defines a report view list box. This is a formatted list box
that allows optional headings, sorting, and other attributes. Each column of
data has an optional {column-header} for sorting data. An optional bitmap/icon
can be placed at the beginning of the row/line). See Report View, p.189.

"s" Scroll. Control can scroll within a resizable/scrollable dialogue box.

"T" Strip trailing spaces when reading or writing data for a list box.

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 182

Description Use the LIST_BOX directive to create a list box, a preset list of data elements from which
the user can select items. Standard list boxes contain a single column of data with no
formatting; however, this directive can be used to create a variety of list box styles.

List Box Styles
The following list box styles are defined using OPT= and FMT= settings:

• Formatted, p.187. Displays multiple elements in different columns with alignment
and width formatting, allowing colour mnemonics to be inserted into the data.

• List View, p.189. Lists a single element over multiple columns, where data wraps
from the bottom of one column to the top of the next.

• Report View, p.189. Displays multiple elements in different columns (like a
formatted list box) and allows column headings, sorting, bitmaps and other attributes.

• Tree View, p.192. Displays data grouped into a tree-like structure which
optionally may include + and - buttons to expand tree levels, dotted lines, and
state indicators.

Users can select any element from a list of items you assign to the list box, but
variable input is not allowed. That is, the user can only select - not enter - values. If
you need a list box that allows both variable input and selection from a list, refer to
VARLIST_BOX Control List Box, p.360.

Dynamic Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly from
the programming language. Complete lists of the properties available for manipulating
LIST_BOX, LIST_VIEW, or TREE_VIEW objects are described in Chapter 7. Control
Object Properties, p.701.

"v" First Column highlight (Report View only). Controls the highlight style for
individual list boxes and overrides print mnemonic '+V'; e.g.,
LIST_BOX 100,@(10,10,10,10),OPT="r,v"

If the user clicks anywhere on a row, only the first column of the row will be
highlighted. See also, '+V' & '-V' Mnemonics, p.645.

"V" Full Row highlight (Report View only). Controls the highlight style for
individual list boxes and overrides print mnemonic '-V'; e.g.,
LIST_BOX 100,@(10,10,10,10),OPT="r,V"

If the user clicks anywhere on a row, the entire row will be highlighted. See
also, '+V' & '-V' Mnemonics, p.645.

"Z" Cursor changes to "resize" pointer if within 4 pixels from the edge of the control.

Note: A standard Windows list box can only use vertical scrollbars. However, you can
use list view list boxes or grids to incorporate horizontal scrollbars into applications.

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 183

Format 1: Define/Create List Box
LIST_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]

Use this format to define or create a list box and give it a unique identifier in ctl_id.
When a user selects an item from a list box, the item's associated ctl_id is used in
generating a CTL value. Use an integer or numeric expression between -32000 and
+32000 for the ctl_id. The standard list box format lists a single element of data in a
single column format. Depending on the implementation, list box appearance and
format type may be changed using the following control options:

FNT= sets the font for the list box. If you omit this option, ProvideX uses the system
default font. Use FNT="*" asterisk to set the font to the standard text-mode fixed font.

OPT= expands the definition. See LIST_BOX OPT= Settings, p.179.

FMT= defines various attributes, including column/row sizing, titles and images
depending on list box requirements. For more elaborate list box styles, see
Formatted, p.187, List View, p.189, Report View, p.189, or Tree View, p.192.

The example below creates a standard list box that generates a CTL=100 when an
item is selected from it and uses FNT=text mode fixed font. The list box is loaded with
the items Dog, Cat, and Pig. The programmer writes Cat as the initial/highlighted
selection and removes Dog from the top of the list.

0010 PRINT 'CS'; LIST
0020 LIST_BOX 100,@(2,14,12,6),FNT="*"
0030 LIST_BOX LOAD 100,"Dog/Cat/Pig/"; WAIT 1
0040 LIST_BOX WRITE 100,"Cat"; WAIT 1
0050 LIST_BOX LOAD 100,1,*; WAIT 1
0060 END

Format 2: Remove
LIST_BOX REMOVE ctl_id[,ERR=stmtref]

Use the LIST_BOX REMOVE format to delete a list box. (To delete an individual
element, use the LIST_BOX LOAD directive instead.)

Format 3: Disable/Enable
LIST_BOX {DISABLE | ENABLE} ctl_id[,ERR=stmtref]

Use the LIST_BOX DISABLE format to gray out a list box so that it will be visible but
inaccessible to users. To reactivate it, use LIST_BOX ENABLE.

Note: Some of the settings (including OPT="r", OPT="l", and OPT="e") are used
specifically for the creation of List View, Tree View list boxes.

Note: The LIST_BOX formats described below apply to all list box types.

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 184

Format 4: Hide/Show
LIST_BOX {HIDE | SHOW} ctl_id[,ERR=stmtref]

With the LIST_BOX HIDE format, the list box remains active, but is not displayed. It is
still accessible programmatically. Use SHOW to restore the display and user access.

Format 5: Force Focus
LIST_BOX GOTO ctl_id[,ERR=stmtref]

Use the LIST_BOX GOTO format to reactivate and force focus to a list box, ready for the
next user action.

Format 6: Signal on Focus
LIST_BOX SET_FOCUS ctl_id, ctl_val,[,ERR=stmtref]

Use the LIST_BOX SET_FOCUS format to define an alternate CTL value to generate
whenever focus shifts to the list box.

Formats 7, 8, and 9: Load/Delete
Use the LIST_BOX LOAD formats below to add or delete the elements in a list box.
These formats set up the elements using a delimited string, an array of string
elements or individually.

LIST_BOX LOAD ctl_id,dlm_list$[,ERR=stmtref]
Load Via Delimited String. When you load elements into a list box from a delimited
string, the last character in the string must be a delimiter. That ending delimiter must
be identical to the separator between the elements in the string; e.g.,

LIST_BOX LOAD 11000,"Fox/Cat/Dog/Cow/Sheep/Horse/Pig/Elephant/Ant/"
LIST_BOX LOAD 15000,"Fox"+SEP+"Cat"+SEP+"Dog"+SEP

Loading Data with Images
Bitmaps or icons can be included with data elements that are being loaded in a list
view or tree view list box; however, the syntax for loading these images depends on
the type of listbox created.

When a List View is created (OPT="l"), use control options FMT="{}" and
SEP="," to include images. The syntax is similar to the following:

0010 LIST_BOX 10,@(10,10,50,10),OPT="l",FMT="{}",SEP=","
0030 LIST_BOX LOAD 10,"!Stop,Cat/!File,Dog/!Checkmark,Pig/"

For a Report View (OPT="r") use syntax similar to the following:

0010 LIST_BOX 10,@(10,10,50,10),OPT="r",FMT="{}[Col1]L10 [Col2]L10",SEP=","
0030 LIST_BOX LOAD 10,"!Stop,a,b/!Print,c,d/!Checkmark,e,f/"

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 185

When creating a tree view list box (OPT="e"), use the control option OPT="!". (see
Tree View, p.192). In this case, image names are assigned to the elements using
curly braces, as shown in the syntax below:

0010 LIST_BOX 10,@(10,10,50,10),OPT="e,!"
0030 LIST_BOX LOAD 10,"{!Stop}Cat/{!File}Dog/{!Checkmark}Pig/"

For more information on the options available for displaying internal/external images
and the recognized image file types, see Images and Icons, p.153 in the User’s Guide.

LIST_BOX LOAD ctl_id,array_name${ALL}[,ERR=stmtref
Load Via Array. When an array is loaded into a list box, the curly braces in {ALL}
must be included in the syntax.

LIST_BOX LOAD ctl_id,index,{element$ | *}[,ERR=stmtref]
Load/Delete Index Element. When a list box is loaded one element at a time, the
index value refers to the index before the element to be inserted. (Use a value of 1 to
insert an element at the start of the list. If the value of the index is 0 zero, the element
will be appended to the end of the list.)

If you have more elements on the data list than the physical screen size of the list box
can display at one time, ProvideX automatically supplies vertical scrollbars.

To remove or delete individual elements from the box, use LIST_BOX LOAD with an
asterisk * instead of the element string; e.g.,

LIST_BOX LOAD 86,4,* ! * deletes element 4 from list_box 86

Format 10: Find Element
LIST_BOX FIND ctl_id,index,var$[,ERR=stmtref]

Use a string variable to get the specific element’s text from a list box. By passing a
specific element number, you can retrieve the text of that element into a string variable

Formats 11 and 12: Read
Use LIST_BOX READ formats to read which element in the list box has been selected.
The string variable mode$ returns a hex value showing how the element was
selected. Possible values are described below:

01 for MOUSE-CLICK.
02 for DOUBLE MOUSE-CLICK.
$0D$ for .
Once this value is read, it is reset to 00.

ProvideX returns an EOM value and event when the user hits the or
keys, returns $2D$, returns $2E$.

Enter

Insert Delete
Insert Delete

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 186

LIST_BOX READ ctl_id,var$[,mode$][,ERR=stmtref]

Read Current Selection. When you use LIST_BOX READ with a string variable, you
can return the value of the currently selected element and the method used to make
the selection (mode$).

LIST_BOX READ ctl_id,var[,mode$][,ERR=stmtref]

Read Current Index. If you use LIST_BOX READ with a numeric variable, you can return
the element by index and the user's method of selection (mode$) from the list box.

Formats 13 and 14: Write Current Selection

Use the LIST_BOX WRITE formats to make the element the current selection,
highlighted in the list box.

LIST_BOX WRITE ctl_id,element$[,ERR=stmtref]

Write Selection. The string expression to write an element to a list box as the current selection
must exactly match the value of one of the elements in the list box. Otherwise ProvideX
returns Error #11: Record not found or Duplicate key on write.

Writing data with bitmaps or icons. Imagines can be included with specific data elements
that are being written into a list box. The syntax for including images under LIST_BOX
WRITE is similar to the syntax described for Loading Data with Images, p.184.

LIST_BOX WRITE ctl_id,index[,ERR=stmtref]

Write Index. You can write the current selection to a list box by using its index.

Format 15: Clear Current Selection
LIST_BOX WRITE ctl_id,"" [,ERR=stmtref]

Use this format to clear the currently selected entry in a list box.

Format 16: Report All Changes
LIST_BOX AUTO ctl_id[,ERR=stmtref]

Use the LIST_BOX AUTO format to have ProvideX generate a CTL value
automatically whenever the current selection is changed. Use this to track changes to
the highlighted selection in a list box.

Note: If LIST_BOX READ includes an OPT="A" setting, all changes will have an effect
on the EOM or mode$ value returned during the read.

Note: A WRITE to the list box using an index of 0 zero will reset all highlighted lines.

Note: This behavior can be altered by use of the '+N' & '-N' Mnemonics, p.623.

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 187

Formatted A formatted list box allows you to display multiple data elements over multiple
columns in a table format. This type of list box is created by adding FMT= settings to
the LIST_BOX definition (see Format 1: Define/Create List Box, p.183).

FMT= Alignment Settings
The following settings allow you to define the alignment of formatted list box columns:

The list of columns is a space-separated string enclosed in quotation marks. Each
column is formatted with an alignment code for left, right or centre (L, R, C). The
width in the format definition is the display/window width, not the number of
characters in the text. Each new row is delineated by a /slash. To hide data, use "S"
to indicate that a column is to be skipped – data is present, but not displayed and the
user cannot gain access to the column.

Example:

LIST_BOX 10000,@(5,5,35,10),FMT="L15 R5 N12 C3/B5 L25"

This loads the contents of the columns in a formatted list box from a delimited data
string (positional data for the entries in the list box). The default delimiter is the SEP
character (e.g., $8A$). To change this, use the SEP= option. Note that the value for
the field delimiter (in this case, SEP) and the value signalling the end of row (in this
case, $0A$) must be different. For the previous example:

"1123 East Main"+SEP+"Ont"+SEP+" 123.45"+SEP+"*"+SEP+"North Bay"+SEP+$0A$

"Ln" Left justify alignment code followed by n width in column units.
"Rn" Right justify alignment code followed by n width in column units.
"Cn" Centered alignment code followed by n width in column units.
"Nn" Numeric decimal point alignment followed by n width in column units.
"S" Skip inputted field (don’t show)
"Bn" Insert n blanks
"/" Line break

Note: The maximum length of an element in a formatted list box is 256 bytes.

Position Width Contents Alignment
Col 1, Line 1 15 1123 East Main L = Left
Col 2, Line 1 5 Ont R = Right
Col 3, Line 1 12 123.45 N = Numeric/Decimal
Col 4, Line 1 3 * C = Centred
Col 1, Line 2 5 B = Insert Blanks, 5 = Length
Col 2, Line 2 25 North Bay L = Left

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 188

Colour in a Formatted List Box
Formatted list boxes support colours on a per column basis. To change the colour of
a data element in a formatted list box, simply prefix the data with one of the
mnemonics in the following chart.

Normally, background colours are dimmer than their respective foreground colours. If
you want to use the background (dimmer) colour for foreground text, prefix the colour
with the 'SB' (Set Background) mnemonic. If you want to use foreground colour
brightness for the background, prefix the colour with the 'SF' (Set Foreground) mnemonic.
All colours are reset to LIST_BOX default standards at the end of each column.

Formatted List Box Example
The following example creates a formatted list box using the definition elements
explained earlier:

0010 OPEN (1)"INVOICE",(2)"CUST"
0020 LIST_BOX 10,@(10,10,60,10),FMT="L8 B2 L20 C10 N15 C3"
0030 READ (1,END=1000)INV_ID$,INV_CUST$,INV_DATE$,INV_AMT,INV_STS$
0040 READ (2,KEY=INV_CUST$)CST_NAME$
0050 LET L$=INV_ID$! 1st column
0060 LET L$+=SEP+CST_NAME$! 2nd column
0070 LET L$+=SEP+INV_DATE$! 3rd column
0080 LET X$=STR(INV_AMT:"$###,##0.00-")
0090 IF INV_AMT<0 THEN LET X$='RED'+X$! Column is red if negative
0100 LET L$+=SEP+X$
0120 LET X$='SF'+TBL(POS(INV_STS$="ISP"),"",'_GREEN','_BLUE','_RED')+INV_STS$
0130 LET L$+=SEP+X$
0140 LIST_BOX LOAD 10,0,L$
0150 GOTO 0030
1000 CLOSE (1),(2)
1010 INPUT *; IF CTL<>4 THEN GOTO *SAME

Colour Foreground Mnemonic Background Mnemonic
Black 'BLACK' '_BLACK'
Red 'RED' '_RED'
Green 'GREEN' '_GREEN'
Yellow 'YELLOW' '_YELLOW'
Blue 'BLUE' '_BLUE'
Magenta 'MAGENTA' '_MAGENTA'
Cyan 'CYAN' '_CYAN'
White 'WHITE' '_WHITE'
Light Gray 'SF'+'_WHITE'

Note: This is not standard text plane colour handling. To get light gray background
use 'SF'+'_WHITE' since '_WHITE' yields bright white.

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 189

List View A list view list box is similar to a standard list box, but it displays the data as a
continuous list over multiple columns. When loading a list view you can place an
optional bitmap or icon to the left of the data element. This type of list box is created
by adding OPT="l" (lower case L) to the LIST_BOX definition (see Format 1:
Define/Create List Box, p.183); e.g.,

0200 LIST_BOX 100,@(2,14,12,6),FNT="*",OPT="l"

Use FMT= to override the default column sizing of the list view (only "Ln", "Rn",
and "Cn" alignment are supported). To indicate that a bitmap/icon is to be placed to
the left of the data element, include a set of {} curly braces in the FMT= string. See
Loading Data with Images, p.184. This type of list box also allows use of the
partial match (OPT="p")option (see LIST_BOX OPT= Settings, p.179).

Report View A report view list box displays multiple data elements in table form (similar to a
Formatted list box), but can also include optional headings, sorting, and other
attributes. For a more elaborate version of this list box style, use a GRID, p.143.
When loading a report view, you can include a bitmap/icon to be displayed at the
beginning of each row/line. This type of list box is created by adding OPT="r" (lower
case r) to the LIST_BOX definition (see Format 1: Define/Create List Box, p.183); e.g.,

LIST_BOX 10000,@(5,5,35,10),FMT="[Company]L10 [Vendor]C6
[Amount]#R12",OPT="r"

Report View Format Options
Use FMT= to define column alignment, titles, sorting, and bitmap placement:

Column Alignment Codes for column alignment are described under FMT=
Alignment Settings, p.187; e.g.,

LIST_BOX 10000,@(5,5,35,10),FMT="[Company]L10 ..."

indicates that column 1 is left justified and 10 columns wide.
Column Titles Place title text within square brackets ahead of the alignment

code to indicate column titles; e.g., ... [Company]L10.
Bitmaps or Icons To indicate that a bitmap/icon is to be placed at the beginning of

the row/line, include a set of {} curly braces in the FMT= string.

When using different images, ensure that they are all the same
size. If different sizes are used, ProvideX treats the size of the
first bitmap/icon as the size of all images. If you use internal
bitmaps, ProvideX converts the background light gray to match
the background colour of the LIST_BOX entries. See Loading
Data with Images, p.184.

Date Sorting Date code combinations define date values for sorting purposes.
Up to three characters can be used to show the order of the date as
it appears in the data (MD, DMY, MDY, YMD ...).

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 190

OPT= settings can also be used to refine the definition of a report view list box: "b"
(suppress column header buttons), "p" (highlight partial matches) "q" (disable
sorting), "v" (first column highlight), "V" (full row highlight). For complete
descriptions, see LIST_BOX OPT= Settings, p.179

Load report view data into the columns from SEP-delimited data strings. For more
information, see Load via Delimited String, p. 184. In the following example,
ProvideX automatically supplies a horizontal scrollbar, where the total width of the
data columns is greater than the list box display width:

0100 LET X$="[Custno]L10 [Name]L20 [Address]L20 [Category]C10 [Amount]R10"
0110 LIST_BOX 10000,@(10,10,50,10),OPT="r",FMT=X$,FNT="Arial,1"
0120 PRINT "Scroll to see columns"; WAIT 5
0130 LIST_BOX REMOVE 10000; END

ProvideX doesn't translate or format the data, but recognizes and
sorts it as date values. The data must contain some sort of alpha
separator (dashes or slashes, etc.) between individual values; e.g.,

LIST_BOX 100,@(5,5,35,10),FMT="[Sent]DMYL11"

The [Sent]column will support sorting of dates where the data
is in DMY day-month-year order (15-11-99, 01\JUL\2002, etc.).

ProvideX parses the data into a maximum of three fields and treats
any alpha field it encounters as a month name. Month names must
match those currently in use by the DTE() function. If the column
contains additional data beyond the date, up to 10 of these additional
characters are included in a secondary sort for the column.

Numerical Data
Sorting

Specialized codes define numeric data for sorting purposes:

(Pound Sign) indicates that the data has been formatted
using the STR() function and contains a consistent number
of decimal places as applied by a format mask. Since the
data is formatted, ProvideX will recognize the character you
assign in the 'DP' system parameter as the decimal point for
sorting. The default is 'DP'=46 or 'DP'=ASC("."); e.g,

LIST_BOX 100,@(5,5,35,10),FMT="[Amount]#R12"

 The [Amount] column will contain formatted numeric data,
right justified, with a width of 12:

N indicates unformatted data – may contain the default ASC(".")
decimal point followed by varying numbers of digits; e.g.,

 LIST_BOX 100,@(5,5,35,10),FMT="[Amount]NC6"

The [Amount] column will contain unformatted numeric
data, centred, with a width of 10.

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 191

The following chart describes FMT= settings for line 0100 in the previous example:

Report View Colours
Colour mnemonics can precede the data in the column or it can be intermixed with
the data itself so more than one foreground/background colour can be set up per
column. If a background colour mnemonic precedes all the data in a column, then
the entire background of the column will be set to that colour. See Colour in a
Formatted List Box, p.188.

Row Highlighting
Report views support first column highlight (no matter where the user clicks on a
row) and full-line highlight (where the entire row is highlighted). Set highlighting
for individual list boxes using OPT= (either "v" or "V") when creating the list box.
You can control the highlighting style system-wide by setting the print mnemonics
'-V' and '+V'. For more information, refer to Format 1: Define/Create List Box,
p.183 and '+V' & '-V' Mnemonics, p.645.

Example Report View
0010 OPEN (1)"."
0020 SET_PARAM 'SD'
0030 LIST_BOX 10,@(5,5,25,10),OPT="r",FMT="[Name]L15 {} [Size]R7"
0040 LOOP:
0050 READ (1,END=0150)F$
0060 IF MID(F$,-1)=DLM
0060: THEN LET B$="!File",SZ$="<dir>";
0060: GOTO LOADIT
0070 LET B$=""
0080 OPEN INPUT (2,ISZ=-1)F$
0090 LET X$=FIN(2)
0100 CLOSE (2)
0110 LET SZ$=STR(DEC(X$(1,4)))
0120 LOADIT:
0130 LIST_BOX LOAD 10,0,F$+SEP+B$+SEP+SZ$+SEP
0140 GOTO LOOP
0150 CLOSE (1)
0160 ESCAPE

Position Header Title Width Alignment
Col. 1, Line 1 Custno 10 L = Left
Col. 2, Line 1 Name 20 L = Left
Col. 3, Line 1 Address 20 L = Left
Col. 4, Line 1 Category 10 C = Centred
Col. 5, Line 1 Amount 10 R = Right

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 192

Tree View A tree view control object can be created by setting OPT="e" in the definition of a list
box. (See Format 1: Define/Create List Box, p.183.) Tree views provide a
hierarchical view of the data, using a collapsible tree structure to represent a list box.
As items are loaded into the tree view, ProvideX automatically parses the entries
based on your given delimiter and creates all intervening tree levels required. For
instance, if you use a slash as your delimiter and load the single entry aaa/bbb/ccc,
ProvideX will generate three entries in the tree view:

aaa
aaa/bbb
aaa/bbb/ccc

If you then load aaa/bbb/ddd, ProvideX only creates one new entry for
aaa/bbb/ddd (since aaa and aaa/bbb already exist). If you add aaa/xxx/iiid,
ProvideX creates two new entries: one for aaa/xxx and one for aaa/xxx/iii.

When an item from a branch is selected, the list box READ returns the item,
including its parent branches. In the example above, selecting ccc would return
"aaa/bbb/ccc/".

As mentioned earlier, OPT="e" establishes a tree view definition. Several other
OPT= settings can be used to refine the definition: "!" (bitmaps or icons), "|"
(show connecting lines), "b" (suppress expansion/collapse buttons); "E" (enable
automatic editing), "q" (disable sorting). For complete descriptions, see LIST_BOX
OPT= Settings, p.179.

Tree View Format Options
Use the optional FMT= setting to define default images to be displayed in the tree. To
add images, enclose the image name in curly braces. For more information on the
options available for displaying internal/external images and the recognized image file
types, see Images and Icons, p.153 in the User’s Guide.

Filenames are mandatory in FMT="{images$}" clauses. Place them inside curly
braces in a pipe-separated list; e.g.,

LIST_BOX A,@(x,y,10,10),OPT="e",FMT="{Cat.ico|Dog.bmp|Pig.bmp}"

Null values in FMT="{images$}" are not allowed. For instance, FMT="{||Pig.bmp}"
generates an Error #23: Missing/Invalid variable.)

Ensure that all bitmaps or icons in the same LIST_BOX control are the same size
(mandatory). If you include different sizes, ProvideX treats the size of the first
bitmap/icon as the size of all images for a given list box.

If you use internal bitmaps, ProvideX converts the background light gray to match the
background colour of the LIST_BOX entries. You can define up to six default bitmaps or
icons in tree views.

Note: The unique logical identifier (ctl_id) assigned during the creation of a tree view list
box can be used with the apostrophe operator to dynamically read and alter a wide
variety of control attributes (properties). Available properties are described in Chapter 7.
Control Object Properties, p.707.

2. Directives LIST_BOX

ProvideX Language Reference V8.30 Back 193

The order of the images determines when they are used:

1. Default overall bitmap or icon: always used with any listed entries that do not
have subordinates.

2. Default bitmap or icon for items with subordinates.

3. Default bitmap or icon for items with subordinates if the tree level is expanded (i.e.,
shown) in tree view.

4. Bitmap or icon for entries that do not have any subordinates when the item is selected.

5. Bitmap or icon for entries that have subordinates when selected.

6. Bitmap or icon for entries that have subordinates when selected and level is expanded.

Example Tree View

0010 LIST_BOX 10,@(5,5,25,10),OPT="e|",
0010:FMT="{!diskette|!File|!File_open}",SEP=DLM
0020 LET F=1,D$="."
0030 NXTDIR:
0040 SET_PARAM 'SD'=1
0050 OPEN (F)D$
0060 NXTFILE:
0060:READ (F,END=ENDDIR)F$
0070 IF F$(1,1)="."
0070:THEN GOTO NXTFILE
0080 IF MID(F$,-1)<>DLM
0080:THEN LIST_BOX LOAD 10,0,PTH(F)+DLM+F$;
0080:GOTO NXTFILE
0090 LET D$=PTH(F)+DLM+F$
0100 F++
0110 GOTO NXTDIR
0120 ENDDIR:
0120:CLOSE (F)
0130 F--
0140 IF F>0
0140:THEN GOTO NXTFILE
0150 ESCAPE

Note: If images are set up for individual elements in tree view LIST_BOX LOAD and WRITE
statements, these will override the default FMT= images for the individual element. For
more information, see Loading Data with Images, p.184.

Tip: Use SEP=DLM when reading directories to have ProvideX append the operating
system delimiter to subdirectory names.

2. Directives LOAD

ProvideX Language Reference V8.30 Back 194

LOAD Directive LOAD Read Progr am in to MemoryRead Program into Memory
Format LOAD [prog_name$]

Where:

Description Use the LOAD directive to read a program into memory (i.e., to open or retrieve a
program) for execution, listing, or modification. The program you load into memory
replaces the current program, if any.

On a LOAD, ProvideX resets the FOR/NEXT, GOSUB/RETURN, and WHILE/WEND
stack. Any addresses set in SETERR or SETESC directives are cleared and the current
PRECISION is reset to two. The current DATA pointer is also reset to the start of the
program. No user data areas or files are affected by the LOAD directive.

You can only use the LOAD directive in Command mode or with the EXECUTE
directive. Misuse of the LOAD directive in Execution mode (i.e., without the
EXECUTE directive) generates Error #45: Referenced statement invalid.

If you omit the program filename, ProvideX loads the last file for which there was a
LOAD, RUN, or SAVE. If there is no prior file in the stack, ProvideX returns
Error #10: Illegal pathname specified.

See Also RUN Transfer and Execute a Program, p.294
SAVE Write Program to File, p.295
Saving, Loading, and Executing a Program, User’s Guide

Examples LOAD "MYPROG" ! Loads "MYPROG"
LOAD ! Loads last program specified, if any (in this case, "MYPROG")

->DELETE
->LOAD
Error #10: Illegal pathname specified

prog_name$ Name of the program to load/read. String expression. To load a
program from a program library, use [LIB], p.781.

Note: ProvideX accepts certain typographical errors. For instance, it accepts LAOD as
a substitute for LOAD.

2. Directives LOAD CLASS

ProvideX Language Reference V8.30 Back 195

LOAD CLASS Directive LOAD CLASS Pr e-Load C lass D ef initionPre-Load Class Definition
Format LOAD CLASS class$ [FROM "filename$"]

Where:

Description The LOAD CLASS directive is used in Object Oriented Programming to pre-load a class
definition into memory from a .pvc file. A LOAD CLASS "aaa" without any
filename$ specified will auto-load from aaa.pvc. The first code in the .pvc file
must be a DEF CLASS directive, using the same class name (class$) as is specified in
the LOAD CLASS directive.

Normally an OOP class definition is loaded into memory the first time an object of
that class is instantiated, and that class definition remains in memory and is used for
all subsequent instances of the same class.

See Also DEF CLASS Define Object Class, p.65
DROP CLASS Delete Class Definition, p.102
DROP OBJECT Delete Object, p.104
RENAME CLASS Change Name of Class, p.283
STATIC Add Local Properties at Runtime, p.329
NEW() Function, p.489
REF() Function, p.512
Data Integration, User’s Guide

class$ Name of the class to be pre-loaded. String expression.

filename Optional. Filename (.pvc) if different than class$.

Note: ProvideX accepts certain typographical errors. For instance, it accepts LAOD as
a substitute for LOAD.

2. Directives LOAD DATA

ProvideX Language Reference V8.30 Back 196

LOAD DATA Directive LOAD DATA Load Program Constant sLoad Program Constants
Format LOAD DATA filename$ [,ERR=stmtref]

Where:

Description This directive loads into memory the contents of a Variable Definition file (created
via the SAVE DATA directive). These variables are read-only, and any attempt to
change them will result in an Error #61: Authorization failure. Global
variables are not supported.

See Also SAVE DATA Save Program Constants, p.297.

Example COMPANY$="ABC Company"
DIVISION$="Laundry Division"
COMPANY_CODE=1
SAVE DATA "CO_DATA",COMPANY$,DIVISION$,COMPANY_CODE

START

LOAD DATA "CO_DATA"

DUMP
! ERR=0, CTL=0, RET=2
! Level=1
! PGN="<Unsaved>"
! Loaded data....CO_DATA (C:\Documents and Settings\Default

User\Application Data\CO_DATA)
COMPANY$="ABC Company"
DIVISION$="Laundry Division"
COMPANY_CODE=1

COMPANY_CODE=2
Error #61: Authorization failure

filename Name of Variable Definition file in which to store constant.
stmtref Program line number or label to transfer control to.

2. Directives LOCAL

ProvideX Language Reference V8.30 Back 197

LOCAL Directive LOCA L D es ignation of Local DataDesignation of Local Data
Format 1. Assign Local Variable: LOCAL varlist

2. Assign Local Arrays: LOCAL DIM array_name[$]

3. Define Local Properties (OOP): LOCAL prop1[OBJECT], prop2 [OBJECT]....

Where:

Description The LOCAL directive is used to reassign variable names temporarily within a called
procedure, without affecting the original contents (if any). In Object Oriented
Programming (OOP), the LOCAL directive is similar to the PROPERTY directive, but is
used to declare data that is only visible to processing logic within the object itself.

Format 1: Assign Local Variables

LOCAL varlist

Use this format to reassign variable names temporarily, without affecting the original
contents. If the variable name supplied in the LOCAL directive is in current use, ProvideX
will preserve its value/contents. Once the current FOR/GOSUB stack has been cleared or
the program is exited, ProvideX restores variables that were designated local to their
original values. (Local variables are only active until the current stack is cleared.)

The LOCAL directive can take an assignment during declaration; however, direct
assignment does not work for arrays that are declared as local.

Example:

In the example below, X is designated as local for both subroutines (CHK_IT and
LOOP), so the value of X is restored to its original value "1234" after the GOSUB
stack is cleared for each subroutine. Since X$ was not designated as LOCAL in the
LOOP subroutine, its value has changed from "START TEST, X=" to "LOOP" after the
GOSUB stack for the LOOP has been cleared.

1030 LET X=1234,X$="START TEST, X="; PRINT X$,X
1040 GOSUB CHK_IT
1050 PRINT "TEST DONE"
1060 GOSUB LOOP
1070 PRINT X$,X," DONE"; STOP

array_name[$] Numeric or string variable to be dimensioned as an array.
OBJECT Optional keyword identifies that the property contains an object

identifier to another object.
prop1,
prop2 ...

Property names – treated like any other variable in the system. (In
Object Oriented Programming, data elements are called properties.)

varlist Variables to be used temporarily in the execution of a subroutine,
subprogram, FOR/NEXT, SWITCH/END SWITCH, WHILE/WEND,
REPEAT/UNTIL, or user-defined function.

2. Directives LOCAL

ProvideX Language Reference V8.30 Back 198

6000 CHK_IT:
6010 LOCAL X$,X; LET X$="CHECK X:"; PRINT X$,X
6020 LET X=X+10
6030 PRINT X$,X
6040 RETURN
7000 LOOP:
7010 PRINT "START LOOP, X=",X
7020 LET X$="LOOP" ! Not designated as LOCAL
7030 FOR LOCAL X=1 TO 4
7040 PRINT X$,X
7050 NEXT X
7060 RETURN
-:run
START TEST, X= 1234
CHECK X: 0
CHECK X: 10
TEST DONE
START LOOP, X= 1234
LOOP 1
LOOP 2
LOOP 3
LOOP 4
LOOP 1234 DONE

Variables in function definitions can be designated as local to prevent changes in
program variables:
0010 DEF FNXY(LOCAL X,LOCAL Y,LOCAL Z)=X+Y+Z

Format 2: Assign Local Arrays

LOCAL DIM array_name[$]

Use LOCAL with DIM to define an array name temporarily within a called procedure.
Once defined, subsequent uses of DIM to assign dimensions to the array will be
assumed to be local.

In Object Oriented Programming (OOP), array names are assigned local in the same
way as variables. The DIM directive is not required; e.g., LOCAL array_name[$].

Format 3: Define Local Properties in Object Oriented Programming

LOCAL prop1[OBJECT], prop2 [OBJECT]....

In Object Oriented Programming, the LOCAL directive can be used to define the
properties for an object class that are not exposed to external applications. They can
be accessed during the execution of program logic within the object class itself.

This format of the LOCAL directive is similar to the PROPERTY directive: variable
declarations may include dimensioned arrays and object references. LOCAL
properties are typically used for:

2. Directives LOCAL

ProvideX Language Reference V8.30 Back 199

• File handles (if the object is maintained on a file).
• Security information.
• Flags and status information used by the programming logic.
If the local variable contains an object identifier to another object, specify the
keyword OBJECT after the variable name. When the object is deleted, ProvideX will
use the REF() function against the object identifier to remove it (as long as it has no
other references); e.g.,

DEF CLASS "Customer"
LOCAL File OBJECT

When you delete an object whose class is Customer, then the system reduces the
reference count of the object whose identifier is in File and, if it is no longer being
referenced, deletes it as well.

See Also DEF CLASS Define Object Class, p.65
DROP CLASS Delete Class Definition, p.102
DROP OBJECT Delete Object, p.104
FUNCTION Declare Object Method, p.137
LIKE Inherit Properties, p.174
LOAD CLASS Pre-Load Class Definition, p.195
PROGRAM Create/Assign Program File, p.259
PROPERTY Declare Object Properties, p.261
RENAME CLASS Change Name of Class, p.283
STATIC Add Local Properties at Runtime, p.329
NEW() Function, p.489
REF() Function, p.512
Data Integration, User’s Guide.

2. Directives LOCK

ProvideX Language Reference V8.30 Back 200

LOCK Directive LOCK Reser ve File for Exclus ive U seReserve File for Exclusive Use
Format LOCK (chan[,ERR=stmtref])

Where:

Description Use the LOCK directive to reserve a given file for exclusive processing by the
user/program. Once a file is locked, no other user or program can gain access to it.
However, if another user already has the given file open, the OPEN and LOCK
directives fail and ProvideX returns Error #0: Record/file busy.

See Also UNLOCK Remove Exclusive Use from File, p.349

Examples 0010 OPEN (30,ERR=0100)"GLFILE"
0020 LOCK (30,ERR=0120)
...
0100 PRINT "Cannot open GLFILE"
0110 STOP
0120 PRINT "GL still in use—try later"
0130 STOP

chan Channel or logical file number of the file to be locked.

stmtref Program line number or label to transfer control to.

2. Directives LONG_FORM

ProvideX Language Reference V8.30 Back 201

LONG_FORM Directive LONG_FORM Use Long Var iable NamesUse Long Variable Names
Format LONG_FORM

Description Use the LONG_FORM directive to have the ProvideX compiler's input-parsing
routine accept long variable names (default mode). The complementary directive is
SHORT_FORM, which allows only short variable names.

You can write programs in either SHORT_FORM or LONG_FORM or a combination of
both. You can also run programs in either mode.

See Also 'LF' System Parameter, p.672,
SHORT_FORM Use Short Variable Names, p.325.

Examples -:LONG_FORM
-:LONG_NAME$="OK"
-:SHORT_FORM
-:LONG_NAME$="NOT OK IN SHORT_FORM"
Error #20: Syntax error ...ONGNAME$="L... (Long variable name not

accepted)
-:L$="OKAY IN SHORT_FORM"

2. Directives MENU_BAR

ProvideX Language Reference V8.30 Back 202

MENU_BAR Directive MENU_BAR Cont rol Menu BarControl Menu Bar
Formats 1. Define/Create: MENU_BAR ctl_id,menu_def$[,ERR=stmtref]

2. Remove: MENU_BAR REMOVE[,ERR=stmtref]
3. Disable/Enable Item: MENU_BAR {DISABLE | ENABLE} element[$][,ERR=stmtref]
4. Force Focus: MENU_BAR GOTO[,ERR=stmtref]
5. 'Check'/'Uncheck' Item: MENU_BAR {ON | OFF} element[$][,ERR=stmtref]
6. Read Selected Item: MENU_BAR READ var$[,ERR=stmtref]
7. Clear Menu Bar: MENU_BAR CLEAR[,ERR=stmtref]
8. Restore Default Help: MENU_BAR RESET[,ERR=stmtref]
Where:

Description Use the MENU_BAR directive to define and control the menu across the top of a
window.

Format 1: Define/Create Menu Bar
MENU_BAR ctl_id,menu_def$[,ERR=stmtref]

This format creates a menu bar control object. If the menu bar is not properly defined,
ProvideX returns an Error #87: MENUBAR definition invalid. Define the
menu_def$ of menu groups and elements and identify each item uniquely (e.g., F and O
would identify File/Open) by marking the character the user can enter in conjunction
with the key (e.g., -F) to select the particular item. Use the following format:

• Enclose each menu group in square brackets.
• Delimit each item in a group with a comma.
• Prefix each item's selection character (hot key) with & (an ampersand).
• Prefix each sub-menu group with its item ID.

ctl_id Unique logical identifier for the menu bar. Use an integer between -32000
to +32000. Avoid integers that conflict with keyboard definitions (e.g., 4
cancels CTL=4 for the key) or special negative CTL values set by the
system. See Negative CTL Definitions, p.817.

element[$] Individual menu selection. Expression consisting of shortcut letters
or assigned item CTL values for accessing the selection.

menu_def$ Menu structure and elements. String expressions. Maximum 2047
elements. A bitmap/icon can be included for each element in the menu.
Tip: To determine how many elements you already have, count the
ampersands (&).

stmtref Program line number or label to transfer control to.

var$ String variable to receive the last selected menu item.

F4

Alt Alt

2. Directives MENU_BAR

ProvideX Language Reference V8.30 Back 203

The example below shows a menu string containing File and Edit, each with a
submenu (File: Open, Save, and Quit – Edit: Add and Delete). Each item has a
shortcut key. Quit has both the shortcut key, Q, and a control ID value, 4.
MENU_BAR 100,"-[&File,&Edit],F:[&Open,&Save,&Quit=4],E:[&Add,&Delete]"

ProvideX includes the HELP selection on all menu bars by default. You can suppress
the HELP selection by inserting a minus sign "-" as the first character in a menu
definition string, as in the example above.
Right-justify a description of the menu entry (e.g., to tell users what function key
will give them quick access to the selection). Use the tab character 09 to separate
the text to be right-justified; e.g.,
MENU_BAR 99,"[&File,&Edit...],E:[&Cut"+09+"Shft-DEL,&Paste"+09+"Ins]"

Assigning CTL Values
Normally, any selection from the menu bar will generate its ctl_id. You can also have
individual menu items generate CTL values. To do this, append an equals sign "=" and
CTL value to any item in the menu selection list (e.g., &Quit=4, in the example above).
It is best to use unique shortcut keys for selections from a given sub-menu in a group. If
you have duplicates, you'll have difficulty determining which selection a user makes
unless a unique CTL value is assigned to each item. If you omit a shortcut key, ProvideX
assigns a value equivalent to the item's placement in the definition string.
Add a line to separate options by inserting an additional comma “,” as a place
holder in the definition string (e.g., between &Open &Save).
MENU_BAR 120,"[&File],F:[&Open,,&Save,&Quit=4]".
Menu items can also be disabled, or displayed in bold or with a checkmark, by
placing a "D", "B", or "C" after the = (equal sign) and before the assigned CTL
value. ; e.g., "[&One=1,&Two=BC2,&Three=D3]"

Using Images
Images can be included for each item in the menu. Enclose the image name in curly
braces and place it in the menu definition just prior to the specific item text; e.g.,

MENU_BAR 1000,"-[&File],F:[&Open=1001,{!Stop}&Stop=1002]"

Use a leading exclamation point (!) to identify the image as internal, or specify the
relative path and filename to access an image file that is external. The first bitmap
determines the dimensions used to display menu items (up to 64x64). Transparency
options can also be included. "T" indicates use of the upper left most pixel colour,
and "G" means use colour RGB: 192,192,192; e.g.,

E:[{!Copy,t}&Copy,{!Paste,g}&Paste]

For more information on the options available for displaying internal/external images
and the recognized image file types, see Images and Icons, p.153 in the User’s Guide.

2. Directives MENU_BAR

ProvideX Language Reference V8.30 Back 204

Two-Tone Effects
Both the MENU_BAR and POPUP_MENU directives support the use of two optional
parameters for defining background and left edge colours in menus (similar to MS
Office applications):

The arg value is defined using the same format as the Colour Properties, p.727. In
the following example, the RGB colour 200,200,200 is used for the left edge of all
entries in this menu:

MENU_BAR 10,"LEFT(RGB:200,200,200),[&File,&Edit,&Help],F:[...."
POPUP_MENU "LEFT(RGB:200,200,200),[&Cut,&Paste,&Delete]",x$

The next example uses the RGB colour 255,255,150 as the background colour for all
of the text portion of the menu.

MENU_BAR 10,"FILL(RGB:255,255,150),[&File,&Edit,&Help],F:[...."
POPUP_MENU "FILL(RGB:255,255,150),[&Cut,&Paste,&Delete]",x$

In the following, the menu will have the "Delete" entry highlighted with a
different colour background:

MENU_BAR 10,"[&Edit],E:[&Cut,&Paste,&Delete=FILL(RGB:255,255,192)]"
POPUP_MENU "[&Cut,&Paste,&Delete=FILL(RGB:255,255,192)]",x$

Format 2: Remove Menu Bar
MENU_BAR REMOVE[,ERR=stmtref]

This format deletes the menu bar completely from the current session. It cannot be
re-displayed until it is redefined.

Format 3: Disable/Enable Item
MENU_BAR {DISABLE | ENABLE} element[$][,ERR=stmtref]

Use the MENU_BAR DISABLE format to gray out the specified menu bar item so that
it will be visible but inaccessible to users. ENABLE reactivates it. See "Toggling" above.

Format 4: Force Focus
MENU_BAR GOTO[,ERR=stmtref]

This enables and forces focus to a menu bar, ready for the next user action.

LEFT(arg) Background colour for the bitmap portion of the menu. Must be
placed outside "[...]" menu definitions.

FILL(arg) Background colour for the right/text side. If placed outside "[...]"
menu definitions it will serve as the default colour for all menu
items. If placed within "[...]", it will be considered the colour
associated with a specific menu item.

Note: The colours only affect vertical portions on the menu, not the area that runs
horizontally across the top. Also note that system-supplied Cut, Copy, Paste, and
Delete menu items will adhere to the FILL(arg) and LEFT(arg) definitions for the menu.

2. Directives MENU_BAR

ProvideX Language Reference V8.30 Back 205

Format 5: 'Check'/'Uncheck' Item
MENU_BAR {ON | OFF} element[$][,ERR=stmtref]

The MENU_BAR ON option displays a check mark in front of a specified menu bar
item, making it appear that it was selected. OFF removes the check mark.

Toggling CTL values (Formats 6 and 7): Menu items element[$] are usually
identified via shortcut keys; e.g., MENU_BAR ON "FPS" toggles items File, Print, Save.
When using CTL values, and more than one menu item uses the same CTL, then all
menu items using that CTL will be toggled. If toggling just one item, then use that
CTL value only. If toggling more than one, then make a string of the CTL values,
prefixing a pound sign (#) to each CTL value separated by commas; e.g.,

MENU_BAR ON 12034
MENU_BAR OFF "#12034,#12035,#12036"

Format 6: Read Selected Item
MENU_BAR READ var$[,ERR=stmtref]
When a user selects any of the items from a menu bar, ProvideX generates the ctl_id
you assigned to the menu bar. You can return the selected menu item code in a string
variable using MENU_BAR READ. Based on the following example, if the user
selected Delete from the Edit menu, MENU_BAR READ would return ED:
MENU_BAR 100,"-[&File,&Edit],F:[&Open,&Save,&Quit=4],E:[&Add,&Delete]"

Format 7: Clear Menu Bar
MENU_BAR CLEAR[,ERR=stmtref]

Use the MENU_BAR CLEAR format to remove the menu bar from the current
window until a BEGIN or END is executed.

Format 8: Restore Standard Help
MENU_BAR RESET[,ERR=stmtref]

This format resets the current menu bar to the default Help setting.

Note: Formats 6 and 7 result in an Error #11: Record not found or
Duplicate key on write if a MENU_BAR item cannot be found.

Note: Use a MENU_BAR RESET or MENU_BAR CLEAR directive before altering the
menu bar.

2. Directives MERGE

ProvideX Language Reference V8.30 Back 206

MERGE Directive MERGE Read/Append Lines fr om FileRead/Append Lines from File
Formats 1. Specify Source File by Channel: MERGE (chan,fileopt)

2. Specify Source File by Serial Filename: MERGE filename$

Where:

Description Use the MERGE directive to add program statements from a source file to the current
(target) program. You can use a MERGE directive for serial or indexed files. You can
also use it with Memory files. The source file must contain records that are
statements in valid List format (i.e., with correct syntax, line numbers, etc.).

You have to include line numbers in the source file, but you do not have to put them
in numeric order. ProvideX reads them into the target program in ascending
sequence as if they were entered in Command mode, but will place them in the
correct numeric sequence, using the source file's numbering.

If a source file contains a statement without a statement number, or with an invalid
statement number (outside of the allowed range), ProvideX generates Error #21:
Statement number is invalid and halts the MERGE process.

ProvideX terminates the MERGE process when it encounters an End-of-File status in
the source file.

Format 1: Specify Source File by Channel
MERGE (chan,fileopt)

This opens the source file and use its current channel / logical file number to
identify it. You can use this format with a memory-resident file (i.e., *MEMORY*).

chan Channel or logical file number of the file to reference.

fileopt Supported file options (see also, File Options, p.810):
ERR=stmtref Error transfer
IND=num Record index
TBL=stmtref Record number.

filename Name of the serial file to be used as the source file for the merge.

Warning: During the MERGE process, if a statement from the source file has a line
number matching a line number in the target program, the statement from the source
file will overwrite the corresponding statement in the target program.

Note: MERGE does not support code generated using the LIST EDIT format.

2. Directives MERGE

ProvideX Language Reference V8.30 Back 207

Format 2: Specify Source File by Serial Filename
MERGE filename$

You can use a serial filename to identify it as the source for the MERGE (instead of
opening it and referring to the channel).

Example The following is a sample terminal session using the MERGE directive to combine
two programs:

0->LOAD "TIME.PRT"
->LIST
1000 REM Time output routine
1010 T$=STR(INT(TIM)*100+FPT(TIM)*60:"00:00")
1020 RETURN
->SERIAL "WORKFILE"
->OPEN (1)"WORKFILE"; LOCK(1)
->LIST (1)
->CLOSE (1) ! WORKFILE has list of program
->LOAD "PASS.CTRL"
->LIST
0010 GOSUB 1000; PRINT "1st pass: ",T$
0020 CALL "PASS1"
0030 GOSUB 1000; PRINT "2nd pass: ",T$
0040 CALL "PASS2"
0050 GOSUB 1000; PRINT "End both: ",T$
0060 STOP
->OPEN (1)"WORKFILE"
->MERGE (1)
->CLOSE (1)
->LIST
0010 GOSUB 1000; PRINT "1st pass: ",T$
0020 CALL "PASS1"
0030 GOSUB 1000; PRINT "2nd pass: ",T$
0040 CALL "PASS2"
0050 GOSUB 1000; PRINT "End both: ",T$
0060 STOP
1000 REM Time output routine
1010 T$=STR(INT(TIM)*100+FPT(TIM)*60:"00:00")
1020 RETURN

See Also INDEXED Create Indexed File, p.159,
MEMORY Create & Use Memory File, p.741,
SERIAL Create a Sequential File, p.302

2. Directives MESSAGE_LIB

ProvideX Language Reference V8.30 Back 208

MESSAGE_LIB Directive MESSA GE_LIB Establish M essage LibraryEstablish Message Library
Formats 1. Designate Message Library: MESSAGE_LIB filename$[,NBF=num][,ERR=stmtref]

2. Add Library to Top of List: MESSAGE_LIB ADD filename$[,NBF=num][,ERR=stmtref]

3. Remove Library from List: MESSAGE_LIB DROP filename$[,ERR=stmtref]

4. Remove Top Library from List: MESSAGE_LIB POP [,ERR=stmtref]

Where:

Description Use the MESSAGE_LIB directive to designate files as containing messages to be
returned by the MSG() function. A message library must be a variable length Direct
/ Keyed file with the message identifier as the key. The record contains the message.
As of Version 4.12, there is an alternate key to the *msglib.en (and any newly
created MESSAGE_LIB files) on the first 50 characters of the message field.

See Also MSG() Function, p.484
KEYED Create Single/Multi-Keyed File, p.166
DIRECT Create File with Keyed Access, p.89

Format 1: Designate Message Library
MESSAGE_LIB filename$[,NBF=num][,ERR=stmtref]

Use this format to designate and add filename(s) to the MESSAGE_LIB list.

In earlier versions of ProvideX, only one message library could be active at a time –
when using a MESSAGE_LIB directive. ProvideX closed any other currently active
message library and designated your given file as the new one. Currently, you can
now have more than one message library active at a time. With use of the MSG()
function, the message libraries are searched in order until a match is found.

An error is generated if the file cannot be properly opened. Use NBF= to specify the
number of buffers to allocate. The filename$ expression can contain one or more
MESSAGE_LIB filenames, each SEP-separated, so that you can reset the entire list in
one command.

filename Name of the variable length Direct/Keyed file to be used as a Message
Library. String expression.

num Number of buffers to allocate.

stmtref Program line number or label to transfer control to.

2. Directives MESSAGE_LIB

ProvideX Language Reference V8.30 Back 209

Example 1:

KEYED "MESSAGE.LIB",10,0,-256
OPEN (1)"MESSAGE.LIB"
WRITE RECORD (1,KEY="NOCUST")"Sorry but Customer %1 is not valid"
CLOSE (1)
MESSAGE_LIB "MESSAGE.LIB"
PRINT MSG("NOCUST","0001")
Sorry but Customer 0001 is not valid

Example 2:

0010 MESSAGE_LIB "*MSGLIB."+ENV("LANG"),ERR=0020;GOTO 0100
0020 MESSAGE_LIB "*MSGLIB.EN"
0100 REM...
0110 ! ...
1000 READ (CST_FN,KEY=K$,DOM=1900)...
1010 ! ...
1900 PRINT MSG("REC_MISS",K$)

Format 2: Add Library to Top of List
MESSAGE_LIB ADD filename$[,NBF=num][,ERR=stmtref]

Use this format to add a filename$ to the top of the list of message library to search.
An error is generated if the MESSAGE_LIB file cannot be properly opened. Use the
NBF= option to specify the number of buffers to allocate.

Format 3: Remove Library from List
MESSAGE_LIB DROP filename$[,ERR=stmtref]

This format removes the specified filename$ from the list of message libraries to
search. An Error #12: File does not exist (or already exists) is
generated if the filename$ is not on the list.

Format 4: Remove Top Library from List
MESSAGE_LIB POP [,ERR=stmtref]

Use this format to remove the top filename$ from the list of message libraries to
search. An Error #12: File does not exist (or already exists) is
generated if filename$ is empty.

2. Directives MNEMONIC

ProvideX Language Reference V8.30 Back 210

MNEMONIC Directive M NEMONIC Define File Command SequenceDefine File Command Sequence
Format MNEMONIC [(chan)]mnm_name$=esc_sequ$

Where:

Description Use the MNEMONIC directive to define additional mnemonics for files and/or
devices. Once you define a mnemonic for a given logical file number, it stays active
until the channel is closed. When ProvideX encounters a user-defined mnemonic in a
PRINT or INPUT statement, it converts the mnemonic to the character string in the
escape sequence.

Under WindX
WindX supports the use of this MNEMONIC directive via the [WDX] tag. After
opening a channel across a WindX connection, all declared mnemonics (except '*R'
and '*X') are sent automatically to the WindX workstation. ProvideX considers the
'*R' and '*X' mnemonics to be local to the server unless you use the [WDX] tag in
declaring them. ('*R' declares an operating system command to execute on channel
close, and '*X' declares a program to call on channel close.)

The following is an example of the EXECUTE command under WindX prior to Version
4.20:

IF WDX%<>00 THEN EXECUTE "[WDX]MNEMONIC(LFO)'5X'=$1B+hex$" ELSE GOTO MY_LABEL

 For more information, see [WDX] Direct Action to Client Machine, p.801.

See Also Chapter 5. Mnemonics, p.577.

Examples To define and use a mnemonic:

0010 OPEN(1) "/dev/printerxx"
0020 MNEMONIC 'US'=ESC+"_" ! Define mnemonic
....
0030 PRINT(1)'US',"Title line...", ! Underscored

The example below illustrates how the MNEMONIC directive can be used for flexible
text fonts on a screen in Windows. Define the font and the logical screen size in a
statement. For example, to assign settings for the ProvideX standard mnemonics 'CP'
and 'SP':

MNEMONIC(0)'CP'="Courier New,-8":120,40
MNEMONIC(0)'SP'="*":80,25

chan Channel or logical file number for which the mnemonic is defined.

mnm_name$ Valid mnemonic name, enclosed in apostrophes. String expression.

esc_sequ$ Escape or command sequence required by the file/device in order
to process the mnemonic. String expression.

2. Directives MNEMONIC

ProvideX Language Reference V8.30 Back 211

Then, a subsequent PRINT 'CP' directive will change the screen font to Courier
New with a size of 8 points. PRINT 'SP' restores the screen font to standard print.

WindX Examples:
0OPEN(chan)"[WDX]\\mach\printer_share"
MNEMONIC(chan)'FF'=$0C$! automatically goes to WindX workstation
MNEMONIC(chan)'*R'="erase "+filename$! local to server, not workstation
MNEMONIC(chan)'*R'="[WDX]erase "+filename$! on workstation, not server

Note: The TEXT plane font must always be a fixed font.

2. Directives MSGBOX

ProvideX Language Reference V8.30 Back 212

MSGBOX Directive MSGBOX Display PopUp Message BoxDisplay PopUp Message Box
Format MSGBOX text$[,title$[,options$[,selection$]]]

Where:

Description Use the MSGBOX directive to display a window with a message in the middle of the
screen. The text will be split into segments (lines) based on the system settings for
screen width and centring characteristics. You can define multiple lines of text by
using a SEP character between lines. Use the options string to identify the buttons
and/or icons you want to include in the message box. The user's message box button
selection is returned in a string variable.

options$ Customized message box options. Optional string expressions,
separated by commas if you include a list. Supported options for
MSGBOX buttons include:

OK Ok only
CANCEL Ok, Cancel
RETRYCANCEL Retry, Cancel
ABORT Abort, Retry, and Ignore.
YESNO Yes, No
YESNOCANCEL Yes, No, Cancel
1 (or 2 or 3) Default button number

Valid icons (in graphics mode only):
STOP Stop sign
INFO Lowercase 'i ' in a circle.
QUESTION or ? Question mark
EXCLAMATION or ! Exclamation Mark

Miscellaneous:
BEEP Send associated sound
TIM=num Maximum time-out value in integer seconds. This

allows message boxes to time-out and close
automatically. The returned value is "TIMEOUT".

TOP or ^ Always on top (forces foreground window)

Example: MSGBOX "The report is completed","F.Y.I.","TIM=3"

In the above example, the message box will self-destruct in 3 seconds..

selection$ String variable to return the button selected by the user. Possible values
are "ABORT", "CANCEL", "IGNORE", "NO", "OK", "RETRY", "YES".

text$ Text to appear in the message box. String expression.

title$ Title of the message box. String expression. (If you omit this field, the
title will be "Error".)

2. Directives MSGBOX

ProvideX Language Reference V8.30 Back 213

Customizing the Message Box

If the 'MX' system parameter is set, the system calls subprograms *ext/msgbox.gui
(user-defined) or *ext/system/msgbox.gui (ProvideX-supplied) to process the
request instead of the standard Windows message box. By default, ProvideX sets the
'MX' parameter to On when *ext/msgbox.gui is found to exist.

The msgbox.gui subprogram creates and displays a message box that is virtually
identical to the standard Windows system message box but will use XP-style (or
Vista) buttons if the '4D' mnemonic is enabled. In addition, it will use the
currently-selected windows graphic font.

Several internal bitmap names for standard Windows bitmaps are available for
displaying the embedded OS icons used by the normal message box API call:
!Sys_Stop, !Sys_Question, !Sys_Info, and !Sys_Exclamation.

The button text OK, YES, NO, CANCEL, ABORT, RETRY, CONTINUE, and IGNORE are
included in the system message library file (i.e., *mlfile.en) to provide support
for multi-lingual systems. The message numbers are defined as follows:

Use the DEF MSG directive to temporarily override the message text associated with
the MSG() number. This directive allows messages to be changed on the fly. For
example, MSG(164) "&Yes,&No" can be changed to another language:
DEF MSG(164) = "&Oui,&Non"

Using Customized Messages with WindX
Use of this facility under WindX requires some additional effort by the developer;
i.e., will the subprogram be running on the host or on the workstation. If the
program runs on the host, it will transmit the screen drawing information to the
workstation just like any other ProvideX program. If the program is to run on the
workstation, the host will simply send the MSGBOX parameters to WindX, which in
turn runs the program locally (assuming it is present).

The setup for WindX is described as follows:

Note: When 'MX' is set, MSGBOX commands entered in console mode or executed within
an EXECUTE command cannot be followed by any other command (as MSGBOX will
be executing a CALL without a return address).

MSG() Number String
160 "OK"

161 "OK,Cancel"

162 "&Retry,Cancel"

163 "&Abort,&Retry,&Ignore"

164 "&Yes,&No"

165 "&Yes,&No,&Cancel"

2. Directives MSGBOX

ProvideX Language Reference V8.30 Back 214

• To run the host’s msgbox.gui, set the 'MX' system parameter. No change is
required for workstation software.

• To run the workstation’s msgbox.gui, ensure that the program exists on the
workstation, then execute [wdx]Set_param 'MX' to set the parameter locally.

This takes advantage of the fact that ProvideX automatically sets 'MX' based on the
existence of a (user-defined) *ext/msgbox.gui. Simply copy the msgbox.gui
from *ext/system to the *ext directory on the host, the system will use it and
send screen drawing directives to the workstation. If it is copied (or installed) to
*ext on the WindX workstation, the system will automatically use it, assuming it is
not overridden by the host.

This customizable MSGBOX also takes advantage of the 'BEEP' mnemonic.

See Also 'MX' System Parameter, p.675
DEF MSG Define Temporary Message, p.70

Examples 1000 MSGBOX "Remove the customer record",
1000: "Confirmation Please","?,YESNO",X$
1010 IF X$<>"YES" THEN RETURN
1020 REMOVE (1,KEY=K$)

2. Directives MULTI_LINE

ProvideX Language Reference V8.30 Back 215

MULTI_LINE Directive MULTI_LINE Contr ol Multi-Line In putControl Multi-Line Input
Formats 1. Define/Create: MULTI_LINE ctl_id, @(col,ln,wth,ht)[,ctrlopt]

2. Remove: MULTI_LINE REMOVE ctl_id[,ERR=stmtref]
3. Disable/Enable: MULTI_LINE {DISABLE | ENABLE} ctl_id[,ERR=stmtref]
4. Lock/Unlock: MULTI_LINE {LOCK | UNLOCK} ctl_id[,ERR=stmtref]
5. Hide/Show: MULTI_LINE {HIDE | SHOW} ctl_id[,ERR=stmtref]
6. Force Focus: MULTI_LINE GOTO ctl_id[,ERR=stmtref]
7. Signal on Focus: MULTI_LINE SET_FOCUS ctl_id,ctl_val[,ERR=stmtref]
8. Read Current Value: MULTI_LINE READ ctl_id,var$[,mode$][,ERR=stmtref]
9. Load Value: MULTI_LINE WRITE ctl_id,contents$[,ERR=stmtref]

10. Report All Changes: MULTI_LINE AUTO ctl_id[,ERR=stmtref]

Where:

@(col,ln,
wth,ht)

Position and size of the multi-line input region. Numeric expressions.
Column and line coordinates for top left corner, width in number of
columns and height in number of lines.

contents$ Text / contents of the multi-line input field. String expression.

ctl_id Unique logical identifier for multi-line input (any integer -32000 to
+32000). Avoid integers that conflict with keyboard definitions (e.g., 4
cancels CTL=4 for the key) or Negative CTL Definitions, p.817. Use
this value with the apostrophe operator to access various Multi-Line
Properties.

ctrlopt Control options. Supported options for MULTI_LINE include:
ERR=stmtref Error transfer
HLP=string$ Help functionality, see AutoComplete, Calendar, p.219.
FMT=mask$ For valid options, see Data Format Masks, p.813. FMT="!"
can be used to indicate that the field should be displayed as blank if the value
is 0 zero; however, do not use FMT="!" if you wish to display a 0 zero being
entered, or if the value being entered can have 0 as its integral component;
e.g., - 0.99 or .12.
FNT="font,size[,attr]" Font name, size, optional properties. Refer to the
'FONT' Mnemonic, p.609 for details.
KEY=char$ Hot key
LEN=num$ Maximum input characters. You can use the LEN= option in
conjunction with the FMT= option to limit the number of characters
allowed for a MULTI_LINE WRITE that violates the format mask.
MSG=text$ Message line
MNU=ctl CTL value associated with right-click menu event.
NUL=string$ Empty value
OPT=char$ (See MULTI_LINE OPT= Settings, p.216.)

F4

2. Directives MULTI_LINE

ProvideX Language Reference V8.30 Back 216

MULTI_LINE OPT= Settings
Available attribute/behaviour settings are listed below. Single characters may be
combined. Invalid settings are ignored.

OWN=name$ Name assigned for automated testing of this control.
SEP=char$ Delimiter character. Hex or ASCII string value.
TIP=text$ Mouse pointer message.

To change the colour, see 'TC'= System Parameter, p.689.

ctl_val CTL value to generate when focus goes to the multi-line input field.

mode$ String variable. ProvideX returns a single-character hex value in this
variable to report the last method / keystroke the user chose to
terminate the multi-line input field, e.g., $0D$ for as the EOM
character for a 1-line multi-line input field, or 09 for to exit a
multi-line input field.

stmtref Program line number or label to transfer control to.

var$ String variable to receive the text/contents of the multi-line input field.

"$" Password entry displays dollar sign as substitute for each character entered.

">" Include a horizontal scrollbar.

"!" Support for Arabic characters (right to left entry).

"A" Auto. Generates a CTL value signal for every character entered.

"B" No border. The multi-line input region will not have a border.

"C" Centre the input.

"d" Permanently disabled.

"D" Disabled. Multi-line region is is grayed out and is not accessible to the user.

"E" Edit Mode. Append to end of existing text (default=Insert)

"F" Full. Generate a signal upon maximum input length.

"G" Global. Keep active when focus changes to a new/non-concurrent window.

"h" Permanently hidden.

"H" Hide. Mult-line is not displayed but is accessible programmatically.

"i" Suppress the '+I' mnemonic (implied decimal points) for a single
multi-line input region.

"I" Activate the '+I' mnemonic for implied decimal points for a single
multi-line input region.

"L" Lock. User can set focus, but cannot change the multi-line input region.

"R" Right Justify.

"s" Scroll. Allows the multi-line input region to scroll in a resizable/scrollable
dialogue box.

Enter
Tab

2. Directives MULTI_LINE

ProvideX Language Reference V8.30 Back 217

Multi-Line Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
multi-line control are described in Chapter 7. Control Object Properties, p.706.

Description Use the MULTI_LINE directive to create and control a multi-line input region on the
screen. Multi-line input is used to enter or display text. When the input is complete, the
user presses a function key, , or for a single-line high multi-line input field.
ProvideX then generates a control using the multi-line input region's associated ctl_id.
The AutoComplete feature can be included to automatically prompt the user with
previously-entered data. The Calendar feature provides a user-friendly way to enter
date information into a multi-line input area.

Format 1: Define/Create Multi-Line
MULTI_LINE ctl_id, @(col,ln,wth,ht)[,ctrlopt]

Use this format to define or create a multi-line input field. The FNT= option
establishes the font for multi-line input. If you omit this option, ProvideX uses the
"System" default font. If you specify FNT="*", standard text mode fixed font is
used.

If you define a multi-line input field as occupying more than one line, ProvideX adds
scrollbars and automatic word wrapping. If you define the input area as only one
line high, the multi-line input region will not have a vertical scrollbar, but will scroll
horizontally as required; e.g.,

0010 MULTI_LINE 100,@(2,14,12,6)
0020 MULTI_LINE WRITE 100,"Now is the time for all"
0030 OBTAIN *
0040 IF CTL=100 THEN MULTI_LINE READ 100,X$

This creates a multi-line input field that generates a CTL=100 when its value
changes and the user exits the multi-line input region.

When a popup menu is assigned to a multi-line using the MNU= option, a system
menu consisting of Cut, Copy, Paste and Delete is automatically pre-pended to the
popup menu. These menu items can be translated. The item text is derived from
system message #136 from *mlfile.xx (where xx is the language code) which
normally contains the value "Delete,Paste,Copy,Cut".

"t" Supports the use of the key in the multi-line input region.

"T" Strips trailing spaces.

"U" Upper case: converts lower case to upper case automatically.

"X" Signal when focus leaves the multi-line input region.

"Z" Cursor changes to "resize" pointer if within 4 pixels from the edge of the control.

Tab

Tab Enter

2. Directives MULTI_LINE

ProvideX Language Reference V8.30 Back 218

Besides translating *mlfile.xx, message #136 can also be changed using the DEF
MSG directive; e.g,

DEF MSG(136)="Supprimer,Coller,Copier,Couper,"

There are no spaces between the items, and the trailing comma is required. If no
popup menu is assigned using MNU=, then the system menu is supplied by the OS,
and the above does not apply.

AutoComplete
When the AutoComplete feature is applied to a multi-line control, it will predict text as
the user is entering it. When the control is accessed, users are prompted with the
previously-entered words/phrases or entries already in a data file as soon as they start to
type. This is a particularly useful tool for applications that require repetitive data entry.
The AutoComplete feature will be disabled when MUTLI_LINE is used for a password
field.

AutoComplete may be set up using the HLP= option as follows:

MULTI_LINE ctl_id, @(col,ln,wth,ht)),HLP="[AutoComplete]parameters$"

Enter the following parameter list (parameters$) separated by semicolons:

The ’AutoComplete$ property can also be used (wit h the above parameter list); e.g.,
AutoComplete$="DataFile=ProvideX.dat;Readonly=NO".

Existing parameters will not be reset unless they are set specifically when the
AutoComplete$ property is run. If you need to reset all parameters in the list, run
the AutoComplete$ property set to a null string.

AUTOPURGE=YES|NO
Automatically purges expired records. Expired words or phrases
are only purged when the multi-line is accessed. Default is NO.

DATAFILE=path$ Name of keyed file that contains the words/phrases. This file
should be resident and accessible on the local workstation.

EXPIRED=num Number of days a given record will be used before expiry. If this
is not set or set to 0, the words/phrases do not expire.

FIELD=num Field that is being displayed.
KNO=num Key number to be used.
LENGTH=num Maximum number of characters that will be displayed.
OFFSET=num Starting position within the field to be displayed.
PREFIX=string$ Prefix that will be used for searching matching words/phrases.
READONLY=YES|NO

ProvideX does not automatically update the key file when user
enters a new word and/or phrase. Default is YES.

Note: If the user is going to be using live data that is not supposed to be updated,
ensure that READONLY=YES.

2. Directives MULTI_LINE

ProvideX Language Reference V8.30 Back 219

The list of previous multi-line entries is stored in an keyed file that is accessible to
the application. AutoComplete will be based on the internal key of the key file and
the key has to be case insensitive for the property to be working correctly. If the key
is case sensitive, all lower case key will be ignored.

Example:
In the following code, MulitLineA is defined using a MULTI_LINE directive
declaration and MultiLineB is defined using the AutoComplete$ property. They
both use the same key file.

0010 LET F$="AutoComplete.dat"; ERASE F$,ERR=*NEXT
0020 KEYED F$,[1:1:30:"C"],0,-40
0030 LET MultiLineA=1000; LET MultiLineB=1001
0040 MULTI_LINE MultiLineA,@(25,4,20,1),HLP="[AutoComplete]

DATAFILE=AutoComplete.dat;READONLY=NO"
0050 MULTI_LINE MultiLineB,@(25,8,20,1)
0060 LET MultiLineB'AUTOCOMPLETE$="DATAFILE=AutoComplete.dat;READONLY=NO"
0070 ESCAPE

The result will appear similar to the address edit box in a web browser. Initially, the
key file is empty, so nothing will happen when the user types. When the user enters
new text in the multi-line, each word/phrase will be saved in the keyed file. If the
user tries to type the same word/phrase again, it will find a match from the list
before they finish typing.

Client-Server Behaviour. In a client-server environment, the file used by the
auto-complete logic to store and/or retrieve data must be on the client machine by
default.

If you wish to retrieve data from a fiile on the server, you must use additional program
logic to accomplish this. First, set the AutoCTL property of the MULTI_LINE with a
ctl_id to be generated when content is needed for loading values in the auto-complete
dropbox. Monitor events to trap the CTL value as a signal to execute logic to build the
list for the auto-complete dropbox. Assign the list to the MULTI_LINE's AutoValue$
property. This will cause the dropbox to be loaded for selection.

Calendar
The CALENDAR feature provides a user-friendly way to enter date information into a
multi-line input area. When it is applied to a MULTI_LINE, a button will be added to the
control that can be clicked to invoke a month calendar popup. This will allow users to pick
a date to be inserted automatically into the multi-line input area. The format of the date
inserted is based on the formatting rules of the DTE() Function, p.422. The CALENDAR
feature may be set up using the HLP= option as follows:

MULTI_LINE ctl_id, @(col,ln,wth,ht)),HLP="[Calendar]parameters$"

Enter the following parameter list (parameters$) separated by semicolons:

CALENDAR=YES|NO
YES turns on the calendar support. NO turns it off. Default is NO.

2. Directives MULTI_LINE

ProvideX Language Reference V8.30 Back 220

The ’Calendar$ property can also be used (with the above parameter list); e.g.,
Calendar$="CALENDAR=YES;DTE=%Y%M%D;Contents={!Stop}Stop;Width=10".

When invoked, the top left corner of the calendar button will be aligned with the top
right corner of the multi-line input area. If parameters are not specified, the default
graph will be {!DATE} and the width and height of the button equal to the height of the
control itself.

Use a keyboard shortcut or mouse click to invoke the calendar:

1. When the multi-line input area or the calendar button has focus, press - . In
this case CTL=-6 is suppressed.

2. When button control has focus, press or .

3. Mouse is clicked on the calendar button.

The calendar disappears automatically:

1. When a date is selected and placed in the multi-line input area.

2. When is pressed.

3. When the user clicks anywhere outside the button.

When the button is clicked, no EOM value will be generated, as the button is
considered part of the MULTI_LINE directive and is handled internally. When a date
is inserted into the multi-line input area, no EOM value will be generated unless
OPT="A" has been set and and focus is on the MUTLI_LINE control.

When the MULTI_LINE is hidden or disabled, the calendar button should also be hidden
or disabled, and - will not display the calendar control.

Example:
The following code sample invokes the CALENDAR feature using both methods (via
the HLP= string and the Calendar$ property.
0010 PRINT 'DIALOGUE'(0,0,100,50,"test",OPT="*Z")
0020 PRINT '4D','CS'
0030 LET A=1000
0040 MULTI_LINE A,@(10,10,30,1),HLP="[CALENDAR]CALENDAR=YES"
0050 LET B=1001

CONTENTS=string$ Text or graph appearing on the button, default is {!DATE}.
DTE=date$ Date formatting rules. Default is based on the DTE(). Semi-colon

cannot be part of this parameter (if used, the string following
will be ignored). Date code should include % percent; however,
if not used, input will be parsed based on format provided. If a
time formatting string is included, the current time is used.

HEIGHT=num Height of button. Defaults to height defined for MULTI_LINE.
SHOWBUTTON=YES|NO

YES shows the calendar button. NO hides it. Default is YES.
WIDTH=num Width of the button. Default width is equal to the height

defined for the MULTI_LINE; i.e., the default size is a square.

Shift F2

SPACEBAR ENTER

Esc

Shift F2

2. Directives MULTI_LINE

ProvideX Language Reference V8.30 Back 221

0060 MULTI_LINE B,@(10,20,30,1)
0070 LET B'CALENDAR$="CALENDAR=YES;DTE=%Y %Ml %D;Contents=Enter

Date;Width=10"
0080 PRINT "A: ",A'CALENDAR$
0090 PRINT "B: ",B'CALENDAR$
0100 OBTAIN (0,SIZ=1)'ME',A$,'MN',; LET C=CTL; LET E$=HTA(EOM); PRINT

"CTL=",C," EOM=",E$
0110 IF C=4 THEN ESCAPE
0120 GOTO 0100

Format 2: Remove Multi-Line
MULTI_LINE REMOVE ctl_id[,ERR=stmtref]

This format to deletes a multi-line input field.

Format 3: Disable/Enable Multi-Line
MULTI_LINE {DISABLE | ENABLE} ctl_id[,ERR=stmtref]

Use the MULTI_LINE DISABLE format to gray out a multi-line input region so that it
will be visible but inaccessible to users. To reactivate it, use MULTI_LINE ENABLE.

Format 4: Lock/Unlock
MULTI_LINE {LOCK | UNLOCK} ctl_id[,ERR=stmtref]

Use the MULTI_LINE LOCK or UNLOCK formats to prevent or allow access to the
multi-line input field. Use a LOCK to limit the user's permissions to "view only" for
data such as notes and instructions.

Format 5: Hide/Show
MULTI_LINE {HIDE | SHOW} ctl_id[,ERR=stmtref]

With the MULTI_LINE HIDE format, the multi-line remains active, but is not
displayed. It is still accessible programmatically. Use the SHOW format to restore the
display and user access.

Format 6: Force Focus
MULTI_LINE GOTO ctl_id[,ERR=stmtref]

Use the MULTI_LINE GOTO format to reactivate and force focus to a multi-line input
field, ready for the next user action.

Format 7: Signal on Focus
MULTI_LINE SET_FOCUS ctl_id, ctl_val[,ERR=stmtref]

Use the MULTI_LINE SET_FOCUS format to define an alternate CTL value to generate
whenever focus shifts to the multi-line input region.

2. Directives MULTI_LINE

ProvideX Language Reference V8.30 Back 222

Format 8: Read Current Value
MULTI_LINE READ ctl_id,var$[,mode$][,ERR=stmtref]

If the user enters more than one line of text, ProvideX will delimit each line, either
using the system SEP character or the character you specify in the SEP= option of a
directive. By default, multi-line input fields auto-wrap text, so the SEP character will
only be returned on the READ if the user inserts a carriage return.

On the READ, the mode$ variable will identify the method use to end multi-line
input. It will contain:

09 for used to exit or
$0D$ for used to end a 1-line multi-line input field.

Once this value is read, it is reset to 00.

Use the MULTI-LINE READ format to read the contents of the multi-line input field.
MULTI-LINE READ can also be used to retrieve window caption; e.g.,

MULTI_LINE READ 0,A$

A$ will contain window caption after command is executed.

Format 9: Load Value
MULTI_LINE WRITE ctl_id,contents$[,ERR=stmtref]

When you write string expressions into the multi-line input, you must use a
delimiter set by either the SEP= or the DLM= option.

Format 10: Report All Changes
MULTI_LINE AUTO ctl_id[,ERR=stmtref]

Use the MULTI_LINE AUTO format to generate a CTL value on any keystoke in the
multi-line.

Tab
Enter

2. Directives MULTI_MEDIA

ProvideX Language Reference V8.30 Back 223

MULTI_MEDIA Directive MU LTI_M ED IA Cont rol Multimedia Interf aceControl Multimedia Interface
Format MULTI_MEDIA command$[,var$[,ctl_val]]

Where:

Description Use the MULTI_MEDIA directive to pass commands to the Windows Multimedia
Control Interface (MCI). These strings can contain commands that will play WAV
files, MID files, AVI files or control various multi-media devices. Typical commands
include:

Examples The following examples illustrate the different uses for the MULTI_MEDIA directive.

Example 1:

MULTI_MEDIA "open C:\Documents and Settings\Default User\Application
Data\files\demo.avi alias video"

command$ String containing the multi-media command to execute. String
expression.

ctl_val String variable to receive any response or error message.

var$ Optional CTL code to be generated when a NOTIFY signal is
returned by the multimedia system. Numeric expression.

Note: This directive only functions under WindX or Windows.

Command Function/Purpose

open filename Opens the specified file and loads the required drivers. You
can append an optional 'alias name' to change the name of
the file and make controlling the file easier.

close filename Closes the specified files and releases the drivers.

close all Stops and closes all files.

play filename Plays the specified file. The file will be opened (if not
already opened), played, and closed automatically.

rewind filename Rewinds the file.

stop filename Stops the playback.

2. Directives MULTI_MEDIA

ProvideX Language Reference V8.30 Back 224

Example 2:

0010 ! Close all previous Multi_media commands for this session
0020 MULTI_MEDIA "close all"
0030 !
0040 ! Assign an Alias to the Wave file for use in the Play command
0050 MULTI_MEDIA "open C:\WINDOWS\Media\tada.wav alias wavefile"
0060 !
0070 ! Issue the Play command requesting notification of a CTL=100
0080 ! after the wave file has finished
0090 MULTI_MEDIA "play wavefile notify",100
0100 !
0110 ! Wait for the CTL=100
0120 OBTAIN X$
0130 IF CTL=4 THEN STOP
0140 IF CTL<>100 THEN GOTO 0110
0150 PRINT "Multi_media command finished"

Future references to the file could simply use the alias. Two options can be appended
to the play command:

NOTIFY send the CTL value when completed.
WAIT wait for the playback to complete.

If an error occurs during processing, it will be returned in the return$ variable.

Note: Full documentation of all available MCI commands is beyond the scope of this
manual. Refer to other (Microsoft) sources for complete documentation on the MCI
system.

2. Directives NEXT

ProvideX Language Reference V8.30 Back 225

NEXT Directive NEXT End FOR LoopEnd FOR Loop
Format NEXT [var]

Where:

Description When ProvideX encounters the NEXT directive, the control variable is incremented
or decremented and, if the current value does not exceed the ending value, control is
returned to the directive following the corresponding FOR.

If a variable is used in the NEXT directive, it must match that of the currently active
FOR. If no FOR is active or the variables do not match, ProvideX returns an Error
#28: No corresponding FOR for NEXT. The control variable can be omitted
from the NEXT directive because the increment/decrement of the FOR var is
assumed automatically. However, the NEXT var is useful for readability purposes,
especially if it appears within a nested loop structure.

See Also FOR..NEXT Loop While Incrementing, p.134

Example 0010 FOR I=1 TO 10
0020 PRINT I,
0030 NEXT ! NEXT I, since I is current
-:RUN
1 2 3 4 5 6 7 8 9 10

var Optional control variable to be incremented or decremented. This
variable must match the current FOR variable.

Note: Refer to FOR..NEXT Loop While Incrementing, p.134, for complete syntax.

2. Directives NEXT RECORD

ProvideX Language Reference V8.30 Back 226

NEXT RECORD Directive NEX T RECORD End SELECT St at mentEnd SELECT Statement
Format NEXT RECORD

Description Use the NEXT RECORD directive to end a SELECT directive. As each record is read,
ProvideX processes any logic you include following the SELECT directive up to the
NEXT RECORD. When ProvideX encounters a NEXT RECORD statement with no
records found for a nested SELECT, it will locate the corresponding SELECT
statement.

Example 0010 SELECT IOL=0100 FROM "CUST_FILE",KNO=1 BEGIN "ABC CO" END "NEW CO" WHERE
0010:CITY$="CLARENDON"
0020 PRINT REC(IOL=0100)
0030 NEXT RECORD
0100 IOLIST CUST$,NAME$,ADDR1$,ADDR2$,CITY$,PROV$,POSTAL$,INV_DT$,AMT,TERMS,
0100:DUE_DT$
0110 PRINT "DONE"; END
-:run
123460
ACME LTD.
SUITE 1900
2000 1ST ST.
CLARENDON
ON
K0K0K0

0

Note: Refer to SELECT Query Records, p.299, for complete syntax.

2. Directives OBTAIN

ProvideX Language Reference V8.30 Back 227

OBTAIN Directive OBTAIN Get Hidden Ter minal In putGet Hidden Terminal Input
Format OBTAIN (chan[,fileopt])varlist

Where:

Description Use the OBTAIN directive to issue prompts to terminal devices and to process
responses (the user's input). The file reference should be to a terminal, but you can
use an indexed file. If you include literals or expressions in this directive, ProvideX
treats them as prompts for the user.

You can include format masks, as in A$=STR(.01:"0.00"). If you omit the format
mask for a numeric in the OBTAIN statement, 'DP' Decimal Point Symbol and 'TH'
Thousands Separator system parameters are ignored for European decimal settings.

See Also ACCEPT Read Single Keystroke, p.28
INPUT Get Input from Terminal, p.160
'ME' Mnemonic, p.620
'BI' Mnemonic, p.590
Data Format Masks , p.813

Example 0010 OBTAIN 'CS',@(5,5),"Enter your password:",C$
RUN
Enter your password:

The password, "TEST" in this example, is not echoed, but C$ will return the value.

-:?C$
TEST

chan Channel or logical file number of a terminal or indexed file from which
to obtain input.

fileopt Supported file options (see also, File Options, p.810):
ERR=stmtref Error transfer
HLP=string$ Help message identifier
LEN=num Limit on input size
SIZ=num Number of characters to read (number of screen columns)
TBL=stmtref Data translation table
TIM=num Maximum time-out value in integer seconds

varlist Comma-separated list of variables, literals, mnemonics, IOL= options,
and/or location functions '@(...)'.

Note: OBTAIN performs in the same way as the INPUT directive except that the user's
input is not echoed on the screen. This can be useful for such applications as
passwords.

2. Directives ON EVENT

ProvideX Language Reference V8.30 Back 228

ON EVENT Directive ON EVENT Event Pro cess ingEvent Processing
Format 1. COM Control via OOP Object: ON EVENT FROM com_id PROCESS oop_id

2. COM Control via CTL Event: ON EVENT evtname$ FROM com_id PREINPUT ctl_id

3. Remove CTL Event: ON EVENT evtname$ FROM com_id REMOVE

Where:

Description This directive is used to activate support for individual COM events for use in ProvideX
applications. This is a feature of the ProvideX Event Handling Interface and Component
Object Model (COM), an industry-standard technology used by applications to
expose methods, properties, and events to development tools, macro languages, and
other applications. For complete information on this subject, refer to the document
Automation in ProvideX, available for download from the ProvideX website
www.pvx.com.

Format 1: COM Control via OOP Object
ON EVENT FROM com_id PROCESS oop_id

This format is used to register a numeric OOP object identifier (oop_id) to service a
given COM control (com_id). The OOP object identifier is stored in a read-only
property of the COM object called 'PvxEvents. A comma-separated list of the events
that are supported by the COM object is available by querying 'PvxEvents$ via the
Apostrophe Operator, p.823. Supported events are prefixed with a plus sign (+)
while unmanaged events are prefixed with a leading minus sign (-).

An invalid com_id generates an Error #65: Window element does not
exist or already exists. An invalid oop_id generates an Error #95: Bad
Object Identifier. Other errors, such as when a COM object does not support
events, will generate an Error #88: Invalid/unknown property name and,
if available, place a description of what caused the error in the 'PvxError$ property
for the COM object, as well as in MSG(-1).

An oop_id of 0 zero deactivates event processing for the current COM object.
Dropping a ProvideX OOP object deactivates event processing for all COM objects
associated with the OOP object.

com_id Numeric CTL value of a Windows COM object.

ctl_id Numeric CTL signal to generate (preinput) when a given event occurs.

evtname$ Event name, maximum 255 characters.

oop_id Numeric identifier of an OOP object.

Note: The list of events reported in 'PvxEvents$ is only available after the ON EVENT
FROM com_id PROCESS oop_id has been executed. This behaviour is intended to
minimize communication with the interop layer when event support is not required.

2. Directives ON EVENT

ProvideX Language Reference V8.30 Back 229

Issuing a subsequent ON EVENT directive for a COM control discontinues event
processing for the first ProvideX OOP object, then activates it for the new OOP object
(provided the new oop_id contains a non-zero value).

Formats 2 and 3: COM Control via CTL Event
ON EVENT evtname$ FROM com_id PREINPUT ctl_id

Generate Event. The PREINPUT option is used to generate a ProvideX CTL event
whenever the identified COM event occurs. This format simplifies the event
interface by eliminating the need to create an OOP object to manage events. This
format will work across WindX. The event process does not have access to any event
parameters as it will not be running in-line when the event occurs.

ON EVENT evtname$ FROM com_id REMOVE

Remove Event. The REMOVE option stops the process of generating a CTL signal for
the specified event. However, the removal of an assigned event will have no effect on
currently queued events.

See Also DEF OBJECT Define Object, p.71
Apostrophe Operator, p.823
External Components, User’s Guide.
Data Integration, User’s Guide.

2. Directives ON..GOSUB

ProvideX Language Reference V8.30 Back 230

ON..GOSUB Directive ON ... GOSU B Conditional Subrou tine Execution.Conditional Subroutine Execution
Format ON num GOSUB stmtref,stmtref,...

Where:

Description Use the ON..GOSUB directive to transfer control to a subroutine at one of the
statement references listed, based on the numeric value supplied:

num <=0, control is transferred to the first statement specified.
num =1, control is passed to the second statement number specified.
num =2, control is passed to the third, and
num =3… nnn, control is passed sequentially.

If num is greater than the number of stmtref’s supplied, the last stmtref is assumed.

See Also GOSUB.. Execute Subroutine, p.141,
RETURN Subroutine/Function Return, p.291

Examples 0020 ON X GOSUB 0100, 0200, 0300, 0400, 0500

num Value determines the location to which to transfer. Numeric expression.
Integer range: -32768 to +32767.

stmtref Program line number or label to transfer control to.

ON... GOSUB

X <= 0 Transfers to 0100

X = 1 Transfers to 0200

X = 2 Transfers to 0300

X = 3 Transfers to 0400

X >= 4 Transfers to 0500

2. Directives ON..GOTO

ProvideX Language Reference V8.30 Back 231

ON..GOTO Directive ON ... GOTO Condition al Transf er of Cont rolConditional Transfer of Control
Format ON num GOTO stmtref,stmtref,...

Where:

Description Use the ON ... GOTO directive to transfer control to one of the statements listed
based on the value you provide:

num <=0, control is transferred to the first statement specified.
num =1, control is passed to the second statement number specified.
num =2, control is passed to the third, and
num to nnn, control is passed sequentially.

If num is greater than the number of stmtref’s supplied, the last stmtref is assumed.

See Also GOTO Transfer within Program, p.142.

Examples 0020 ON X GOTO 0100, 0200, 0300, 0400, 0500

num Value determines the location to which to transfer. Numeric expression.
Integer range: -32768 to +32767.

stmtref List of statement references. Use program line numbers or labels to which
to transfer control conditionally.

ON... GOTO

X <= 0 Transfers to 0100

X = 1 Transfers to 0200

X = 2 Transfers to 0300

X = 3 Transfers to 0400

X >= 4 Transfers to 0500

2. Directives OPEN

ProvideX Language Reference V8.30 Back 232

OPEN Directive OPEN Open for Pro cess ingOpen for Processing
Formats 1. Open File/Device Channel: OPEN (chan[,fileopt])string$

2. Open for Read-Only Mode: OPEN INPUT(chan[,fileopt])string$
3. Open Locked: OPEN LOCK (chan[,fileopt])string$
4. Open Locked and Pre-Cleared: OPEN PURGE (chan[,fileopt])string$
5. Open Static Keyed File Read Only: OPEN LOAD (chan[,fileopt])string$
6. Open for Use in Object (OOP): OPEN OBJECT (chan[,fileopt])string$
Where:

Description Use this directive to open a file or device and assign a logical file (channel) number
to it. The string$ expression can include a specialty filename or file tag; e.g.,
MEMORY, [RPC], etc. It may also contain a port ID for direct serial
communication.

You can normally have a maximum of 127 files open at any time in a ProvideX
session (less under some operating systems). In the extended file access mode 'XF'
you can open up to 65000 files, subject to OS limitations.

Opening Devices. Use a colon (:) at the end of the string$ to open a port number
directly; i.e., LPT1 and LPT1: are considered to be the same device. For information
on opening devices, see COM Ports and Serial Devices (below).

Special command file tags are used to modify paths and filenames for specific I/O
in ProvideX. These are listed and described under Special Command Tags, p.769.

chan Channel or logical file number to be assigned to a file or device.
fileopt Supported file options (see also, File Options, p.810):

BSZ=num Buffer size (in bytes)
ERR=stmtref Error transfer
IOL=iolref Default IOList
ISZ=num Open file in binary mode (see limits below)
KEY=pswd$ Password to open file (see PASSWORD Directive, p.239)
NBF=num Dedicated number of buffers
OPT=char$ MS Windows open options
REC=name$ Record prefix (REC=VIS(string$) can also be used)
When using the ISZ= option, the following limits apply:
ISZ=1 indicates greater than 2GB access, ISZ>1 is limited to 2GB.

string$ Name of the file or device to open. Refer to Special Files and Devices,
p.737, Special Command Tags, p.769 and COM Ports and Serial
Devices below.

stmtref Program line number or label to transfer control to.

Note: The actual number of files you can open at any one time depends on operating
system parameters. Consult your system configuration information for details on
how to increase the number of files you can open.

2. Directives OPEN

ProvideX Language Reference V8.30 Back 233

For information on accessing built-in virtual files, devices, and interfaces using the
OPEN directive, see Special Files and Devices, p.737.

CLOSE, BEGIN, START, STOP, BYE, QUIT, RELEASE, END directives will close
currently-open channels.

Error Messages on OPEN
If you use a channel that is already OPEN, ProvideX returns an Error #14. If you
try to OPEN a file that doesn't exist, it returns an Error #12: File does not
exist (or already exists). In some circumstances (e.g., in trying to OPEN a
printer twice), an Error #0 is generated.
-:KEYED "TEST",[1:1:6],,128
-:OPEN (5)"TEST"
-:OPEN (5)"TEST" ! Not okay: channel 5 is already in use
Error #14: Invalid I/O request for file state
-:OPEN (4)"TEST" ! Okay - "TEST" file can be OPEN on two channels
-:OPEN (30)PRINTER$
-:OPEN (10)PRINTER$! Not okay:
Error #0: Record/file busy

File OPEN Options
Use the OPT= parameter to define options for Windows COM ports. For details, see
COM Ports and Serial Devices below.

Use the IOL= option to define a standard IOList to be used while the file is open.
ProvideX will use this IOList for all subsequent file READ, WRITE, EXTRACT, or FIND
statements where you do not explicitly supply variable lists. You can also use the
REC= option to supply a prefix to be added to all the variables in the IOL=
specification.

If the ISZ= option is used, ProvideX opens the file in binary mode. That is, ProvideX
makes no attempt to analyze the file structure or contents. All subsequent access to
the file / channel is done as if the file is an indexed file with a record size equal to
the value set in the ISZ= option.

With ISZ=1, a READ RECORD directive will return 1 byte at a time (each logical
record is 1 byte). For ISZ=1024, the data is returned 1024 bytes at a time, with the
first 1024 bytes in IND=0, the next 1024 bytes in IND=1 and so on. You can gain
access to the file sequentially or by using the index. A negative value notifies
ProvideX to return up to the given number of bytes.

If you use ISZ=-1, ProvideX will not append record terminators to output lines
printed to a file without a hanging comma. (Normally ProvideX appends a line feed
to the end of such output lines in UNIX, or a carriage return and line feed in
Windows and to the end of every record written to a serial file.)

If you use the BSZ= option, file access will be buffered in a buffer equal to the size
you set for the option.

2. Directives OPEN

ProvideX Language Reference V8.30 Back 234

COM Ports and Serial Devices
OPEN can be used to open a COM port for direct serial communication and to gain
access to special serial devices, such as label printers, weigh scales, modems, and access
card readers. Some devices, such as modems, involve two-way communications, where
you can set up tasks such as background processes to monitor the port. Other devices,
such as label printers, use one-way serial communication; e.g., in PRINT statements.

Windows serial devices:

OPEN (chan,fileopt,OPT=string$)"port:"

Use this format in Windows to open a serial device for direct access. You can specify
communications port settings for COM ports by adding OPT=string$; e.g., in OPEN
(1,OPT=settings$)"COM2:". The string variable in the OPT= option would
contain values representing baud rate, parity, data bits, stop bits and xon/xoff flow
control.

The following attributes and format apply to the OPT= option:

OPT="baud_rate,parity,data_bits,stop_bits[,flow_rate]"

Where

For example, the setting$ assigned in the following example are for the serial
communications attributes: baud rate (9600), parity (n=none), data bits (8), stop bit
(1) and flow rate (x=xon/xoff switch).

12540 let setting$="9600,n,8,1,x"
12550 let printer=hfn
12560 open (printer,isz=1,opt=setting$,err=13000)"COM2:"
12570 print (printer)"Title"

UNIX/Linux serial devices:

OPEN (chan[,fileopt])dev_path$

When you OPEN the serial device, the port is opened with the current characteristics.
To change the settings, you can either set line characteristics at the OS level before
starting ProvideX or use an INVOKE directive after you open the device:

invoke "stty 38400 -IXANY IXON IXOFF ... </dev/tty2A"

baud rate Valid range is 300 to 115200
data_bits Use one of three valid values: 1, 7, or 8
flow_rate Optional. Valid values include: x for xon/xoff software flow or p for

RTS/CTS physical/hardware flow. (Omit the value for "none")
parity char. One of three alpha characters: N = None, O = Odd, E for Even
stop_bits Use one of the valid values: -1 (minus one), 0 , 1, 1.5, 2.

Note: If the OPT= option is omitted from the communications settings, ProvideX will
default to the setup in the Windows Control Panel.

2. Directives OPEN

ProvideX Language Reference V8.30 Back 235

WindX Tip. While it is possible to open a serial device on the client PC by using the
[WDX] tag, we recommend against doing this. Instead, we advise you to use a CALL
from the host to a [WDX] subprogram on the remote client PC. Design your
subprogram to open and control the device and its settings. You can return your
results to the host via your CALL's parameters. For more information see [WDX]
Direct Action to Client Machine, p.801.

OPEN with PREFIX FILE Definition
You can have two fields in a prefix file data record. (A prefix file is a special Keyed
file that contains information to be used for dynamic translations of files when they
are opened.) The first of the two fields is the path/filename of the real file to open.
The second is an options field. ProvideX uses any options in this field as the OPT=
values when opening the real path/filename. When opening a filename assigned in a
prefix file directive, you can include additional OPT= values in the OPEN directive
to have ProvideX append these as additional options for the true file being opened
(i.e., the filename in the prefix file record).

Given a prefix file record containing:

Key="GLMAST", DATA RECORD="[ODB]DSN;TABLE"+sep+"KEY=field1"

If you OPEN(chan)"GLMAST" then internally ProvideX will
OPEN(chan,OPT="KEY=field1")"[ODB]DSN;TABLE"

If you OPEN(chan,OPT="REC=somedata")"GLMAST" then internally ProvideX
will OPEN(chan,OPT="KEY=field1;REC=somedata")"[ODB]DSN;TABLE"

See Also CLOSE Directive, p.56,
OPT() Function, p.495,
PREFIX Set File Search Rules, p.249
PASSWORD Apply Password & Encryption, p.239
Special Files and Devices, p.737
Special Command Tags, p.769

Format 1: Open File/Device Channel
OPEN (chan[,fileopt])string$

Use this format to open a given file or device so that a program can gain access to it;
e.g., OPEN (2,ERR=1000)"CSTMER".

Format 2: Open for Read-Only Mode
OPEN INPUT (chan[,fileopt])string$

If you use OPEN INPUT, the program can't update the file (opened as read-only). Use
this format to open a disk directory or to access files with read-only permissions. The
OPEN INPUT directive under UNIX will not lock a text mode device.

2. Directives OPEN

ProvideX Language Reference V8.30 Back 236

Format 3: Open Locked
OPEN LOCK (chan[,fileopt])string$

Using this format, the file is reserved for exclusive use prior to the OPEN. However,
if another user already has the file OPEN, the LOCK format of the directive fails and
ProvideX returns an Error #0: Record/file busy.

WindX Example:
00010 BEGIN
00020 PRINT
00030 !
00040 LET in_file$=%wdx$+"D:\DATA\BATCH\R0000188"
00050 LET o_file$="D:\JUNK\TEST\TST_OUT"
00060 EXECUTE "[WDX]ERASE "+o_file$+",ERR=*NEXT"
00070 EXECUTE "[WDX]SERIAL ""D:\JUNK\TEST\TST_OUT"""

00130 LET no_file$="Y"
00140 LET in_file=HFN;
 OPEN (in_file)in_file$
00150 LET f$=FIN(in_file)
00160 CLOSE (in_file)
00165 LET pd=POS(DLM=in_file$,-1);
 IF pd<>0 \
 THEN LET inn_file$=in_file$(pd+1) \
 ELSE LET inn_file$=in_file$
00170 LET chars=DEC(f$(1,4))
00180 !
00190 LET blk_size=1024,done$="N",c=0
00200 IF chars<blk_size \
 THEN LET blk_size=chars
00210 !
00220 OPEN (in_file,ISZ=blk_size)in_file$
00230 LET o_file=HFN;
 OPEN LOCK (o_file,ISZ=blk_size)%wdx$+o_file$
00250 LET cur_byte=0,st_byte=0,se_byte=0
00260 LET r_c=blk_size
00500 ! !500
00510 ! Get Pos Of First ISA

Note: Under UNIX, /dev/null and /dev/console files are not locked when
opened. However, all other files are.

Note: WindX supports the use of SERIAL and ERASE commands via the [WDX] tag. It
is not necessary to embed these commands in an EXECUTE directive. (If you are
running a version of ProvideX earlier than Version 4.20 on a WindX PC, you may need
to encapsulate these commands in an EXECUTE "[WDX]..." directive, as in lines
0060 and 0070 above.) See also [WDX] Direct Action to Client Machine, p.801.

2. Directives OPEN

ProvideX Language Reference V8.30 Back 237

00520 !
00530 READ RECORD (in_file,END=0700)in_rec$
00540 LET l=l+1;
 PRINT @(0,5),l
00550 WRITE RECORD (o_file)in_rec$
00555 LET by=by+LEN(in_rec$)
00556 LET tst=chars-by;
 IF tst<blk_size \
 THEN LET r_c=tst
00590 GOTO 0530

Format 4: Open Locked and Pre-Cleared
OPEN PURGE (chan[,fileopt])string$

If you use the OPEN PURGE format, the file will be locked and pre-cleared (purged)
prior to the completion of the OPEN statement.

Format 5: Open Static Keyed File Read Only
OPEN LOAD (chan[,fileopt])string$

With the OPEN LOAD format, ProvideX assumes that the file is a static Keyed file
and opens it for READ access only. ProvideX assumes that the file is a static Keyed
file; i.e., no other task on the system will update this file. Whenever a portion of the
file's key structure is read into memory, ProvideX keeps it in memory until you
CLOSE the file. ProvideX gives you extremely fast access to static files by reducing
the disk I/O and effectively caches the file in memory.

Format 6: Open File for Use in Object (OOP)
OPEN OBJECT (chan[,fileopt])string$

In Object Oriented Programming, the OPEN OBJECT directive indicates that a file being
opened is for the exclusive use of an object. Only the object itself can alter the state of the
file, and once the object is deleted, the file is automatically closed. Any external attempt
to alter the state of the file returns Error #13: File access mode invalid.

The file is not closed on an external BEGIN. It will only be closed when the object is
deleted, or by an explicit CLOSE (chan) from within the object. FFN and other file
functions will not see the file while outside of the object thus cannot effect its
position or other characteristics.e; however, system variables like HFN and CHN will
reflect that the file is open, and some functions (PTH, FIN, FIB, etc.) can be used to
query file attributes.

Example:

DEF CLASS "Customer"PROPERTY CUST_NO$, NAME$,ADDR$,CITY$,SALESMAN$,AMT_OWING
LOCAL FILE_NO
!
FUNCTION FIND(X$)

2. Directives OPEN

ProvideX Language Reference V8.30 Back 238

ENTER C$
 READ (FILE_NO,KEY=C$) ! Loads all the variables
 RETURN 1
!
FUNCTION NEXT()
 READ (FILE_NO,END=*NEXT); RETURN 1
 RETURN 0!
FUNCTION UPDATE()
 WRITE (FILE_NO); RETURN 1
END DEF
!
ON_CREATE:
 FILE_NO = HFN; OPEN OBJECT (FILE_NO,IOL=*)"ARCUST"
 RETURN

The file is opened in the ON_CREATE. There is no need to worry about closing the file
since ProvideX does it automatically.

For further information, see Data Integration, p.275 in the User’s Guide.

2. Directives PASSWORD

ProvideX Language Reference V8.30 Back 239

PASSWORD Directive PA SSW ORD A pply Password & EncryptionApply Password & Encryption
Formats 1. On Program: PASSWORD pswd$

2. On Common Password to All Programs: PASSWORD *[,pswd$]
3. On Data File - Required:

 PASSWORD (chan[,ERR=stmtref]) pswd$ REQUIRED FOR OPEN
4. On Data File - Read Only:

 PASSWORD (chan[,ERR=stmtref]) pswd$ REQUIRED FOR WRITE
5. On Data File - Required & Encryption:

 PASSWORD (chan[,ERR=stmtref]) pswd$ REQUIRED FOR OPEN AND ON DATA
6. On Data File - Read Only & Encryption:

 PASSWORD (chan[,ERR=stmtref]) pswd$ REQUIRED FOR WRITE AND ON DATA
7.Copy Password to Data File from Data File:

 PASSWORD (chan1[,ERR=stmtref]) FROM (chan2[,ERR=stmtref]) [,ERR=stmtref]
8. Remove Password from Data File: PASSWORD (chan[,ERR=stmtref]) REMOVE

Where:

Description Use the PASSWORD directive to assign/remove passwords to/from programs and
data files.

Formats 1 and 2: Assign or Remove Passwords on Programs
The formats described in this section assign/remove password protection on programs.
Passworded programs cannot be listed or edited in ProvideX in any way unless the
correct password is used.

PASSWORD pswd$
Apply to Program. To assign a password, load the program, enter the PASSWORD
directive followed by the new password pswd$, then save the program; e.g,

->LOAD "MYPROG"
->PASSWORD "CAT"
->SAVE "MYPROG"
->LOAD "MYPROG"
->LIST
Error #52 -- Program password protected
->DELETE 10

 * Asterisk defines a password as common to all programs.

chan Channel or logical file number.

pswd$ Password for program/data file protection. String expression limited to
240 characters.

stmtref Program line number or label to transfer control to.

Important: When encryption is enabled on a data file, all key and data blocks will be
encrypted; therefore, routines that attempt to parse a passworded file in binary mode
will not function correctly. This includes the file recovery utility, *UFAR.

2. Directives PASSWORD

ProvideX Language Reference V8.30 Back 240

Error #52 -- Program password protected
->PASSWORD "CAT"
->LIST
0010 REM...

0020 ... etc.

Before changing a password, you must reload the program and enter the PASSWORD
directive followed by the previously assigned password. At this point, you can either
change the password by entering PASSWORD (again) followed by a new string, or remove
password protection by entering PASSWORD (again) followed by a null string.

PASSWORD *[,pswd$]
Apply Password Common to all Programs. Use the asterisk * to denote a common
password. ProvideX will apply a common password automatically to all previously
passworded programs when they are loaded and to all new programs.

Formats 3, 4, 5, and 6: Assign Password to Data File
The formats described in this section assign password protection to data files. A
KEY=pswd$ option is required to OPEN a passworded file. In order to define/change a
password, you must have exclusive access to the file and it must be empty. The
encryption feature is only available for VLR and EFF files.

Use one the following syntax formats to assign a password to a data file:

PASSWORD (chan1[,ERR=stmtref]) pswd$ REQUIRED FOR OPEN
Required for Open indicates that the correct password is always required on a open.

PASSWORD (chan1[,ERR=stmtref]) pswd$ REQUIRED FOR WRITE
Required for Write indicates that the correct password is required for write access, but it
is not required for read-only access.

PASSWORD (chan1[,ERR=stmtref]) pswd$ REQUIRED FOR OPEN AND ON DATA
Required for Open and on Data indicates that the correct password is always required
and that the data is encrypted.

PASSWORD (chan1[,ERR=stmtref]) pswd$ REQUIRED FOR WRITE AND ON DATA
Required for Write and on Data indicates that the correct password is required for write
access but it is not required for read-only access, and that the data is encrypted.

The following table outlines the usage, access level, and encryption associated with each
syntax format used to assign a password to a data file:

PASSWORD Format Access
Level

Without Password With Correct Password
Encrypted

Open Read Write Open Read Write
OPEN 0 No No No Yes Yes Yes No
WRITE 1 Yes Yes No Yes Yes Yes No
OPEN AND ON DATA 2 No No No Yes Yes Yes Yes
WRITE AND ON DATA 3 Yes Yes No Yes Yes Yes Yes

2. Directives PASSWORD

ProvideX Language Reference V8.30 Back 241

An internal password queue records passwords for successfully opened files and checks
when an attempt is made to open a passworded file without specifying a KEY= clause or
when a null KEY= value is supplied. The password stored in the queue is used if an entry
exists for that file. The number of entries to keep in the queue is controlled by the 'PQ'
System Parameter, p.680. The ability to distinguish between an invalid password and a
non-existent password is provided by means of the 'PE' System Parameter, p.679.

Due to the fact that all key and data blocks are encrypted, routines that attempt to
parse a passworded file in binary mode will not function correctly. This includes the
file recovery utility *UFAR.

Prompting for Password
ProvideX includes a generic program called get_pswd that will prompt for a
password when KEY= is invalid or missing when a passworded file is opened.
ProvideX checks the existence of the get_pswd program in the *ext subdirectory
first, and then in *ext/system if the former is not found. This feature also allows
the developer to customize the interface. As the prompt will be handled by a called
program, it is also WindX-aware.

An embedded I/O (EIO) processing entry point called Get_Password provides the
ability to prompt the user for a password based on logic associated with the EIO
program. Provided the EIO program is valid and the entry point Get_Password
exists, it will be used instead of the generic *ext/system/get_pswd or custom
*ext/get_pswd. As the file is not in an OPEN state at the point when the entry
point is called, the LFO and LFA values do not contain meaningful information. For
this reason, the name of the file will be passed in the fourth parameter, normally
referred to as Value$.

Examples:

->KEYED "MyFile",[1:1:10],0,0
->OPEN LOCK (1)"MyFile"
->PASSWORD (1)"ABC" REQUIRED FOR OPEN
->CLOSE (1)
->OPEN (1,KEY="ABC")"MyFile"
->WRITE (1)"Record A"
->LOCK (1)
->PASSWORD (1)"XYZ" REQUIRED FOR OPEN
Error #13: File access mode invalid
->PURGE (1)
->PASSWORD (1)"XYZ" REQUIRED FOR OPEN
->CLOSE (1)
->OPEN (1,KEY="XYZ")"MyFile"

Monitoring Attempts
TCB(68) reports the number of attempts which have been made to prompt for the
password. This value is incremented prior to ProvideX calling the embedded I/O or
get_pswd routine so the first attempt will have a TCB(68) value of 1 (one).

2. Directives PASSWORD

ProvideX Language Reference V8.30 Back 242

By default, the first three attempts to access a passworded file using an invalid
password will result in a prompt to re-enter the password. The fourth attempt
generates an Error #53: Invalid password. This behaviour is controlled via the
'PP' System Parameter, p.680.

Password Error Reporting
The following error conditions will be trapped:

Error #13: File access mode invalid.

Attempt to apply or remove a password when the file is in read-only mode, not
locked, or not empty.

Error #14: Invalid I/O request for file state.

Attempt to apply a password to an un-opened channel.

Error #17: Invalid file type or contents.

Attempt to apply a password to a non-Keyed file or to encrypt a non-VLR
formatted file.

Error #46: Length of string invalid.

Attempt to assign a password longer than 240 characters.

Error #53: Invalid password.

Attempt to open a file using invalid password.

Error #61: Authorization failure.

Password record failed the internal CRC check.

Format 7: Copy Password to Data File from Data File

PASSWORD (chan1[,ERR=stmtref]) FROM (chan2[,ERR=stmtref]) [,ERR=stmtref]

PASSWORD FROM allows a password from one file to be copied directly to another file without
prompting the user for the password. Its use is primarily for rebuilding data files on the fly.

Format 8: Remove Password from Data File

PASSWORD (chan[,ERR=stmtref]) REMOVE

This format removes password protection from a data file. In order to remove a
password, you must have exclusive access to the file, and it must be empty.

See Also 'EL'= System Parameter, p.663
'PE' System Parameter, p.679
'PP' System Parameter, p.680
'PQ' System Parameter, p.680
OPEN Open for Processing, p.232

Note: An Error #13: File access mode invalid will occur if the destination
file has an existing password and an Error #53: Invalid password is generated
when the source file does not contain a password.

2. Directives PERFORM

ProvideX Language Reference V8.30 Back 243

PERFORM Directive PERFORM C all Subpr ogram, Pass VariablesCall Subprogram, Share Variables
Format PERFORM subprog$[;entry$][,ERR=stmtref]

Where:

Description The PERFORM directive saves the current program state, then transfers control to a
subprogram. All variables are made common between the initiating program and
the subprogram. When the subprogram terminates, control returns to the initiating
program at the directive following the PERFORM directive.

You can specify an optional entry point in the subprogram. To do this, append a
semicolon and the starting label name (;entry$) to the subprogram name; e.g.,
PERFORM "SUBPROG;STARTING_LABEL". After the subprogram is loaded,
ProvideX internally issues a GOTO directive using the label as a statement reference
and starts execution there. Use this feature to create subprograms to act as "libraries"
(i.e., multiple stand-alone routines, each starting at its own entry point).

The execution of the subprogram is normally terminated with an EXIT, however, the
END or STOP directives may be used in its place.

Subroutine within a Subprogram
PERFORM can also access subroutines externally via entry points in the called
program. In this case, the RETURN statement that is used to terminate the subroutine
in a subprogram will automatically return control to the initiating program. This
feature allows the same chunk of code to be accessed internally (GOSUB) as well as
externally (PERFORM).

See Also CALL Transfer to Subprogram, p.40,
RUN Transfer and Execute a Program, p.294
END Halt Program Execution, p.113
EXIT Terminate Subprogram and Return, p.124
STOP Halt Program Execution, p.330
GOSUB.. Execute Subroutine, p.141
RETURN Subroutine/Function Return, p.291
Called Procedures, User’s Guide.

subprog$ Name of the subprogram to execute. String expression.

;entry$ Optional name of starting line label that is entry point in the subprogram.

stmtref Program line number or label to transfer control to.

Note: All variables that are changed or created during execution of the performed
subprogram will be returned to the initiating program.

2. Directives PERFORM

ProvideX Language Reference V8.30 Back 244

Example This is the calling program:
0180 LET Z=1,X=2,A$="Cat",B$="Pig*****Dog",V=9
0190 PRINT "Values before PERFORM:",@(26),Z,X,A$,B$,@(45),V
0200 PERFORM "ABCDEF;TEST",ERR=9000
0210 PRINT "Values after PERFORM: ",@(26),Z,X,A$,B$,@(45),V,ZZ$
0220 STOP
->RUN
Values before PERFORM: 1 2CatPig*****Dog 9
TEST in subprogram ABCDEF
In PERFORM 1 2CatPig*****Dog 9
Change : 6 7Pig****Cat**** 4 I'm new, from ABCDEF
Values after PERFORM: 6 7Pig****Cat**** 4 I'm new, from ABCDEF

This is the subprogram:
0040 TEST: PRINT "TEST in subprogram ABCDEF"
0060 PRINT @(8),"In PERFORM",@(26),Z,X,A$,B$,@(45),V
0070 LET Z=6,X=7,A$="Pig",B$="****Cat****",V=4,ZZ$=" I'm new, from ABCDEF"
0080 PRINT @(8),"Change : ",@(26),Z,X,A$,B$,@(45),V,ZZ$
0090 EXIT

2. Directives POP

ProvideX Language Reference V8.30 Back 245

POP Directive POP Pr emature Exit fro m St ackPremature Exit from Stack
Format POP

Description Use this directive to pop, or clear, the top entry on the stack. The POP directive
performs the same operation as an EXITTO directive for terminating a FOR/NEXT or
GOSUB operation except that it does not transfer control (to a statement reference),
but continues with the next statement in the execution sequence..

See Also EXITTO End Loop, Transfer Control, p.125
'POP' or 'WR' Mnemonic, p.633

Example ProvideX will generate an Error #28: No corresponding FOR for NEXT if it
encounters a NEXT directive after you POP a FOR loop. In this example, the POP
directive is used to terminate a FOR loop, leaving the GOSUB's RETURN entry on the
stack. (No Error #28 is generated.)

0100 GOSUB SCAN_FOR_IT
...
1000 SCAN_FOR_IT
1010 FOR I=1 TO 1000
1020 IF X$[I]="MOOCOW" THEN POP; RETURN
1030 NEXT
1040 PRINT "NOT FOUND"; RETURN

Note: Use the 'POP' mnemonic (not the POP directive) if you want to pop a child
window superimposed on a parent window.

2. Directives POPUP_MENU

ProvideX Language Reference V8.30 Back 246

POPUP_MENU Directive POPUP_MENU Create Popup MenuCreate Popup Menu
Format POPUP_MENU [@(col,ln)], list$, [strvar$|numvar]

Where:

Description Use the POPUP_MENU directive to create and process floating menus. A popup
menu "pops up" on top of the current window when you right-click the mouse while
the pointer is over a control, such as a button, multi-line, or list box. Once a popup
menu is created and assigned to a control, it remains invisible until the user
right-clicks the mouse button over the enabled component. In a popup menu, a
default option may be specified.

Popup Menu Definition
POPUP_MENU definition uses a format similar to the MENU_BAR Directive, p.202:

• Each menu group is enclosed by square brackets.
• Each item in a group is separated by a comma.
• Each item's selection character (hot key) is preceded by an '&' (ampersand).
• Each sub-menu group is prefixed with its item ID.

Numeric values are assigned to each entry in the menu definition. By default, the
first entry has the value ‘1', the second ‘2', etc. This value can be overridden by
placing an equal sign and numeric value after the menu item text; e.g.,

"F:[&Open,&Save,&Quit=4]"

 Quit would have a value of four. In addition, the starting numeric value can be
changed or reset by placing a # followed by the new starting point within the menu
definition string outside of group definitions. When setting a new starting value, the
next menu selection will be assigned a number that is one more than the starting
point; e.g.,

"[&File,&Quit],#1000,F:[&Open,&Save,&Rename]"

This defines File as one, Quit as two, File-Open as 1001, File-Save as 1002, and
File-Rename as 1003. Accelerator keys should be unique for each selection on a
given sub-menu within a group. While the use of duplicate accelerator keys is
permitted, it is difficult to determine which selection was made by using just the
character strings.

@(col,ln) Numeric expressions. The optional column and line position on the
current window where the menu will appear.

list$ Menu structure and elements. String expressions. Maximum 2047
elements. A bitmap/icon can be included for each element.

numvar Name of variable that receives the numeric value of the selection made.
strvar$ Name of variable that receives the string containing the selection

sequence of characters selected.

2. Directives POPUP_MENU

ProvideX Language Reference V8.30 Back 247

Menu items can be disabled, displayed in bold or with a checkmark, by placing a
"D", "B", or "C" after the = (equal sign) and before the value to return; e.g.,

m$="[&One=1,&Two=C2,&Three=D3,&Four=BC4]"
popup_menu m$,answer$

The resulting menu shows "Two" checked, "Three" disabled, and "Four" bolded and checked.

Using Images
Images can be included for each item in the menu. Enclose the image name in curly
braces and place it in the menu definition just prior to the specific item text; e.g.,

"-[&File],F:[&Open=1001,{!Stop}&Stop=1002]"

Use a leading exclamation point (!) to identify the image as internal, or specify the
relative path and filename to access an image file that is external. POPUP_MENU also
supports the use of two-tone effects as described under the MENU_BAR Directive,
p.204. For more information on options available for displaying internal/external
images and the recognized image file types, see Images and Icons, p.153 in the User’s
Guide.

Popup Menu Assignment
A POPUP_MENU can be associated with buttons, check boxes, drop boxes, grids, list
boxes, multi-lines, radio buttons and tristate boxes. The directives that control these
objects, include a MNU= option that defines the CTL number that will be generated
when the user right-clicks on the control.

See Also MENU_BAR Directive, p.202
BUTTON Control Button, p.34,
CHECK_BOX Control Check Box, p.47
DROP_BOX Control Drop Box, p.96
GRID Control Grid, p.143
LIST_BOX Control List Box, p.178
MULTI_LINE Control Multi-Line Input, p.215
RADIO_BUTTON Control Radio Button, p.265
TRISTATE_BOX Control Tristate Box, p.344

Example This popup menu returns a numeric value assigned by the menu bar definition

0020 print 'CS',; list 0030,
0030 check_box 100,@(50,10,10,2)="{}&Popup Menu",opt="P",mnu=101
0040 obtain *
0050 if ctl=4 then stop
0060 if ctl<>101 then goto 0040
0070 mdef$="[&File,&Edit,E&xit=4],F:[&Open=10,&Save=D20],

E:[C&ut=30,&Copy=40,&Paste=50]"
0080 popup_menu @(58,12),mdef$,x
0090 print "Selected: ",x
0100 if x=4 then stop
0110 goto 0040

2. Directives PRECISION

ProvideX Language Reference V8.30 Back 248

PRECISION Directive PRECISION Change Curr ent PrecisionChange Current Precision
Formats PRECISION num [FOR OBJECT]

Where:

Description Use the PRECISION directive to change the number of digits ProvideX maintains to
the right of the decimal point. (Internally, ProvideX makes all calculations using 18
digits of accuracy but when numeric data is output the value is rounded and
returned using the number of digits set in the PRECISION directive.)

The precision setting is also used in conjunction with the ROUND directive. If
rounding is enabled (default mode), values assigned to variables through the LET
directive will be rounded to the PRECISION num specified.

The FLOATING POINT directive overrides the PRECISION directive. PRECISION -1
can also be used to have ProvideX switch to floating point (scientific notation). Use
any another numeric value in the PRECISION directive (e.g., PRECISION 2) to
cancel scientific notation. See Data Integration, p.275 in the User’s Guide.

See Also FLOATING POINT Switch to Scientific Notation, p.133,
ROUND Control Rounding, p.293
PRC() Function, p.503
PRC System Variable, p.569
'PD'= System Parameter, p.679

Examples 0010 FOR A=0 TO 6
0020 PRECISION A
0030 PRINT 1/3,
0040 NEXT A
0050 PRINT " DONE"; STOP
RUN
0 0.3 0.33 0.333 0.3333 0.33333 0.333333 DONE

0060 PRECISION 7
0070 PRINT 1/3, @(15),"PRECISION: ",TCB(14)
0080 BEGIN ! Resets precision to 2
0090 PRINT 1/3, @(15),"PRECISION: ",PRC
0100 END
RUN
0.3333333 PRECISION: 7
0.33 PRECISION: 2

num Precision to which to round. Numeric expression. Integer range: 0
to 18, or use -1 to switch to scientific notation.

FOR OBJECT Object Oriented Programming (OOP) - Optional keywords for setting
the default PRECISION for all subsequent method invocations
within the current object instance, except for those that have CLASS
definitions that specifically declare a PRECISION to use (preserving
encapsulation).

Note: Precision is automatically reset to two (2) by the following directives: BEGIN,
CLEAR, END, LOAD, RESET, STOP, RUN.

2. Directives PREFIX

ProvideX Language Reference V8.30 Back 249

PREFIX Directive PREFIX Set File Search RulesSet File Search Rules
Formats 1. Set Prefix 0: PREFIX [search_string$]

2. Set Any Prefix Number: PREFIX (num)[search_string$]

3. Set Program Retrieval Rules: PREFIX PROGRAM [search_string$]

4. Specify Search Rules in Keyed File: PREFIX FILE [filename$]

Where:

Description Use the PREFIX directive to define a series of search paths to be inserted in front of
all relative file references used in OPEN / LOAD / RUN / CALL / PERFORM
directives. (ProvideX opens files with absolute paths directly, without performing a
search.)

Each prefix can contain 0 zero or more search locations. (A search location is either a
directory or a disk/directory pair.) You can specify up to 10 differently-numbered
prefixes (i.e., PREFIX (0) through PREFIX (9)) as well as a PREFIX PROGRAM and
a PREFIX FILE. See the descriptions of the various formats, below.

See Also ProvideX Search Rules, p.251,
Equal Signs for Matching, p.251,
Asterisks as PREFIX Wildcards, p.252,
[LIB] Tag, p.781
Using the PREFIX Directive in the ProvideX User's Guide.

filename Name of a variable-length Keyed file containing data records that
define the locations of specific files (in effect, a lookup or
translation table).

num Numeric value between 0 and 9 which defines the PREFIX entry to
use. If you omit this value, the default is zero.

search_string$ One or more pathname prefixes (search locations) you want
ProvideX to search when attempting to find files / programs.
Optional string expression.

Use a null string, PREFIX [(num)]"", or omit the string, PREFIX
[(num)]) to have ProvideX reset your PREFIX to null.

When you have more than one search location in a PREFIX directive,
the different locations must be space-separated. If you need to
include a space within a directory name, then that directory location
must be enclosed in double quotation marks; e.g.,

PREFIX "C:\Tmp\ C:\Usr\ ""C:\Program Files\"""

2. Directives PREFIX

ProvideX Language Reference V8.30 Back 250

Format 1: Set Prefix 0 (Zero)
PREFIX [search_string$]

If no numbered prefix is specified, then the PREFIX command affects PREFIX (0) by
default. For example, PREFIX "C:\TMP" would apply to PREFIX (0).

Format 2: Set Any Prefix Number
PREFIX (num)[search_string$]

Use this format to define a maximum of 10 numbered prefix table entries (range 0 to
9) to set file search rules. Each table entry can contain multiple paths; e.g.,

PREFIX (4)"PGMS\CST\CASHRCPT\ \PGMS\MGMT\MISC\ \PGMS\SALES\"

Format 3: Set Program Retrieval Rules
PREFIX PROGRAM [search_string$]

Use the PREFIX PROGRAM format to define the search location(s) ProvideX will
search first when it attempts to LOAD/RUN/CALL/PERFORM/SAVE programs; e.g.,
PREFIX PROGRAM "\other\pgm\tst\"

If you omit the prefix string or use a null string (PREFIX PROGRAM ""), ProvideX will
reset the program prefix to null. Access to program libraries can also be defined using
the [LIB] tag; e.g., PREFIX PROGRAM "[LIB:/usr/myappl/proglib]".

Format 4: Using Paths in Keyed File
PREFIX FILE [filename$]

Use the PREFIX FILE format to specify the special Keyed file that contains information to be
used for dynamic translations of files when they are opened in your applications. Any file
you define as a PREFIX FILE must be a variable-length Keyed file or ProvideX returns
Error #17: Invalid file type or contents.

If you define a PREFIX FILE, then ProvideX searches this special Keyed file for a search
location whenever it encounters an OPEN command with a relative filename, using
filename$ as the key to the PREFIX FILE. (Remember that ProvideX opens filenames with
absolute paths directly, without performing a search.) Normal PREFIX search rules still
apply after a filename has been located in the PREFIX FILE.

When you write to this special Keyed file, treat the filename from your program's OPEN
command as the Key. The data record for each key contains the true filename you want
opened instead. (ProvideX retrieves the data record internally with a READ RECORD.)

KEYED "someloc.dat",25
OPEN(chan)"someloc.dat"
WRITE RECORD(chan,key="myfile")"c:\tmp\myfile"
CLOSE(chan)
.....
PREFIX FILE "someloc.dat"
OPEN(chan)"myfile ! Internally this becomes OPEN(chan)"c:\tmp\myfile" instead

2. Directives PREFIX

ProvideX Language Reference V8.30 Back 251

ProvideX Search Rules

The ProvideX default is to search all prefixes, in the following order:

The PREFIX search rules apply not only to files being found, but also to files being
created. ProvideX creates files in the first location that is permitted by the PREFIX
rules. If 'CD' (Search Current Directory) is on, then all files are created in the current
directory (the first permitted location). If the 'CD' system parameter is off, then
ProvideX creates the file in the first location permitted by the search rules above.

Windows search rules are used to find DLLs (i.e., not PREFIX search rules or current
directory).

Use the ENABLE and DISABLE directives to control which of the numbered prefixes
ProvideX will use in the search. (While scanning prefixes 0 to 9, ProvideX ignores
any prefix that is disabled.)

Note that the initial check for PROGRAM cache checks for a match against the
original filenames. Thus, if you used CALL "ABCD" and you had previously loaded a
program with the same name, ProvideX would use the one in cache. This eliminates
the directory searches involved, but if you have duplicate program names in your
system, it is possible to get the wrong one, for instance, if you CALL "ABCD", change
the directory / prefix, then re-CALL "ABCD". If this happens for duplicate program
names in your system, either clear the cache or do not use it.

For more information, refer to DISABLE Disable Use of Prefix Table Entry, p.92,
ENABLE Re-Enable Use of Prefix Table Entry, p.110, and the 'CD' System
Parameter, p.658.

Equal Signs for Matching

Equal signs in a PREFIX search string have special meaning. Each character of the
filename that corresponds by position to an equals sign will be used to form a
subdirectory name to be used in the search. For instance, if you include 1 equals

OPEN Directive LOAD/RUN/CALL/PERFORM/SAVE Directives

1. PREFIX FILE, if set; replaces
pathname then continues
sequence.

2. Current Directory; if 'CD' system
parameter is set.

3. PREFIX 0 to 9.

4. PREFIX PROGRAM, if set.

5. Current Directory; if 'CD' system
parameter not set.

1. PREFIX FILE, if set; replaces pathname
then continues sequence.

2. Program Cache.

3. Current Directory; if 'CD' system
parameter is set.

4. PREFIX PROGRAM if set.

5. PREFIX 0 to 9

6. Current Directory; if 'CD' system
parameter not set.

2. Directives PREFIX

ProvideX Language Reference V8.30 Back 252

sign, ProvideX will interpret that to mean that the first character of filename$ is also
the subdirectory name. If you include 2 equals signs, it will take the first 2 characters
as matching the subdirectory name, and so on.

ProvideX automatically finds the location to retrieve or create files by looking first
for a subdirectory with a name matching, character-by-character, in sequence, the
portion of the filename that corresponds to the equals signs. This allows you to sort
files into subdirectories based on automated substitution of the first few characters
of your filename, and accelerates the search for and/or creation and saving of files in
subdirectories.

Example:

PREFIX (4)"C:\MYAPP\==\" ...

If a directory entry in a PREFIX contains equals signs as shown in the example above,
ProvideX evaluates the initial two characters as matching characters and uses them
as the name of the subdirectory where the search will commence for relative file
references. In the following example:

PREFIX "C:\MYAPP\==\"
OPEN (1)"ARHIST"

ProvideX evaluates the filename ARHIST as C:\MYAPP\AR\ARHIST for purposes of
the initial search.

Asterisks as PREFIX Wildcards

You can also use * and ** as wildcard characters to support the use of filename
extensions without modifying your code. This feature was added to the ProvideX
language as of Version 4.20 primarily for Windows 2000 users, since the Microsoft
Certification rules for Windows 2000 require that all files have file extensions. With
the wildcard characters, you can rename files on disk with a common file extension
without modifying the program code.

Using a Single Asterisk (*)
If the PREFIX directive includes a single star plus a specified extension as a filename,
ProvideX inserts the filename from your OPEN command in place of the asterisk and
searches for the filename with the added prefix; e.g.,

PREFIX "c:\somedir*.PRG"
OPEN(chan)"FOOFOO"

In the example above, ProvideX scans the disk for "c:\somedir\FOOFOO.PRG"
and opens that file if found. If FOOFOO.PRG is not found, ProvideX attempts to find
and open a file named "FOOFOO".

2. Directives PREFIX

ProvideX Language Reference V8.30 Back 253

If the filename in the OPEN command already includes an extension, no substitution
will occur; e.g.,

PREFIX "c:\somedir*.PRG"
OPEN(nahc)"MyFile.Dat"

In this case, ProvideX does not add the .PRG extension when it executes the search
to find and open MyFile.Dat.

Using Double Asterisks (**)
If the PREFIX directive includes two stars plus a specified extension, ProvideX inserts
the filename from your OPEN command in place of the asterisks and searches first for
the filename with the extension specified in the prefix; e.g.,

PREFIX "c:\somedir**.PRG"
OPEN(chan)"FOOFOO"

In the example above, ProvideX scans the disk for "c:\somedir\FOOFOO.PRG"
and opens that file if found. If FOOFOO.PRG is not found, ProvideX attempts to find
and open a file named "FOOFOO".

If the filename in the OPEN command already includes an extension, Providex adds
the additional extension specified by the PREFIX directive when it searches for the
filename; e.g.,

PREFIX "c:\somedir**.PRG"
OPEN(chan)"FOOFOO.PRG"

In this case, ProvideX scans for "c:\somedir\FOOFOO.PRG.PRG". However, if
FOOFOO.PRG.PRG is not found, ProvideX attempts to find and open a file named
"FOOFOO.PRG".

2. Directives PREINPUT

ProvideX Language Reference V8.30 Back 254

PREINPUT Directive PREINPUT Place Dat a in Input QueuePlace Data in Input Queue
Formats 1. Preinput Value & CTL: PREINPUT string$[,ctl_val]

2. Preinput CTL Only: PREINPUT ctl_val

3. Jump the Queue: PREINPUT NEXT

Where:

Description Use the PREINPUT directive to have your program prime the input buffer for the
user's terminal with a value. You can issue more than one PREINPUT directive, with
the messages queued. You can also use this directive to have subprograms respond
to INPUT statements in the CALLing or subsequent programs.

See Also INPUT Get Input from Terminal, p.160,
CTL System Variable, p.557.

Format 1: Preinput Value, CTL
PREINPUT string$[,ctl_val]

This pre-inputs the string$ expression and sets the optional CTL value to be
returned. In this format, the first PREINPUT data will be processed first (FIFO).

Format 2: Preinput CTL Only
PREINPUT ctl_val

You can add the PREINPUT CTL value alone to the queue.

Format 3: Jump the Queue
PREINPUT NEXT

When you use this format, the PREINPUT entry goes to the front of the queue (LIFO).

ctl_val Value to be placed in CTL when the input is processed. Numeric
expression.

string$ String expression. Placed in the input queue for the user's terminal.

2. Directives PRINT

ProvideX Language Reference V8.30 Back 255

PRINT Directive PRINT Disp lay Infor mationDisplay Information
Formats PRINT [(chan,fileopt)]varlist .. or .. ? [(chan,fileopt)]varlist

Where:

Description Use the PRINT directive to format and send printable data to a terminal, printer or
file. This instruction processes mnemonics and positioning information. If the print
statement ends with a trailing comma, the output from a subsequent PRINT directive
will continue on the same line. Otherwise, it will start at the first column of the next
line. If you omit a format mask for a numeric in the PRINT statement, 'DP' Decimal
Point Symbol and 'TH' Thousands Separator system parameters are ignored for
European decimal settings. ProvideX accepts the question mark ? as a substitute for PRINT.

See Also Mnemonics, p.577
Data Format Masks , p.813

Examples PRINT 'CS',"Date:",DAY," Time:",TIM is the same as
? 'CS',"Date:",DAY," Time:",TIM.
Both result in the same date and time display on a clear screen (Date:02/22/00
Time: 8.398397). You can assign a page or screen position for PRINT data:

1010 PRINT @(5,5),"CUSTOMER LISTING",! prints to screen at col 5, line 5

You can also print data overlaying a graphic in ProvideX, but only if all text output is
sent using 'FONT' and 'TEXT' mnemonics (rather than as standard PRINT statements).
In the example below, "Hello" will overlay the embedded bitmap.

0010 PRINT 'CS'
0020 PRINT 'PICTURE'(220,210,600,500,"!Binoculars",2),
0030 PRINT 'FONT'("MS Serif",-20); PRINT 'GREEN','TEXT'(220,210,"Hello")

 ? ProvideX accepts the question mark ? as a substitute for PRINT.
chan Channel or logical file number of the target device (terminal or printer)

or serial file for a display or print job. The user's terminal is always
defined as 0 zero. If omitted, the channel number defaults to 0.

fileopt Supported file options (see also, File Options, p.810):
ERR=stmtref Error transfer
TBL=stmtref Record number.

stmtref Program line number or label to transfer control to.
varlist Comma-separated list of variables, literals, expressions, Mnemonics,

IOL= options, and/or location functions '@(...)'. Include Data Format
Masks to define how data is to be displayed.

Note: Because of the potential conflict between the function AND() and the logical
operator AND, there is a problem when the syntax processor tries to parse the statement
PRINT AND(41,42). As a work around, assign the result of a logical AND to a
temporary variable or change the statement to PRINT ""+AND(41,42).

2. Directives PROCESS

ProvideX Language Reference V8.30 Back 256

PROCESS Directive PROCESS Call NOMAD S PanelCall a NOMADS Panel
Formats 1. Invoke a NOMADS Panel: PROCESS "panel","[lib]",arg_1$,arg_2$, ... arg_20$

2. Invoke a NOMADS Query: PROCESS "panel","[lib]",val$

3. Invoking File Maintenance: PROCESS "panel","[lib]",arg_1$

Where:

Description Use the PROCESS directive to call a NOMADS panel from a program. NOMADS
returns to the program when the panel is exited. You can pass optional arguments to
and from the NOMADS panel.

See Also PROCESS, to Invoke a Query Object in the NOMADS Reference

Examples The following examples illustrate the different uses for the PROCESS directive.

Panel Example:

In the example below, the ProvideX PROCESS statement invokes the SALES panel
through the program and passes two arguments, SALES_ID$ and
STR(SALES_AMT), to the SALES panel to get the values:

PROCESS "SALES","LIBRARY.EN",SALES_ID$,STR(SALES_AMT)

In the NOMADS Panel Header Pre-Display logic, you would Execute the following
assignments:

SALES_ID$=ARG_1$;SALES_AMT=NUM(ARG_2$)

arg_1$...
arg_20$

List of valid arguments for a Panel Object. Optional string
expressions. You can use up to 20 arguments. These arguments are
accessible in the invoked panel as values in the reserved
NOMADS variables ARG_1$ through ARG_20$.

For Query or File Maintenance objects, you're limited to one
argument, the value of which is accessible in the reserved variable
ARG_1$. The others are reserved.

lib Optional. Name of the NOMADS library containing the panel
name. String expression. If you use null (""), NOMADS uses your
currently active library.

panel Name of the NOMADS Panel, Query or File Maintenance object.
String expression.

val$ Starting / return value for a Query. See the examples, below.

Note: When you use the PROCESS directive, ProvideX converts the statement internally
into a CALL to *winproc (the NOMADS engine) to process the panel.

2. Directives PROCESS

ProvideX Language Reference V8.30 Back 257

Query Example:

For queries that are not attached to a NOMADS control object,

0110 PROCESS "MY_QUERY","",X$

When MY_QUERY runs, the value of X$ is used to set the starting position in the file.
When MY_QUERY is exited, NOMADS passes the return value to the calling program
in X$.

2. Directives PROCESS SERVER

ProvideX Language Reference V8.30 Back 258

PROCESS SERVER Directive PROCESS SERV ER Pr ocess Remote ServerEstablish Remote Server
Formats 1. Identify Remote Server: PROCESS SERVER "server" ON "address"

2. Terminate Remote Server: PROCESS SERVER "server" CLOSE

Where:

Description The PROCESS SERVER directive is used to identify a remote program server to a
CALLing application. If desired, "address" can be set to "LOCAL" which results in any
RPC call to this server simply becoming a local CALL directive. Alternatively, the
address can specify a pipe on UNIX, or a DLL on Windows. To terminate the remote
server connection, use the CLOSE keyword.

Format 1: Identify Remote Server
PROCESS SERVER "server" ON "address"

Establishes the remote server with a logical name (between 1 and 12 characters in
length). The server address may take one of several forms, depending on the
circumstances; e.g.,

PROCESS SERVER "Inventory" ON "[tcp]192.1.1.100;15000"

TCP address and port/service identifier for the server.

PROCESS SERVER "Inventory" ON "LOCAL"

LOCAL keyword results in any CALL to this server becoming local.

PROCESS SERVER "Inventory" ON "|/u/sys001/inventory"

Pathname of | pipe server instead of TCP address (UNIX/Linux only).

PROCESS SERVER "Inventory" ON "[DLL]C:\Program
Files\Application\server.dll;Entry"

Pathname DLL and entry point instead of TCP address (Windows only).

Format 2: Terminate Remote Server
PROCESS SERVER "server" CLOSE

Terminates the remote server connection identified by the name "server"; e.g.,

PROCESS SERVER "Inventory" CLOSE

See Also [RPC] Remote Process Control, p.797,
Remote Process Capability Technical Overview.

address TCP address and services identifier for the server; e.g.,
"[tcp]192.1.1.100;15000". Alternatives to the TCP address
are explained below.

server Name to be associated with a program server. Length: from 1 to 12
characters; e.g., "INVENTORY".

2. Directives PROGRAM

ProvideX Language Reference V8.30 Back 259

PROGRAM Directive PROGRA M Create/Assign Progr am FileCreate or Assign Program File
Format 1. Create Program File: PROGRAM filename$[,prog_size][,ERR=stmtref]

2. Assign Default Program (OOP): PROGRAM "interface_prog"

Where:

Description The PROGRAM directive can be used to create a program file or it can be used in
Object Oriented Programming (OOP) to define a default program name intended to
service an object.

Format 1: Create Program File
PROGRAM filename$[,prog_size][,ERR=stmtref]

This format of the PROGRAM directive to create a ProvideX program file. The file
size is for documentation purposes only and is ignored by the system;e.g.,

0010 PROGRAM "CSTUPD",1024,ERR=1200

Program files have a special header format indicating that the file contains ProvideX
object code. Program files should only be used with the SAVE or LOAD commands.
Any attempt to use READ or WRITE directives with this type of file can yield
unpredictable results when the program file is subsequently loaded.

If a given filename already exists, ProvideX returns an Error #12: File does
not exist (or already exists).

WindX supports the use of this format via the [WDX] tag; e.g., PROGRAM
"[WDX]somefile.ext"... For more information, see [WDX] Direct Action to
Client Machine, p.801.

Format 2: Assign Default Program in Object Oriented Programming
PROGRAM "interface_prog"

In Object Oriented Programming, the PROGRAM directive is used to define the default
program name that is going to service an object. This can be used to override the
program that contains the DEF CLASS.

If this clause is specified for an object class:

interface_prog Name of default program that contains object logic.

filename$ Name of the program file to create. String expression.

prog_size Ignored. Size of a program which can be contained in the file.
Numeric expression.

stmtref Program line number or label to transfer control to.

2. Directives PROGRAM

ProvideX Language Reference V8.30 Back 260

• Whenever an object is created, the system will attempt to call the specified
program at the label ON_CREATE.

• Whenever an object of this class is deleted, the system will attempt to call the
specified program at the label ON_DELETE.

No error is reported if the label does not exist.

In addition, any references to program logic in a property read/write or a method
definition can contain a leading semi-colon. For example, the following class
definitions are effectively the same:

PROGRAM "Cust"
FUNCTION Find(X$) ";LookupByName"

See Also DEF CLASS Define Object Class, p.65
FUNCTION Declare Object Method, p.137
LIKE Inherit Properties, p.174
LOCAL Designation of Local Data, p.197
PRECISION Change Current Precision, p.248
PROPERTY Declare Object Properties, p.261
Data Integration, User’s Guide

2. Directives PROPERTY

ProvideX Language Reference V8.30 Back 261

PROPERTY Directive PROPERTY Declare Object Propert iesDeclare Object Properties
Format 1. Declare Property: PROPERTY prop1 [OBJECT], prop2 [OBJECT], ...

2. Specify Read Procedure: PROPERTY prop1 [OBJECT] GET label | ERR, prop2 ...

3. Specify Write Procedure: PROPERTY prop1 [OBJECT] SET label | ERR, prop2 ...

Where:

Description The PROPERTY directive is used in Object Oriented Programming to declare the
properties that can be accessed by the application program. These properties can be
treated like any other variable in the system and are accessible using the
Apostrophe Operator, p.823.

A property name can be followed by a GET label to define the location of the logic to
call whenever the property is read in the application. With GET in place, the
specified logic issues a RETURN value that returns the actual value of the property to
the application;e.g.,

PROPERTY ExtendedAmount GET Extension
...
Extension:
RETURN Quantity * Price

If the logic resides outside of the defining program, then the name of the program
and entry point can be provided in quotes instead.

PROPERTY ExtendedAmount = Quantity*Price

Specify the SET label to intercept all of the property updates. With SET in place, the
system calls the logic whenever the property is being updated and passes it the
value being set; e.g.,

PROPERTY Quantity SET ChgQty

ERR Keyword blocking reads or writes to a property following a GET/SET
declaration.

GET Keyword indicating that logic is to be called when properties are read.

label Line label indicating GET or SET logic entry point.

OBJECT Optional keyword identifies that the property contains an object identifier
to another object.

prop1,
prop2 ..

Property names – treated like any other variable in the system. (In
Object Oriented Programming, data elements are called properties.)

SET Keyword indicating that logic is to be called when properties are written.

Note: If the logic required to do a read is simply a formula, then it can be inserted
directly into the PROPERTY definition clause using an equal sign instead of GET; e.g,

2. Directives PROPERTY

ProvideX Language Reference V8.30 Back 262

Like the GET option, an external program/entry point can be provided; e.g.,

PROPERTY Quantity SET "Invline;ChgQty"

Where Invline contains:

2000 ChgQty:
2010 ENTER NewQty
2020 IF NewQty = Quantity then RETURN
2030 ! .. Update inventory.. then RETURN

Use the keyword ERR to prevent the user from being able to GET or SET a property
following the GET or SET declaration;e.g.,

PROPERTY ExtendedAmount SET ERR

If the property contains an object identifier to another object, specify the keyword
OBJECT after the property name. When the object is deleted, ProvideX will use the
REF() function against the object identifier to remove it (as long as it has no other
references); e.g.,

DEF CLASS "Customer"
PROPERTY File OBJECT

When you delete an object whose class is Customer, then the system reduces the
reference count of the object whose identifier is in File and, if it is no longer being
referenced, deletes it as well.

For defining properties for an object class that are not exposed to external
applications, refer to the LOCAL Directive, p.197.

See Also DEF CLASS Define Object Class, p.65
FUNCTION Declare Object Method, p.137
Data Integration, User’s Guide.

2. Directives PURGE

ProvideX Language Reference V8.30 Back 263

PURGE Directive PURGE Clear Data fr om a FileClear Data from a File
Format PURGE (chan[,ERR=stmtref])

Where:

Description Use the PURGE directive to erase all data from the file specified. Before you can
execute the PURGE directive, the file must be opened and locked. A file erased using
a PURGE directive still exists in the system but contains no data. (ProvideX returns
disk space to the system while preserving the lock.) Any READ directives for a
purged file return an End-of-File status.

Using PURGE (or REFILE) is faster than deleting the file and recreating it.

See Also REFILE Clear Data from File, p.278,
LOCK Reserve File for Exclusive Use, p.200

Example 0010 OPEN (2)"PRNTFL"
0020 LOCK (2)
0030 PURGE (2)
0040 WRITE (2)TIM,DAY
...

chan$ Channel or logical file number of the file to be purged.

stmtref Program line number or label to transfer control to.

Note: Under WindX, you can use EXECUTE "[WDX]..." to encapsulate a directive
that is not supported across a WindX connection. See [WDX] Direct Action to Client
Machine, p.801.

2. Directives QUIT

ProvideX Language Reference V8.30 Back 264

QUIT Directive QUIT Terminate ProvideXTerminate ProvideX Session
Format QUIT

Description Use the QUIT directive to terminate a ProvideX session and return to the operating
system. If the ERR variable's value is not zero (i.e., an error has occurred) then the
operating system is informed that an error has occurred within ProvideX. This
allows you to do external testing of error conditions.

When you use QUIT in a compound statement, it must be the final directive.

See Also BYE Terminate ProvideX, p.39
RELEASE Terminate ProvideX, p.279

Examples 8050 IF CTL=4 THEN QUIT
-:SAVE
->QUIT

2. Directives RADIO_BUTTON

ProvideX Language Reference V8.30 Back 265

RADIO_BUTTON Directive RAD IO_BUTTON C ontrol Radio But tonControl Radio Button
Formats 1. Define/Create: RADIO_BUTTON [*]ctl_id:sub_id,@(col,ln,wth,ht)=contents$[,ctrlopt]

2. Remove: RADIO_BUTTON REMOVE [*]ctl_id:sub_id[,ERR=stmtref]

3. Disable/Enable: RADIO_BUTTON {DISABLE | ENABLE} [*]ctl_id:sub_id[,ERR=stmtref]

4. Hide/Show: RADIO_BUTTON {HIDE | SHOW} [*]ctl_id:sub_id[,ERR=stmtref

5. Force Focus: RADIO_BUTTON GOTO [*]ctl_id:sub_id[,ERR=stmtref]

6. Logical Push/Release: RADIO_BUTTON {ON | OFF} [*]ctl_id:sub_id[,ERR=stmtref]

7. Read Activation Mode: RADIO_BUTTON READ [*]ctl_id,var,mode$[,ERR=stmtref]

Where

* Optional. Use a leading asterisk to denote a global radio button.

@(col,ln,
wth,ht)

Position and size of individual radio button. Numeric expressions.
Column and line coordinates for top left corner, width in number of
columns and height in number of lines are for total area (box plus
text/description). Use line value -1 to display radio button on the tool bar.

contents$ Text/pictures appearing on the radio button. Both {bitmap} and {icon}
images are supported. String expression. See RADIO BUTTON
contents$, p.267.

ctl_id Unique logical identifier for the radio button (any integer -32000 to
+32000). Avoid integers that conflict with keyboard definitions (e.g., 4
cancels CTL=4 for the key) or Negative CTL Definitions, p.817. Use
this value with the apostrophe operator to access various Radio Button
Properties.

ctrlopt Control options. Supported options for RADIO_BUTTON include:
ERR=stmtref Error transfer
FNT="font,size[,attr]" Font name, size, optional properties

Refer to the 'FONT' Mnemonic, p.609 for details.
MSG=text$ Message line
MNU=ctl CTL value associated with right-click menu event.
OPT=char$ (See RADIO_BUTTON OPT= Settings:, p.266)
OWN=name$ Name assigned for automated testing of this control.
TIP=text$ Mouse pointer message.

To change the colour, refer to the 'TC'= System Parameter, p.689.

mode$ String variable. ProvideX returns a single-character hex value in this
variable to report the last method / keystroke the user chose to activate
the button (01 for MOUSE-CLICK or $0D$ for).

sub_id Unique individual index. Integer, range from 1 to 255. Used in
applications to identify which radio button the user selects.

F4

Enter

2. Directives RADIO_BUTTON

ProvideX Language Reference V8.30 Back 266

RADIO_BUTTON OPT= Settings:
Available attribute/behaviour settings are listed below. Some characters may be
combined. Invalid settings are ignored.

stmtref Program line number or label to transfer control to.

var Numeric variable. Receives sub_id of currently activated radio button.

"<" Bitmap Left. Places bitmap left of text.

">" Bitmap Right. Places bitmap right of text.

"^" Drop-down. Adds drop-down functionality.

"*" Default. Defines button as default.

"B" Bitmap Button. Has a bitmap whose width is divided into four images. Use
this attribute to custom design buttons of any colour, style or shape by
controlling the bitmap image that appears. Each of the four divisions
represents what a button will look like in a particular state:
1st quarter: Bitmap image when button is disabled.
2nd quarter: Bitmap image when button is in normal (released) state.
3rd quarter: Bitmap image when the mouse is over the button.
4th quarter: Bitmap image when the button is pressed.

"D" Disabled. Button is is grayed out and is not accessible to the user.

"F" Flat. Button shows no raised outline unless the mouse is over the button or
the button is pushed.

"f" Flat-No Shift. Same as "F", but will not shift when pressed.

"G" Global. Keep active when focus changes to new/non-concurrent window. When
using secondary commands (REMOVE or SET_FOCUS) on controls created with
OPT="G" identify the control by prefixing the CTL value with an asterisk.; e.g.,
RADIO_BUTTON 100:1,@(10,10,10,1)="Global",OPT="G"
RADIO_BUTTON REMOVE *100:1

"H" Hide. Button is not displayed but is accessible programmatically.

"S" Signal Only. ProvideX generates a CTL value, but does not shift focus to the
button automatically (the default), but only when focus is explicitly passed to
it. Use this to have a button act like a function key.

"s" Scroll. Button can scroll within a resizable/scrollable dialogue box.

"T" Transparent. Button is "see-through" to window data below button area.

"U" Underscore. Text is underscored.

"V" Hovertext. Indicates that text will change colour when mouse is over the button.

2. Directives RADIO_BUTTON

ProvideX Language Reference V8.30 Back 267

Combined options can be used to create several different button types. The "f", "T",
and "U" options provide the ability to turn buttons into hotspots. This allows for
clickable areas on bitmaps or hyperlinked text in dialogues; e.g.,

Description Use the RADIO_BUTTON directive to create and control a group of radio button
control objects on the screen. A radio button group is a series of related
circular/radio-knob buttons (akin to check boxes) of which only one button can be
active at a time. When a user selects one of the radio buttons, that selection is
activated (on) and all other related radio buttons are automatically reset to off.

RADIO BUTTON contents$
The contents$ string expression defines the text/picture (bitmap or icon) to appear
on the radio button. In the text, you can use an ampersand "&" preceding a character
to identify it as a hot key the user can press in conjunction with the key to
activate the radio button from the keyboard; e.g.,

0010 RADIO_BUTTON 100:1,@(2,14,12,2)="&Daily"
0020 RADIO_BUTTON 100:2,@(2,16,12,2)="&Weekly"
0030 RADIO_BUTTON 100:3,@(2,18,12,2)="&Monthly"

This would create a group of three radio buttons that will each generate a CTL=100
when pressed. Their individual sub_ids are 1, 2 and 3. Their respective hot keys are
D, W and M.

Using Images
When adding an image to a radio button, enclose the image name in curly braces.
Use a leading exclamation point (!) to identify the image as internal, or specify the
relative path and filename to access an image file that is external. There are no icons
in the ProvideX executable and ProvideX does not support retrieving icons from
either resource libraries or other system DLLs /executables. For more information on
the options available for displaying internal/external images and the recognized image
file types, types, see Images and Icons, p.153 in the User’s Guide.

When you use text as well as images, the relative positions of the image and the text
set their relative placement. The following are example contents$ expressions:

"{!Add}Add" ! Displays the {!Add} bitmap in front of the text "Add"
"Delete{!Del}" ! Displays the {!Del} bitmap after the text "Delete"

If a string expression includes two images separated by a vertical bar inside a single
set of curly brackets, the first will be displayed when the radio button is off (normal
state), the second while the radio button is on; e.g., "{!Stop|C:\MYBMP\Go}.

"VTf" Creates a general hotspot.
"VUTf" Creates an HTML-like hotspot (e.g., URL hyperlink).
"F^" Creates a word-style toolbar with drop list

Alt

2. Directives RADIO_BUTTON

ProvideX Language Reference V8.30 Back 268

Radio Button Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
radio button are described in Chapter 7. Control Object Properties, p.707.

Format 1: Define/Create

RADIO_BUTTON [*]ctl_id:sub_id,@(col,ln,wth,ht)=contents$[,fileopt]

Use this format to create a radio button. Unlike most other controls, related radio
buttons share the same ctl_id. That is, to group common radio buttons together, you
define each member of the group using the same ctl_id and a different sub_id
(index). When the user makes a selection, other radio button sub_ids in the same
ctl_id group are turned off or lose focus.

The group ctl_id value generates a CTL value whenever any radio button in the
group is pressed and must be unique. Use an asterisk [*] as a prefix for ctl_id to
identify the group of radio buttons as global (not tied to a specific window).

Format 2: Delete
RADIO_BUTTON [*]ctl_id:sub_id[,ERR=stmtref]

Use the RADIO_BUTTON REMOVE format to delete a radio button. By default all
local radio buttons are deleted when a window is removed/dropped or the
application issues a BEGIN. Global radio buttons can be removed manually or cleared
with a START directive.

Format 3: Disable/Enable
RADIO_BUTTON {DISABLE | ENABLE} [*]ctl_id:sub_id[,ERR=stmtref]

Use the RADIO_BUTTON DISABLE format to gray out a radio button and make it
inaccessible to the user. To reactivate it, use RADIO_BUTTON ENABLE.

Format 4: Hide/Show
RADIO_BUTTON {HIDE | SHOW} [*]ctl_id:sub_id[,ERR=stmtref

With the RADIO_BUTTON HIDE format, the radio button remains active, but is not
displayed. It is still accessible programmatically. Use the SHOW format to restore the
display and user access.

Format 5: Force Focus
RADIO_BUTTON GOTO [*]ctl_id:sub_id[,ERR=stmtref]

Use the RADIO_BUTTON GOTO format to reactivate and force focus to a radio button,
ready for the next user action.

2. Directives RADIO_BUTTON

ProvideX Language Reference V8.30 Back 269

Format 6: Logical Push, Release

RADIO_BUTTON {ON | OFF} [*]ctl_id:sub_id[,ERR=stmtref]

Use the RADIO_BUTTON ON format as a logical Push to make it appear that the
radio button has been pressed. Use RADIO_BUTTON OFF to make it appear that the
radio button has been released.

Format 7: Read Activation Mode
RADIO_BUTTON READ [*]ctl_id,var,mode$[,ERR=stmtref]

The RADIO_BUTTON READ format returns the sub_id for the currently active radio
button in your numeric variable. (The value is zero if none are active.) ProvideX
returns a single-character hex value for the mode / keystroke the user chose to
activate the last radio button. Possible values returned in mode$ can include:

01 for MOUSE-CLICK.
$0D$ for .
20 for (and keyboard HotKey, as in the example below).
00 when the user exits the button control.

To determine which RADIO_BUTTON sub_id has been pressed and the mode used:

0100 RADIO_BUTTON READ 1000,which,how$

See Also BUTTON Control Button, p.34,
CHECK_BOX Control Check Box, p.47,
TRISTATE_BOX Control Tristate Box, p.344,
Chapter 7. Control Object Properties, p.701.

Enter
SPACEBAR

2. Directives RANDOMIZE

ProvideX Language Reference V8.30 Back 270

RANDOMIZE Directive RANDOM IZE Set Random KeySet Random Key
Format RANDOMIZE seed

Where:

Description Use the RANDOMIZE directive to assign a seed to be used by the random number
generator. ProvideX uses the given value to define the starting point for the random
number generator (system variable RND). Use the RANDOMIZE directive to have
ProvideX return a repeatable random sequence.

See Also RND System Variable, p.571
RND() Function, p.513.

Example In the following example, ProvideX will RANDOMIZE 1, or create a repeatable
random sequence using 1 as the seed. Then, for instance, each time the number 2 is
encountered in the loop below, it will generate 0.59859266.

1000 FOR I=1 TO 2
1010 RANDOMIZE 1
1020 FOR J=1 TO 5
1030 PRINT RND," ",
1040 NEXT J
1050 PRINT "END OF LOOP ",STR(I)
1060 NEXT I
-:run
0.11337858 0.59859266 0.81950925 0.76559375 0.5199119 END OF LOOP 1
0.11337858 0.59859266 0.81950925 0.76559375 0.5199119 END OF LOOP 2

In the example below, ProvideX will use a repeatable random sequence for indices;
i.e., to create a repeatable number to use each time a particular index number is
encountered.

0010 INPUT "Enter random seed:",N
0020 RANDOMIZE N
0030 OPEN (31)"TESTFILE"
0040 FOR I=1 TO 1000
0050 READ (31,IND=INT(RND*100),ERR=0090)R$
0060 PRINT RND," ",R$," ",
0070 NEXT I
0080 PRINT "DONE"; CLOSE (31); STOP
0090 ...

seed Numeric value or expression to be used as the seed by the random
number generator.

2. Directives READ

ProvideX Language Reference V8.30 Back 271

READ Directive READ Read Data fr om FileRead Data from File
Format READ (chan[,fileopt])varlist

Where:

Description Use the READ directive to read data from the file you identify by channel.

When it's read, the data will be split into one or more fields, either separated by the
currently defined separator character or defined by embedded formats, with the
contents of the first field placed in variable 1, the second field in variable 2, etc.

ProvideX will convert numeric data automatically on a READ statement when
moving it to numeric variables. Numeric data converted during a READ directive
does not use the 'DP' Decimal Point Symbol or 'TH' Thousands Separator system
parameters for European decimal settings.

If you want to skip a field in the record, use an asterisk '*' as a place holder instead of
a variable name. You can refer to an IOList instead of using a list of variables in
varlist. To do this, use IOL=iolref. The iolref can be a line number or label for the line
containing an IOList, or it can be a string containing a compiled IOList.

If you do not include variables in the READ directive, ProvideX will use the IOL=
option (if you included one) in the OPEN statement for the given file. If varlist
contains more variables than there are current fields in the record, then ProvideX
initializes the additional variables to either zero (for numeric variables) or a null
string (for string variables).

chan Channel or logical file number of the file from which to read the data.

fileopt Supported file options (see also, File Options, p.810):
BSY=stmtref Traps Error #0: Record/file busy
DIR=num Direction indicator (not supported with [WDX] tag).
DOM=stmtref Missing record transfer
END=stmtref END-OF-FILE transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key. (See Automatic Padding with KEY=Option)
KNO=num | name$ File access key number (num) or name (name$)
REC=name$ Record prefix (REC=VIS(string$) can also be used)
RNO=num Record number
RTY=num Number of retries (one second intervals)
SIZ=num Number of characters to read
TBL=stmtref Data translation table
TIM=num Maximum time-out value in integer seconds.

varlist Comma-separated list of variables, literals, and IOL= options.

stmtref Program line number or label to transfer control to.

2. Directives READ

ProvideX Language Reference V8.30 Back 272

The READ directive will advance the file position to the next record (or, if you use a
KEY= or IND= option, to the record you identify then) and if you use the KNO=
option, the current access key will be changed accordingly.

ProvideX supports use of the READ directive with *MEMORY*.

Automatic Padding with KEY=Option
When you use KEY=string$:string$[:string$][...] ProvideX automatically pads key
segments. This is valid only if you have Keyed files with segmented key definitions.
ProvideX right-pads the key segment using 00 (nulls) to the segment's full length.

The last segment in a compound key will not be padded.

Example:

KEYED "TEST", [1:1:5]+[2:1:6]+[3:1:8]
READ (1,KEY=A$:B$:C$)

is the same as

READ (1,KEY=PAD(A$,5,$00$)+PAD(B$,6,00)+C$)

See Also FIND Locate and Read Data, p.131,
EXTRACT Read and Lock Data, p.126,
OPEN Open for Processing, p.232,
MEMORY Create & Use Memory File, p.741

Examples 0410 READ (1,ERR=1000,DOM=1200)A,B,*,*,E$

2. Directives READ DATA

ProvideX Language Reference V8.30 Back 273

READ DATA Directive READ D ATA Read D ata from Pr ogramRead Data from Program
Formats 1. Read Data: READ DATA varlist,...[,ERR=stmtref]

2. Read from String: READ DATA FROM data$ [,fileopt] TO varlist

Where:

Description Use the READ DATA directive to read data embedded in a program.

See Also DATA Define Data Elements, p.63,
RESTORE Reset Program Data Position, p.289,
BEGIN Reset Files and Variables, p.32,
LOAD Read Program into Memory, p.194.

Format 1: Read Data
READ DATA varlist,...[,ERR=stmtref]

Use this format to transfer the values/expressions from data statements in a program to
the variables identified in varlist. When READ DATA is executed, ProvideX evaluates
each expression in the data statements, in order, and places the values into the
corresponding variables defined in your READ DATA directive.

ProvideX increments an internal pointer to the next data expression during the
reading of data$. When the end of a data statement is reached, the next data
statement in the program is used. Use a RESTORE directive to reset the pointer to the
start of the first data statement.

Example 1:

Include the END= or ERR= option, to avoid an Error #2 when the pointer is at
End-of-File.

0010 DATA "Dog","Cat","Pig"
0020 DATA "Pig","Cat","Dog"
0030 READ DATA X$, END=1000

data$ Data to be parsed into the varlist. String expression.

fileopt Supported file options (see also, File Options, p.810):
END=stmtref End-Of-File transfer
ERR=stmtref Error transfer
REC=name$ Record prefix (REC=VIS(string$) can also be used).
SEP=char$ Default separator character to parse data. Hex or ASCII string
value. Dynamic SEP=* separators are not supported. If the READ DATA
statement also contains a REC= clause, the REC= clause must precede the
SEP=clause.

stmtref Program line number or label to transfer control to.

varlist List of variables to receive the values from the DATA statements.
Comma-separated numeric and string variables are allowed.

2. Directives READ DATA

ProvideX Language Reference V8.30 Back 274

0040 PRINT X$," | ",
0050 GOTO 0030
1000 RESTORE
1010 PRINT "DONE"; STOP
-:BEGIN
-:RUN
Dog | Cat | Pig | Pig | Cat | Dog | DONE

Format 2: Read Data from String
READ DATA FROM data$[,REC=name$][SEP=char$] TO varlist[,ERR=stmtref]

You can read data from a string to initialize a list of variables or to parse a record into
different IOLists.

Example 2. Initialize Variables:

You can READ DATA to an IOList to initialize all variables.

0010 ! Clear all variables in an IOLIST
0100 READ DATA FROM "" TO IOL=8000
8000 IOLIST ID$,NAME$,AMT

0010 READ DATA FROM "",REC=WORK$ TO IOL=IOL(WORK)

Example 3. Parse Record:

You can use READ DATA to parse a record into different IOLists.

0100 READ RECORD (1)R$
0200 IF R$(1,1)="T" THEN READ DATA FROM R$ TO IOL=8000
0200: ELSE READ DATA FROM R$ TO IOL=8010
8000 IOLIST TYPE$,TRN_DATE$,TRN_AMOUNT
8010 IOLIST TYPE$,PAY_DATE$,PAY_AMOUNT

2. Directives READ RECORD

ProvideX Language Reference V8.30 Back 275

READ RECORD Directive READ RECORD Read Record fr om FileRead Record from File
Format READ RECORD (chan[,fileopt])var

Where:

Description READ RECORD reads a record from a file (chan) and returns the complete record's
data portion to the string variable (var). A READ RECORD statement can be used
when dealing with native-mode operating system files, when exchanging data
between ProvideX and other applications, or to read a complete record, including
data field separators.

The READ RECORD directive advances the file position to the next record (or the
record you identify if you use the KEY= or IND= options) and, if you use the KNO=
option, the current key access number will be changed accordingly.

ProvideX supports use of the READ RECORD directive with *MEMORY* (a
memory-resident file or queue of records).

Example 0010 OPEN (1) "OLDFIL"
0020 OPEN (2) "NEWFIL"
0030 LOCK (2)
0040 READ RECORD (1,END=1000) R$
0050 WRITE RECORD (2) R$
0060 GOTO 0040
1000 CLOSE (1); CLOSE (2)
1010 END

chan Channel or logical file number of the file from which to read the data.

fileopt Supported file options (see also, File Options, p.810):
DIR=num Direction indicator (not supported with [WDX] tag).
DOM=stmtref Missing record transfer
END=stmtref END-OF-FILE transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key
KNO=num | name$ File access key number (num) or name (name$)
REC=name$ Record prefix (REC=VIS(string$) can also be used)
RNO=num Record number
RTY=num Number of retries (one second intervals)
SIZ=num Number of characters to read
TBL=stmtref Data translation table
TIM=num Maximum time-out value in integer seconds.

var String variable. Receives the contents of the record.

stmtref Program line number or label to transfer control to.

2. Directives READ RECORD

ProvideX Language Reference V8.30 Back 276

Automatic Padding with KEY=Option

When you use KEY=string$:string$[:string$][...] ProvideX will automatically pad
key segments. This is valid only if you have Keyed files with segmented key
definitions. Then, ProvideX right-pads the key segment using 00 (nulls) to the
segment's full length but does not pad the last segment; e.g.,

KEYED "TEST", [1:1:5]+[2:1:6]+[3:1:8]
READ (1,KEY=A$:B$:C$)

is the same as

READ (1,KEY=PAD(A$,5,$00$)+PAD(B$,6,00)+C$)

Note that the last segment in a compound key will not be padded.

See Also RCD() Function, p.508,
MEMORY Create & Use Memory File, p.741

2. Directives REDIM

ProvideX Language Reference V8.30 Back 277

REDIM Directive REDIM Redimens io n ArrayRe-Dimension Array
Format REDIM array_name[$](subscript_1[,subscript_2[,subscript_3]])

Where:

Description The REDIM directive is used to re-dimension an array without destroying data
already contained within the array. All existing data is preserved in the exact same
location within the re-dimensioned array. This directive will work on string or
numeric arrays.

Example DIM X[1:10]
X[5] = 5, X[6] = 6
REDIM X[-5:20,4]

X[5,0] has 5 and X[6,0] has 6 because the default second index is 0; i.e., the
original dimension was effectively the same as X[1:10,0:0,0:0].

See Also DIM Define Arrays and Strings, p.86,
DIM() Function, p.415

array_name[$] Numeric or string variable to be dimensioned as an array.

subscript_1 1st dimensions (minimum:maximum) of array. Numeric
expression, integers.

subscript_2 2nd dimensions (minimum:maximum) of array. Numeric
expression, integers.

subscript_3 3rd dimensions (minimum:maximum) of array. Numeric
expression, integers.

Note: Data in array elements that do not exist in the re-dimensioned array are
discarded.

2. Directives REFILE

ProvideX Language Reference V8.30 Back 278

REFILE Directive REFILE Clear Data fr om FileClear Data from File
Format REFILE filename$[,ERR=stmtref]

Where:

Description Use the REFILE directive to erase all data in a specified file. If you use the REFILE
directive to erase a file, the file still exists in the system but contains no data.
(ProvideX returns disk space to the system while preserving the lock.) Any READ
directives for the file will return an End-of-File message.

Using either the REFILE or PURGE directive is faster than deleting the file and
recreating it.

If the given filename does not already exist, ProvideX returns an Error #12:
File does not exist (or already exists). If the file is in use by another
user, ProvideX returns an Error #0: Record/ file busy. Unlike the PURGE
directive, the REFILE directive works if the file is not opened.

WindX supports the use of this directive via the [WDX] tag; e.g., REFILE
"[WDX]somefile.ext"... For more information, see [WDX] Direct Action to
Client Machine, p.801.

See Also LOCK Reserve File for Exclusive Use, p.200,
PURGE Clear Data from a File, p.263.
Creating, Deleting, and Renaming Data Files, User’s Guide

Example 0010 REFILE "PRNTFL"! Pre-clear datafile
0020 OPEN (2)"PRNTFL"
0030 LOCK (2)
0040 PRINT (2)'FF',"Date:",DAY,@(40),TTL$
0050 ...

filename$ Name of the file to clear. String expression.

stmtref Program line number or label to transfer control to.

2. Directives RELEASE

ProvideX Language Reference V8.30 Back 279

RELEASE Directive RELEASE Terminate ProvideXTerminate ProvideX Session
Format RELEASE [num]

Where:

Description Use the RELEASE directive to terminate a ProvideX session and return to the
operating system. The numeric value is returned to the OS as a termination value,
allowing for external testing of error conditions; e.g., by the system shell processor or
using a 'C' program.

When you use the RELEASE directive in a compound statement, it must be the final
directive.

See Also BYE Terminate ProvideX, p.39,
QUIT Terminate ProvideX, p.264.

Example 12000 RELEASE 101

num Status to be returned to the operating system when ProvideX
terminates. Optional. Numeric expression.

Note: The numeric value num is ignored on Windows platforms.

2. Directives REM

ProvideX Language Reference V8.30 Back 280

REM Directive REM RemarkRemark
Formats REM comments or .. ! comments

Where:

Description Use the REM directive to insert program remarks and comments (e.g., documentation
and notes) in a program. The REM statement has no effect on the execution of the
program. ProvideX treats all characters in a statement following the REM directive as
comments. The REM directive is the last one processed in any statement.

Since ProvideX embeds the comment text following the REM directive in the
compiled form of the program, remarks occupy memory space when the program is
loaded and run.

Example 0010 REM Invoice Generation Program - INVGEN
0020 ! Written by: Kathryn Doe, Anytown, Canada

 ! ProvideX accepts the exclamation point ! as a substitute for REM.

comments Remarks. Programmer's comments or documentation.

2. Directives REMOVE

ProvideX Language Reference V8.30 Back 281

REMOVE Directive REMOVE Delete Record fr om FileDelete Record from File
Format REMOVE (chan[,fileopt])

Where:

Description Use the REMOVE directive to delete a record from a file. This directive is not
supported for all file types (i.e., not for indexed files). The REMOVE directive and the
specific options are dependent on the specific file type.

Use of the KEY= option for Keyed, Direct, or Sort files is strongly recommended to
identify the record being removed. Otherwise, if the key is not defined, REMOVE
will target the last record requested. The key specified must be the primary key for
the file. With multi-keyed files, ProvideX removes all related alternate keys from the
file automatically when executing this directive.

ProvideX supports use of the REMOVE directive with *MEMORY* (a
memory-resident file or queue of records, Version 4.10).

See Also *MEMORY* Create & Use Memory File, p.741

Example 0010 OPEN (20)"CSTFLE"
0020 INPUT "What customer do we delete? ",C$
0030 IF C$="" THEN STOP
0040 REMOVE (20,KEY=C$,DOM=0100)
0050 PRINT "Well that's gone.."
0060 GOTO 0020
0100 PRINT "Could not find ",C$
0110 GOTO 0020

chan Channel or logical file number of the file from which to read the data.

fileopt Supported file options (see also, File Options, p.810):
BSY=stmtref Traps Error #0: Record/file busy
DOM=stmtref Missing record transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=num Record key

2. Directives RENAME

ProvideX Language Reference V8.30 Back 282

RENAME Directive RENA ME Change a File's NameChange a File's Name
Format RENAME old_name${, | TO } new_name$[,ERR=stmtref]

Where:

Description Use the RENAME directive to change the name of an existing file. The first string
must contain the current name of the file. (The file must already exist.) Use the
second string expression for the new name of the file.

When the ‘OR' system parameter is set, the RENAME directive will assume that the
new filename contains a fully expanded OS pathname to the same directory as the
old filename.

If the path is omitted from the existing file name, the standard ProvideX search rules
will apply. If the path is omitted from the new name, the renamed file will be located
in the local working directory.

If an operating system stores files by inode number, it may permit the renaming of
active files because it is the inode that is in use and not the name associated with it.
Other operating systems require that files not be in use before they can be renamed.
Some operating systems do not allow you to rename a file to a different directory.

See Also Creating, Deleting, and Renaming Data Files, User’s Guide.

Examples 0010 ERASE "ordlst"
0020 RENAME "ordcur","ordlst"
0030 KEYED "ordcur",6

RENAME "OLDFILE" TO "NEWFILE"

new_name$ New name for the file. String expression.

old_name$ Name of an existing file to be renamed. String expression. To rename
a program in a program library, use [LIB], p.781.

stmtref Program line number or label to transfer control to.

TO Keyword, not case-sensitive (a comma may substitute for TO).

Restrictions: The new filename must not duplicate an existing filename. You must
have exclusive access to the file you are renaming. ProvideX is subject to OS rules for
the renaming of files.

Note: This directive does not apply to any file segments for a multi-segmented file.

2. Directives RENAME CLASS

ProvideX Language Reference V8.30 Back 283

RENAME CLASS Directive RENAME CLASS Change Name of ClassChange Name of Class
Format RENAME CLASS old_name$ TO new_name

Where:

Description The RENAME CLASS directive is used in Object Oriented Programming (OOP) to alter
the name of a previously defined class. This functionality allows the application
designer to alter an existing object class easily, without having to change programs.

Example If you had an existing application with a Product class object but needed to add a
new field to the object, such as Lot_Number:

RENAME CLASS "Product" TO "Orig_Product"
DEF CLASS "Product"
LIKE "Orig_Product"
PROPERTY Lot_Number
END DEF

All subsequent uses of a Product class object would be identical now to the
standard Product class and also have the property LOT_NUMBER.

See Also DEF CLASS Define Object Class, p.65
DROP CLASS Delete Class Definition, p.102
DROP OBJECT Delete Object, p.104
LOAD CLASS Pre-Load Class Definition, p.195
STATIC Add Local Properties at Runtime, p.329
NEW() Function, p.489
REF() Function, p.512
Data Integration, User’s Guide

new_name$ New name for the class.

old_name$ Previously defined class to be renamed.

TO Mandatory keyword, not case-sensitive.

2. Directives RENAME CONTROL

ProvideX Language Reference V8.30 Back 284

RENAME CONTROL Directive RENAM E C ONTROL Ch ang e CTL ValuesChange CTL Values
Format 1. Single Control: RENAME CONTROL old_CTL TO new_CTL{HIDE | SHOW} [,ERR=stmtref]

2. Multiple Controls: RENAME CONTROL from_to_list {HIDE | SHOW} [,ERR=stmtref]

3. Restore Controls: RENAME CONTROL old_CTL TO new_CTL RESTORE [,ERR=stmtref]

Where:

Description The RENAME CONTROL directive allows graphical control objects to be renamed or
hidden/shown in a single command. Use the second format when changing more
than one control – this format is also intended for faster processing of GUI
functionality when used in a client-server (WindX/JavX) application.

Examples The following can be used to hide graphical controls:

b1=10,b2=20,m1=30,m2=40
BUTTON b1,@(0,0,10,3)="abc"
MULTI_LINE m1,@(20,0,10,1)

! Change ctl values and hide controls individually
RENAME CONTROL b1 to b2 HIDE
RENAME CONTROL m1 TO m2 HIDE

! Change ctl values and show a group of controls
ctlvals$=bin(b2,2)+bin(b1,2)+bin(m2,2)+bin(m1,2)
RENAME CONTROL ctlvals$ SHOW

HIDE | SHOW Optional keyword to either hide or restore the control.

from_to_list String variable containing a series of CTL values with each entry
consisting of 2 binary bytes for a from value and 2 binary bytes for a to
value.

new_CTL New CTL value for the control. Numeric value.

old_CTL Existing CTL value for the control. Numeric value.

stmtref Program line number or label to transfer control to.

TO Keyword, not case-sensitive (a comma may substitute for TO).

RESTORE Keyword for restoring the visual state of a given control to where it
was immediately prior to the last HIDE or SHOW.

2. Directives RENAME..INDEX

ProvideX Language Reference V8.30 Back 285

RENAME..INDEX Directive RENA ME..INDEX R ename Keys in Keyed FileRename Keys in Keyed File
Format RENAME filename$ INDEX {keynumber|keyname$} TO {newkeyname$} [,ERR=stmtref]

Where:

Description The RENAME..INDEX directive allows you to rename, or name, keys. When you
need to modify existing names or add key names to an older Keyed file, use the
RENAME..INDEX directive to change the names.

Examples RENAME "cstfile" INDEX 1 TO "Customer_no"
RENAME "cstfile" INDEX "#2" TO "Customer_Name"

See also ADD INDEX Add Key to Keyed File, p.29
DROP INDEX Drop Key from Keyed File, p.103

filename$ Name of the file from where the key will be renamed. String
expression.

keyname$ Name of the key to rename (if assigned). String expression.

keynumber Key number (KNO value) to rename.

newkeyname$ New key name.

stmtref Program line number or label to transfer control to.

TO Mandatory keyword, not case-sensitive.

2. Directives RENUMBER

ProvideX Language Reference V8.30 Back 286

RENUMBER Directive RENU MBER Change Program Line Number sChange Program Line Numbers
Format RENUMBER [new_line1[,step_val[,range_start][,range_end]]]

Where:

Description Use the RENUMBER directive to assign new line numbers to the current program.
During the renumbering process, ProvideX adjusts all references to the lines being
renumbered (e.g., GOTO, ERR= option, etc.) to reflect the new line number. By default,
the complete program is renumbered. You can choose to resequence only selected ranges
of the program. All references (GOTO, etc.) are adjusted in either case.

Use embedded REM statements in the program to control renumbering. If a remark
line starts with a number (e.g., 4000 REM 4000), ProvideX uses the number as the
absolute line number (assuming it is less than or equal to the current resequence
number). The LNO() function can be used to avoid potential renumbering issues.

Example ->LIST
0001 FOR I = 1 TO 40
0002 READ (1,ERR=18)A,B
0003 PRINT A,B
0007 NEXT I
0010 STOP
0014 REM 100 - Error procedure
0018 EXITTO 0008
->RENUMBER
->LIST
0010 FOR I=1 TO 40
0020 READ (1,ERR=0110)A,B
0030 PRINT A,B
0040 NEXT I
0050 STOP
0100 REM 100 - Error procedure
0110 EXITTO 0045

In line 0110 (renumbered version) ProvideX generated line number 0045 in the
EXITTO statement since no line number 0008 existed in the original version.

new_line1 New starting line number (default is 0010).

range_start Starting line number or label at which to begin renumbering.
Optional. Use to define the start of an existing range in the program
for renumbering.

range_end Ending line number or label with which to stop renumbering.
Optional. Use to define the end of an existing range in the program
for renumbering.

step_val Increment or step value between line numbers (default is 10).
Numeric expression.

2. Directives REPEAT..UNTIL

ProvideX Language Reference V8.30 Back 287

REPEAT..UNTIL Directive REPEAT..UNTIL Repetitive ExecutionRepetitive Execution
Format REPEAT ..UNTIL expression

Description Use the REPEAT directive to create conditional looping in a program.

ProvideX executes all statements between the REPEAT directive and the next UNTIL
directive. If the expression in the UNTIL directive is false (zero), ProvideX loops back
to the directive following the REPEAT directive and resumes execution. If the
expression is true (not zero), the loop is terminated and execution continues from the
statement following the UNTIL directive.

The expression would normally include a logical operator (such as an equals =, less-than
symbol <, or the LIKE Operator, p.822), but you can use any numeric expression.

Use the EXITTO directive to halt a REPEAT/UNTIL loop prematurely.

See Also BREAK Immediate Exit of Loop, p.33,
CONTINUE Initiates Next Iteration of Loop, p.57
EXITTO End Loop, Transfer Control, p.125
LIKE Operator, p.822
Loop Structures, User’s Guide.

Example 0090 PRINT 'CS',"Standard TAX calculation..."
0100 INPUT "How much was your INCOME? $",CASH
0110 REPEAT
0120 INPUT "How much TAX did you pay? $",TAXES
0130 LET CASH=CASH-TAXES
0140 PRINT "You have $",CASH," left"
0150 UNTIL CASH<=0
0160 PRINT "Okay you have paid enough."
-:RUN
Standard TAX calculation...
How much was your INCOME? $1.98
How much TAX did you pay? $1.65
You have $ 0.33 left
How much TAX did you pay? $.33
You have $ 0 left
Okay you have paid enough.
-:

expression Condition ends REPEAT looping when true. Numeric expression.

UNTIL Directive to end loop.

2. Directives RESET

ProvideX Language Reference V8.30 Back 288

RESET Directive RESET Reset Pro gram StateReset Program State
Format RESET

Description The RESET directive does the following:

1. Resets PRECISION to the default value of 2. Resets FLOATING POINT to standard
decimal notation. (In earlier versions of ProvideX, FLOATING POINT notation was
left unchanged, i.e., on if on ...)

2. Sets ERR, RET, and CTL variables to zero.

3. Clears FOR..NEXT, GOSUB stacks.

4. Resets DATA position to the start of the program.

5. Re-enables rounding mode.

6. If 'RR' is set, ProvideX also performs a reset for RUN directives.

See Also BEGIN Reset Files and Variables, p.32,
CLEAR Reset Variables, p.54,
START Restart ProvideX, p.328,
'RR' System Parameter, p.684.

2. Directives RESTORE

ProvideX Language Reference V8.30 Back 289

RESTORE Directive RESTORE Reset Pr ogram Dat a Pos itionReset Program Data Position
Format RESTORE [stmtref]

Where:

Description Use the RESTORE directive to change the position of the data read pointer. When a
program is first loaded (or following a BEGIN directive), the data read pointer is set
to the start of the program. As the data is read, the pointer is advanced through the
various data statements in the program.

To set the data read pointer to a given location, include a statement reference in the
RESTORE directive. Omit stmtref to set the data read pointer to the default position
at the start of the program. ProvideX returns an End of File message when all data
statements in the program have been read.

See Also BEGIN Reset Files and Variables, p.32,
DATA Define Data Elements, p.63,
READ DATA Read Data from Program, p.273,
LOAD Read Program into Memory, p.194.

Example 0010 DATA 1,2,3,"Cat"
0020 DATA 4,5,6,"Dog"
0030 READ DATA X,Y,Z,A$,ERR=0050
0040 PRINT X,Y,Z,A$; GOTO 0030
0050 INPUT "Do you want to see the last one again? (Y/N)",X$
0060 IF X$="Y" OR X$="y" THEN RESTORE 0020; GOTO 0030
0070 PRINT " DONE"; STOP
-:run
1 2 3Cat
4 5 6Dog
Do you want to see the last one again? (Y/N)y
4 5 6Dog
Do you want to see the last one again? (Y/N)n
DONE

stmtref Program line number or label the data read pointer is set to.

2. Directives RETRY

ProvideX Language Reference V8.30 Back 290

RETRY Directive RETRY Re-Execut e Failing Inst ructionRe-Execute Failing Instruction
Format RETRY

Description The RETRY directive returns control to the statement on which the last error transfer
occurred. This allows you to take corrective action and retry the statement. Use
*RETRY to emulate this directive in a statement reference. See Labels/Logical
Statement References, p.816.

If an error occurs on a statement where you have used any of the ERR=, DOM= or
END= options, or where you have used a SETERR directive, ProvideX does the
following:

• Saves the statement number and directive where the error occurred (as a retry address).

• Passes control to the file option or SETERR statement reference to handle the error.

• Returns control to the RETRY directive using the retry address.

You can find the currently saved retry address or line reference in TCB(11). ProvideX
returns Error #27: Unexpected or incorrect WEND, RETURN, or NEXT
(i.e., no return address on an error) if it encounters a RETRY directive with no
previous statement saved.

The saved statement number and directive are cleared by any of the following
directives: BEGIN, CLEAR, LOAD, RESET, START. You can also clear the retry address
by executing a RUN directive with a program name specified.

When you use it in a compound statement, the RETRY directive must be the final
directive. If 'RR' is set, ProvideX also performs a reset for RUN directives.

See Also RESET Reset Program State, p.288
TCB() Function, p.534
'RR' System Parameter, p.684.

Example 0010 OPEN (1)"CUSTFL"
0020 INPUT (0,ERR=1000)"Enter customer number: ",C
0030 READ (1,ERR=1010,KEY=STR(C:"000000"))C$,N$
0040 PRINT C$," ",N$
0050 STOP
1000 PRINT 'RB','LF',"Invalid customer. "; RETRY ! Ring bell, retry 0020
1010 PRINT 'RB',"Cannot find customer: "; GOTO 0020
-:run
Enter customer number: 123987
Cannot find customer:
Enter customer number: ABC
Invalid customer.
Enter customer number: 123456
123456 ABC MFG

2. Directives RETURN

ProvideX Language Reference V8.30 Back 291

RETURN Directive RETURN Subr outine/Function Ret urnSubroutine/Function Return
Format 1. Terminate Subroutine: RETURN

2. Terminate Procedure, Specify Value: RETURN expression[$]

Where:

Description The RETURN directive is used to terminate a subroutine. This directive can also be
used to pass a value back from a multi-line function, an embedded I/O procedure, or
OOP method logic.

Format 1: Terminate Subroutine
The RETURN directive is used as the terminator for a GOSUB or SETESC subroutine.
Control is returned to the initiating statement. If the subroutine has been accessed
externally via the PERFORM directive, the RETURN statement will both terminate
the subroutine, and return control to the initiating program.

If ProvideX encounters a RETURN directive without an associated subroutine,
ProvideX returns an Error #27: Unexpected or incorrect WEND,
RETURN, or NEXT. RETURN must be the final directive in a compound statement.

Use the *RETURN label to emulate this directive in a statement reference.

Format 2: Terminate Procedure, Specify Value
RETURN expression[$]

The RETURN directive serves a similar purpose in a multi-line function, embedded
I/O, or OOP function procedure as it does in a typical subroutine. However, this
version of a RETURN statement also passes back a value, expression[$].

Multi-Line Function
When used in a multi-line definition of a user-defined function (DEF FN), the RETURN
directive terminates the function procedure and passes back a result. The specified value
must match the data type of the function definition itself.

Embedded I/O Procedure
The RETURN directive terminates an embedded I/O procedure and returns a value
to the file handler, which it may use to determine the next operation. This is
explained in greater detail in the User’s Guide.

OOP Method Logic
In Object Oriented Programming, the RETURN directive terminates the method logic
and passes back a result. See Object Oriented Programming, p.22.

expression[$] Value to be returned from a multi-line function, embedded I/O
procedure, or OOP method logic. String or numeric expression

2. Directives RETURN

ProvideX Language Reference V8.30 Back 292

See Also GOSUB.. Execute Subroutine, p.141
SETESC Set Interrupt Processing, p.317
PERFORM Call Subprogram, Pass Variables, p.243
DEF FN Define Function, p.68
FUNCTION Declare Object Method, p.137
Called Procedures, User’s Guide.

Examples 0100 ! 100
0110 INPUT "Enter start date DD/MM/YY: ",D$
0120 GOSUB 1000
0130 LET D1$=D$
0140 INPUT "Enter ending date DD/MM/YY: ",D$
0150 GOSUB 1000
0160 LET D2$=D$
0170 PRINT "DONE"; STOP
1000 ! 1000
1010 IF LEN(D$)<>8 THEN GOTO 1080
1020 IF D$(3,1)<>"/" OR D$(6,1)<>"/" THEN GOTO 1080
1030 LET D=NUM(D$(1,2),ERR=1080),M=NUM(D$(4,2),ERR=1080),Y=NUM(D$(7,2),ERR=10
1030:80)
1040 IF D<1 OR D>31 THEN GOTO 1080
1050 IF M<1 OR M>12 THEN GOTO 1080
1060 RETURN
1070 !
1080 PRINT "Invalid: Restart..."
1090 EXITTO 0100

0010 DEF FN%SHRINK$(LOCAL X$)
0020 LOCAL I
0030 I = POS(" "=X$)
0040 IF I <> 0 THEN X$=X$(1,I-1)+" "+X$(I+2); GOTO 0040
0050 RETURN X$
0060 END DEF

0010 DEF CLASS "Customer"
0020 PROPERTIES CUST_NO$,NAME$,ADDR1$,ADDR2$,CITY$,AMT_OWING,LAST_ORD_DT$
0030 FUNCTION Find(X$) Get_Customer
0040 FUNCTION Update() Upd_Customer
0050 LOCAL File OBJECT
0050 END DEF
0100 ON_CREATE: ENTER Db
0110 File = Db'Open("ARCUST")
0120 RETURN
0200 Get_Customer: ENTER C$
0210 READ (File'Channel,KEY=C$) ! Loads all the variables
0220 RETURN 1
0300 Upd_Customer:
0310 WRITE (File'Channel)
0320 RETURN 1

2. Directives ROUND

ProvideX Language Reference V8.30 Back 293

ROUND Directive ROUND Contr ol RoundingControl Rounding
Format ROUND {ON | OFF}

Description Use the ROUND directive to control the automatic rounding of values during
calculations. If you use the ROUND ON directive, ProvideX will round all values to
the PRECISION currently in effect before assigning them to numeric variables. The
ROUND OFF directive terminates the rounding process. With ROUND OFF, ProvideX
maintains all values at full 18-digit precision. The ROUND directive has no effect if
FLOATING POINT mode is active.

Rounding Control
The unpredicable rounding of numeric values can cause problems during execution.
It is very important to know how rounding works in ProvideX. If rounding is set to
the default, a divide operation in ProvideX will maintain the precision of the starting
value; e.g., 1014.475/100 becomes 10.14475 which gets rounded to 10.145.
The automatic rounding of intermediate results can be turned off by setting the 'NR'
System Parameter, p.676. Various other types of rounding can be controlled using
the 'RN'= System Parameter, p.684.

See Also PRECISION Change Current Precision, p.248,
FLOATING POINT Switch to Scientific Notation, p.133
'NR' System Parameter, p.676
'RN'= System Parameter, p.684
'RS' System Parameter, p.684

Examples With ROUND OFF

0010 PRECISION 2
0020 ROUND OFF
0030 LET A=3*(2/3)
0040 PRINT A
-:run
 2

With ROUND ON:

0010 PRECISION 2
0020 ROUND ON
0030 LET A=3*(2/3)
0040 PRINT A
-:run
 2.01

2. Directives RUN

ProvideX Language Reference V8.30 Back 294

RUN Directive RUN Tr an sfer and Execut e a Pr ogramTransfer and Execute a Program
Format RUN [prog$[;entry$]][,ERR=stmtref]

Where:

Description Use the RUN directive to start or resume the execution of a program. You can include
the name of a program to LOAD and then RUN. The RUN directive performs the
following actions if a program is already loaded:

1. Resets the current precision to 2.

2. Enables rounding.

3. Clears FOR/NEXT, GOSUB/RETURN, and WHILE/WEND stack.

4. Resets SETERR and SETESC addresses and any saved RETRY address.

If you are loading a program or if the current program has not been interrupted,
ProvideX begins execution at the program statement with the lowest line number. If
the current program was interrupted (by an error, or a BREAK or ESCAPE directive)
ProvideX resumes execution from the statement where the program left off.

You can embed the RUN directive in a program to provide an overlay facility. The
RUN directive affects neither user data nor files. When you use it in a compound
statement, the RUN directive must be the final directive.

You can assign an optional line label entry point for the RUN program. To do this,
append a semicolon and the starting label name to the program name (e.g., RUN
"PROG;STARTING_LABEL"). After the program is loaded, ProvideX internally
issues a GOTO directive and starts execution at the assigned entry point.

If you set 'RR', ProvideX will also perform a reset for RUN directives.

See Also CALL Transfer to Subprogram, p.40,
PERFORM Call Subprogram, Pass Variables, p.243,
RESET Reset Program State, p.288,
'RR' System Parameter, p.684
Saving, Loading, and Executing a Program, User’s Guide.

Example -> RUN "INVGEN"
0040 RUN "PAY"+A$

;entry$ Name of starting line label to use as entry point in the program.
Optional. If included, append to the prog$ string expression (e.g., RUN
"MY_PROG;STARTING_LABEL").

prog$ Name of the program to load and execute. Optional. String expression.

stmtref Program line number or label to transfer control to.

2. Directives SAVE

ProvideX Language Reference V8.30 Back 295

SAVE Directive SAVE Wr ite Program t o FileWrite Program to File
Format SAVE [EDIT] [prog_name$[,prog_size][,OWN=owner_id[,FLG=flg:flg:flg]]]

Where:

Description Use SAVE to copy/write the current program to a given prog_name$. (Include the path
name if the directory is neither current nor in your PREFIX definition.) If the file does not
exist, it will be created. If prog_size is included, the file must not already exist.

If the output of the file is a program file type, ProvideX writes it to the file in internal
(compiled) format. For serial/indexed file types, ProvideX writes the program in
display (LIST) format. SAVE can only be used for serial, indexed, and program files.

Structured Save. The SAVE directive can also be used to verify modified programs for
structural integrity ('SS' System Parameter, p.688). Logical errors (e.g., a FOR with no
corresponding NEXT or a SWITCH without an END SWITCH) will result in a Warning
#125: Improper Structure Detected indicating where the fault was detected.
For more information on logical structures, refer to the User’s Guide, Chapter 3.

See Also SERIAL Create a Sequential File, p.302

Example ->SAVE "PROG1A"
->SAVE "/usr/a-r/PROGS/ARLIST"

You can SAVE or SAVE EDIT a text file containing the source of a program. Be sure to
pre-create your SERIAL text file.

SERIAL "PROG00.TXT"
LOAD "PROG00"
SAVE EDIT "PROG00.TXT" ! Formatted with line breaks and indents

EDIT Use the optional keyword EDIT with the SAVE directive to have
ProvideX logically break the lines into segments and indent them.
For more information refer to the 'LE' System Parameter, p.672 and
the LIST Directive, p.176.

flg Optional package flags. If you use these, delimit them with a colon
":" and use numeric expressions; i.e., integers between 1 and 25.

prog_name$ Optional file name to receive the program. String expression. To
save a program in a program library, use [LIB], p.781.

prog_size Program size. Optional. Numeric expression.

owner_id Optional package number (owner ID) to which this program is to be
assigned. Numeric expression.

Note: OWN= and FLG= options are designed for use by registered application
developers. These are used to encrypt and establish activation keys to run the
programs.

Note: You can RUN, CALL, or PERFORM text files that contain programs just as you
would any regular program file.

2. Directives SAVE CONTROL

ProvideX Language Reference V8.30 Back 296

SAVE CONTROL Directive SAVE CONTROL Save Image of Cont rolSave Image of Control
Format SAVE CONTROL ctl_id TO filename$ [,ERR=stmtref]

Where:

Description Use the SAVE CONTROL directive to capture graphical controls or the ProvideX desktop
and store the results in a bitmap (.bmp) file. These saved images can then be used by the
'PICTURE' mnemonic. This command will not work on invisible objects/windows.

As most of the functionality is controlled through Windows API calls, it is possible to
receive an Error #15: Operating system command failed if the operating
system is unable to execute the necessary functions.

See Also 'PICTURE' Mnemonic, p.631.

Example 00010 ! SAVE.CTL - Create a Chart then save Control & Screen images
00020 PRINT 'CS','FONT'("MS Sans Serif",-12),'GF',
00030 !
00100 ! ^100 - Create the Chart
00110 Chrt=100; CHART Chrt,@(20,0,40,20),SEP=",",FMT="3DColumn",FNT="Verdana"
00120 CHART LOAD Chrt,"2,3,4,5,6,7,8,9,10,11,12,13/1,2,3,4,5,6,7,8,9,10,11,12/"
00130 Chrt'Title1$="Title 1",Chrt'Title2$="Title 2",Chrt'Footer$="Footer"
00140 Chrt'XAxisTitle$="X-Axis Title",Chrt'YAxisTitle$="Y-Axis Title"
00150 Chrt'CurrentSet=1,Chrt'CurrentPoint=0,Chrt'LegendText$="Item #1"
00160 Chrt'CurrentSet=2,Chrt'CurrentPoint=0,Chrt'LegendText$="Item #2"
00170 Chrt'PointText$="Jan,,Mar,,May,,Jul,,Sep,,Nov,,"
00180 !
00200 ! ^100 - Save the images
00210 SAVE CONTROL Chrt TO "Chart.bmp",ERR=*NEXT
00220 SAVE CONTROL 0 TO "Screen.bmp"
00230 !
00300 ! ^100 - Print the saved images
00310 OPEN (1)"*winprt*;asis"
00320 PRINT (1)'PICTURE'(@X(0),@Y(0),@X(70),@Y(24),"Chart.bmp",2),
00330 PRINT (1)'PICTURE'(@X(0),@Y(25),@X(70),@Y(49),"Screen.bmp",2),
00340 CLOSE (1)
00350 END

ctl_id Unique value of the control to capture, or 0 zero to capture the
ProvideX desktop

filename A valid filename with the .bmp extension
stmtref Program line number or label to transfer control to.
TO Mandatory keyword, not case-sensitive.

Note: In a WindX environment, the SAVE CONTROL directive is passed to the WindX
client, therefore filename must be a file on the WindX client, not on the server.

2. Directives SAVE DATA

ProvideX Language Reference V8.30 Back 297

SAVE DATA Directive SAVE DA TA Save Program Constant sSave Program Constants
Format SAVE DATA filename$ [,ERR=stmtref], varlist

Where:

Description This directive creates a Variable Definition file on disk that contains the names and
values of variables named in varlist. These variables and their values can then be
loaded into memory using the LOAD DATA directive. Variables loaded in this way
are read-only (constants). Global variables are not supported.

To change the values of variables in a Variable Definition file, you must repeat the
SAVE DATA process. When a Variable Definition file, is re-saved, the original
contents are replaced.

See Also LOAD DATA Load Program Constants, p.196.

Example CCOMPANY$="ABC Company"
DIVISION$="Laundry Division"
COMPANY_CODE=1
SAVE DATA "CO_DATA",COMPANY$,DIVISION$,COMPANY_CODE

START

LOAD DATA "CO_DATA"

DUMP
! ERR=0, CTL=0, RET=2
! Level=1
! PGN="<Unsaved>"
! Loaded data....CO_DATA (C:\Documents and Settings\Default

User\Application Data\CO_DATA)
COMPANY$="ABC Company"
DIVISION$="Laundry Division"
COMPANY_CODE=1

COMPANY_CODE=2
Error #61: Authorization failure

filename Name of Variable Definition file in which to store constant.
stmtref Program line number or label to transfer control to.
varlist List of variables.

2. Directives SAVE FILE

ProvideX Language Reference V8.30 Back 298

SAVE FILE Directive SAVE FILE Save Bitmap to D iskSave Bitmap to Disk
Format SAVE FILE (chan[,ERR=stmtref]) TO filename$

Where:

Description Use the SAVE FILE directive to save an image written to *BITMAP* (virtual file)
directly to a bitmap file (.bmp) file on disk.

See Also *BITMAP* Virtual Bitmap, p.738

Example In the code below, *BITMAP* is used to capture ProvideX internal bitmaps, which
are then saved to .bmp files using SAVE FILE:

0010 PicList$='picture'(*)+","
0020 x=pos(","=PicList$); if x=0 then stop
0030 f$=PicList$(1,x-1),PicList$=PicList$(x+1)
0040 open (1)"*bitmap*;Width=1;Length=1"
0050 print (1)'picture'(0,0,@x(mxc(1)+1),@y(mxl(1)+1),"!"+f$,4),
0060 f$="/tmp/"+f$+".bmp"; erase f$,err=*proceed
0070 save file (1) to f$
0080 close (1)
0090 goto 0020

chan Channel or logical file number to be read from.
filename A valid filename with a .bmp extension.
stmtref Program line number or label to transfer control to.
TO Mandatory keyword, not case-sensitive.

Note: This capability is for Windows only. The bitmap chan can be a
WindX-connected file if the pathname contains a "[WDX]" prefix. Also, if the pathname
contains "[WDX]" then the chan must be a WindX file.

2. Directives SELECT..FROM..NEXT RECORD

ProvideX Language Reference V8.30 Back 299

SELECT..FROM..NEXT RECORD Directive SELECT Query Record sQuery Records
Format 1. Open, read and query records: SELECT iolist[,REC=name$] FROM

{filename$ | chan}[,KNO=num | name$] [BEGIN key$ END key$] [,ERR=stmtref]
[WHERE expression] ..NEXT RECORD

2. Return full record contents: SELECT RECORD iolist FROM {filename$ | chan}
[,KNO=num | name$] [BEGIN key$ END key$] [,ERR=stmtref]
[WHERE expression] ..NEXT RECORD

3. Return key portion of the record: SELECT KEY iolist[,REC=name$] FROM
{filename$ | chan} [,KNO=num | name$] [BEGIN key$ END key$] [,ERR=stmtref]
[WHERE expression] ..NEXT RECORD

Where:

Description Use the SELECT directive to open, read and query records FROM the specified data file,
or just to read data from a specified file number. As each record is read, ProvideX
processes any logic you include following the SELECT directive up to the NEXT RECORD.
When ProvideX encounters a NEXT RECORD statement with no records found for a
nested SELECT, it will locate the corresponding SELECT statement.

BEGIN key$
END key$

Keyword and string expression used to establish the begin
and end keys for the selected range. key$ may also be a colon-
separated list of values for use with segmented key definitions
(as per KEY= in the READ Directive, p.272).

chan Channel or logical file number to be read from.
expression Condition must return true or false. Numeric or string

expression.
filename$ Name of the file to be opened and read from. String expression.
FROM Keyword required to indicate filename$ or chan.
iolist List of variables to be read from the file. The order in which the

variables are specified (A$, B$, C$, ..) corresponds to how the
fields are read from each record (1st, 2nd, 3rd, ..). If you use an *
asterisk then all fields defined by the embedded data dictionary
will be returned. You can use an IOL=iolref as your iolist.

KEY Optional keyword for specifying that the value of the key is to
be treated as if it were the data.

KNO=num | name$ File access key value (num) or name (name$).
NEXT RECORD Directive required to end the SELECT loop.
REC=name$ Record prefix (REC=VIS(string$) can also be used).
RECORD Optional keyword for returning the record contents in a single

variable.
stmtref Program line number or label to transfer control to.

2. Directives SELECT..FROM..NEXT RECORD

ProvideX Language Reference V8.30 Back 300

If you include a WHERE clause, ProvideX will process only those records WHERE the
condition is true.

The use of BEGIN and END will restrict the range of records read. These clauses are
are only supported for Keyed and Memory files. They can be used with
WindX-connected files. Note that, if you are using BEGIN and END in SELECT
statements for files with descending keys, the END value must be lower than the
BEGIN value.

If a SELECT directive specifies a filename$, that file will be opened when the SELECT
is executed, thus setting the file pointer to the beginning of the file. If the directive
uses a channel, SELECT will begin from the current file pointer. When using the
latter, it may be prudent to include a BEGIN clause to reset the file pointer; e.g.,
SELECT * FROM 1 BEGIN "".

Because ProvideX pads descending keys to their full length with FF, the BEGIN
value is key$+$FF$ and the END value should be key$+$00$ so that the ending key
is less than the beginning key; i.e., the correct format is currently SELECT * FROM
filename BEGIN key$ END key$+$00$.

Although the incorrect statement SELECT * FROM filename BEGIN key$ END
key$+$FF$ may have worked in prior versions, it no longer does as of Version 4.20.

You must either include a NEXT RECORD directive to end the SELECT loop or
instruct ProvideX to exit the loop early (with an EXITTO directive).When an EXITTO
directive is used, the file will be closed if SELECT specified a data file name rather
than a channel.

Also, in earlier versions of ProvideX, the CONTINUE and BREAK directives (and
corresponding *CONTINUE and *BREAK labels) were not supported for use with
SELECT .. NEXT RECORD directives. It is now possible to include BREAK and
CONTINUE commands in SELECT structures.

Formats 2 and 3: SELECT RECORD and SELECT KEY Options

The SELECT .. NEXT RECORD statement can include syntax for full record contents
or key portion of the record. SELECT RECORD allows the specification of a single
variable, or * as per the READ RECORD directive. SELECT KEY reads the file and
treats the key contents as if it were the data. A single variable can be specified to
receive the key value or a formatted IOList; e.g., SELECT KEY DIV:[CHR(2)],
CLIENT:[CHR(7)] FROM "ABC". Refer to the examples below.

Note: Every SELECT must have a corresponding NEXT RECORD directive, and must
be in the correct sequence. A mis-matched number of SELECT and NEXT RECORD
directives can result in either an Error #27: Unexpected or incorrect WEND,
RETURN, or NEXT, or an Error #28: No corresponding FOR for NEXT.

Note: When SELECT * FROM filename BEGIN key$ END key$+$FE$ is encountered
when processing a MySQL table, the SQL sent to the server will be optimized to reduce
records processed by the server.

2. Directives SELECT..FROM..NEXT RECORD

ProvideX Language Reference V8.30 Back 301

Examples The following illustrates use of the SELECT WHERE clause:

0010 SELECT IOL=0100 FROM "VEND_FILE",KNO=1 BEGIN "ABC CO." END "THAT CO." WHERE
0010:CITY$="CLARENDON"
0020 PRINT REC(IOL=0100)
0030 NEXT RECORD
0100 IOLIST VEND$,NAME$,ADDR1$,ADDR2$,CITY$,PROV$,POSTAL$,INV_DT$,INV,
0100:AMT,TERMS,DUE_DT$
0110 PRINT "DONE"; END

In the following example, SELECT KEY is issued to return the key portion of the
record:

SELECT KEY cst_name$,REC=X1$ FROM "cstfile",KNO=1 BEGIN StartName$ END
StartName$+$FF$ WHERE x1.cst_name$<>SkipName$

PRINT x1.cst_name$
NEXT RECORD

This uses the SELECT RECORD directive to return the full record contents:

SELECT RECORD r$ FROM "cstfile",KNO=1 BEGIN "D" END "D"+$7F$
PRINT r$
NEXT RECORD

See Also BREAK Immediate Exit of Loop, p.33,
CONTINUE Initiates Next Iteration of Loop, p.57,
EXITTO End Loop, Transfer Control, p.125,
READ RECORD Read Record from File, p.275.

2. Directives SERIAL

ProvideX Language Reference V8.30 Back 302

SERIAL Directive SERIAL Create a Sequential FileCreate a Sequential File
Format SERIAL filename$[,max_recs[,rec_size]][,ERR=stmtref]

Where:

Description When you use the SERIAL directive to create a serial (sequential or flat) file, ProvideX
creates a standard text data file in a format the operating system can access directly. The
record size is "for documentation purposes only" on most operating systems. If you do
specify the size, make it large enough to hold all the data fields written to the file for each
record. If a file of the name you use already exists, ProvideX returns an Error #12:
File does not exist (or already exists).

Record Access Mode and Binary Access Mode
In record access mode, a serial file is read a line or record at a time. Each line is
determined by the presence of end-of-line-character(s) which are different based on
the OS. On UNIX (or similar OS’s) the end-of-line character is the line feed ($0A$),
on Microsoft Windows it is a carriage return followed by a line feed ($0D0A$).

Each READ or READ RECORD will only read 1 line. When using a standard READ
directive READ each line will be parsed by any field SEP's that exist within the line
and the corresponding variables within the READ will be set. If you use a READ
RECORD then the field SEP's will not be parsed and the variable on the directive will
receive the complete lines data.

When you OPEN a serial file in record access mode, there are 2 logical file pointers in
the file. The read pointer starts at the top of the file, and the write pointer starts at
the bottom; therefore, reads return the data starting from the first record whereas
writes automatically append to the end of the file.

You can move both file pointers by issuing a READ or WRITE and supplying an
IND= clause (IND=0 is the first record, IND=1 is second, etc.)

When a file is opened in binary access mode, you can read and write byte by byte
with no regard for the data contents. The data on the file is logically parsed into
records each of whose size is based on the ISZ= in an OPEN clause. For example,

filename$ String variable that defines the name of the serial (sequential) file to create.

rec_size Maximum size of the data portion of the record. (Optional on most
operating systems.) Numeric expression.

max_recs Estimated number of records the file is to contain. The default is no initial
allocation of file space, with no limit as to final size. (Not used in most
operating system implementations.) Numeric expression.

stmtref Program line number or label to transfer control to.

2. Directives SERIAL

ProvideX Language Reference V8.30 Back 303

OPEN(chan,ISZ=1) sets binary access mode with the contents of the file being
considered a series of 1-byte records. An OPEN(chan,ISZ=512) sets binary mode
with a series of 512-byte records.

A READ or READ RECORD will read the ISZ= number of bytes and treat these as a
record. Using an IND= moves the current file pointer to a specific record, so when
using ISZ=1, the IND= will take you to a specific byte offset within the file.

WindX supports the use of this directive via the [WDX] tag; e.g., SERIAL
"[WDX]somefile.ext"... For more information, see [WDX] Direct Action to
Client Machine, p.801.

Examples Both examples below create files whose structures are viewed by ProvideX as serial
(or unknown type):
0010 SERIAL "PRNTFL",,133

0010 SERIAL A$+"-"+B$,100,50,ERR=1090

See Also Labels/Logical Statement References, p.816
'NN' System Parameter, p.676,
LOAD Read Program into Memory, p.194,
SAVE Write Program to File, p.295.
File Types, User’s Guide

2. Directives SET_FOCUS

ProvideX Language Reference V8.30 Back 304

SET_FOCUS Directive SET_FOC US Set Input Focu sSet Input Focus
Formats 1. Set Focus On: SET_FOCUS ctl_id [,ERR=stmtref]

2. Retry: SET_FOCUS RETRY ctl_id [,ERR=stmtref]

3. Read CTL Value: SET_FOCUS READ ctl_id [,ERR=stmtref]

Where:

Description Use the SET_FOCUS directive to set the focus on the custom control you want to
receive the next user input. ProvideX returns Error #65: Window element
does not exist or already exists if you use SET_FOCUS for a non-existent
control item. An Error #13: File access mode invalid is returned if the
control is disabled.

Format 1: Set Focus On
SET_FOCUS ctl_id

Setting the focus to a control directs subsequent terminal input to it, unless the user
overrides it with the mouse. If the value of the ctl_id is zero, input is directed to the
screen INPUT directives.

Example:

1000 BUTTON 100,@(10,10,10,2)="Write"
1010 BUTTON 101,@(15,10,10,2)="Delete"
1030 SET_FOCUS 100

The next keyboard input will be directed to the Write button.

Format 2: Retry
SET_FOCUS RETRY ctl_id

Use the SET_FOCUS RETRY format to set an internal "modified" flag on the control. If
the user attempts to away from the control, it will retry its associated CTL
event. You can use this in input validation (i.e., when an application detects invalid
input). You can issue a SET_FOCUS RETRY directive to have ProvideX reprocess the
input field whether the user changes something or attempts to away from it.

Format 3: Read CTL Value
SET_FOCUS READ ctl_id

Use SET_FOCUS READ to obtain the CTL value of the control which currently has
focus. The CTL value is 0 zero if no control has focus.

ctl_id Unique numeric control ID of the custom control (BUTTON, LIST_BOX,
DROP_BOX, etc.) to which to direct subsequent input.

stmtref Program line number or label to transfer control to.

Tab

Tab

2. Directives SET_NBF

ProvideX Language Reference V8.30 Back 305

SET_NBF Directive SET_NBF Set Number of Keyed I/O Buffer sSet Number of Keyed I/O Buffers
Format SET_NBF buffers

Where:

Description Obsolete.

Use the SET_NBF directive to adjust the number of internal buffers to be used by the key
I/O manager. Use values in the range 0 to 25. By allocating more buffers, you can
typically obtain better Keyed access performance. Normally the default of 10 buffers
yields good overall performance. If you use the 'BF' parameter to set the number of
buffers to zero, this will force ProvideX to allocate local or file-specific buffers (controlled
by the parameter ‘FB').

Using this directive to optimize system performance takes a great deal of experience.
Many factors influence the number of buffers required. The system may slow down if
too many buffers are assigned, causing excessive queue searching. Too few buffers may
cause additional disk I/O’s. In a single user environment, more buffers will typically
improve performance, since ProvideX will use these buffers to cache disk reads and
writes.

buffers Number of internal key I/O buffers. Numeric expression.

Note: This directive is included here for completeness only. SET_NBF is obsolete and
has been replaced by the 'BF'= System Parameter, p.657.

2. Directives SET_PARAM

ProvideX Language Reference V8.30 Back 306

SET_PARAM Directive SET_PA RAM Set System Parameter sSet System Parameters
Format SET_PARAM [param_list]

Where:

Description Use the SET_PARAM directive to set system parameters. These parameters set
internal options in ProvideX. For the list of possible parameters that can be set, see
Chapter 6. System Parameters, p.653.

You can find the current value or state of these parameters using the PRM() function
and the system variable PRM.

See Also PRM System Variable, p.570
PRM() Function, p.504.

Examples 0100 PRINT PGN
0110 SET_PARAM 'OP'
0120 PRINT PGN
-:run
C:\Program Files\Sage Software\ProvideX\MANUAL\TST\TST_EGS
TST_EGS

SET_PARAM 'AH' ! Switches Alternative Heading ON
SET_PARAM -'AH' ! Minus sign switches 'AH' OFF
SET_PARAM 'BY'=0 ! sets the Base Year to Julian calendar base
SET_PARAM 'BY'=1970 ! resets Base Year to default

You can use a Boolean value to reset a switch; e.g.,

SET_PARAM 'AH'=0 ! switches 'AH' off
->?prm('ah')
0

param_list List of mnemonics and optional values for setting various system
parameters for your ProvideX environment.

2. Directives SETCTL

ProvideX Language Reference V8.30 Back 307

SETCTL Directive SETCTL GOSU B on CTL EventGOSUB on CTL Event
Format SETCTL ctl_id:stmtref

Where:

Description When ProvideX executes the SETCTL directive, it intercepts CTL values on INPUT
statements and transfers control via a GOSUB to the specified line number or label.
On completion of the subroutine (e.g., on a RETURN) control will pass back to the
INPUT statement where the event was intercepted.

To reset a SETCTL, set stmtref to 0000. If stmtref = 0000, the logic to intercept the CTL
value is deleted.

See Also GOSUB.. Execute Subroutine, p.141,
CTL System Variable, p.557.

Example 0010 SETCTL 3:2000
0020 SETCTL 4:9000
0100 INPUT (0,err=0100) @(x,y), "Enter Name:",A$
0110 STOP
2000 ! refresh screen
2010 PRINT 'RS',; RETURN
9000 ! exit routine
9010 EXITTO 9900
9900 END

In the above example, whenever the CTL=3 on the INPUT statement (i.e., the user
hits the key), control is passed to the subroutine at line 2000. When the RETURN
statement is executed, control passes back to the line that contained the INPUT
statement.

ctl_id CTL value to intercept. Numeric expression.

stmtref Program line number or label to transfer control to.

Note: SETCTL is only valid for the program it was executed in, not any subsequent
programs (e.g., those initiated through CALL, PERFORM or RUN directives).

F3

2. Directives SETDAY

ProvideX Language Reference V8.30 Back 308

SETDAY Directive SETD AY Change Local DateChange Local Date
Format SETDAY [date$]

Where:

Description Use the SETDAY directive to set or change the current local processing date for the
current user and session (returned in the DAY variable). The DAY_FORMAT of the
string-expression is the default, MM/DD/YY, unless you specify a different setting in a
DAY_FORMAT directive. ProvideX will continue to update the altered date based on
the current time and date.

The altered date will stay in effect until the end of the session or until the execution
of a START directive. Then ProvideX reverts to the operating system's current date.
Note that this directive calculates an offset from the current operating system
date/time. If the operating system date is altered after the execution of the SETDAY
directive, a corresponding change will be reflected in the value of DAY.

See Also DAY System Variable, p.557
DTE() Function, p.422

Example 0090 SETDAY "11/15/00"
0090 PRINT DAY
0110 SETDAY "02/26/00"
0120 PRINT "Today's date is ",DAY
->RUN
11/15/00
Today's date is 02/26/00

The date 02/26/00 is only in effect for the current session. If the operating system's
date and time are advanced by 2 days (to the 28th of November) during the current
session, then the current session date 02/26/00 will be advanced to 02/29/00 for the
current user.

date$ Date to assign to the DAY variable for the current session. String expression.

Note: This directive only affects the user executing the directive.

2. Directives SETDEV

ProvideX Language Reference V8.30 Back 309

SETDEV Directive SETDEV Set D evice Type NameSet Device Type Name
Format SETDEV (chan)lcs_devtype$

Where:

Description Use the SETDEV directive to make dynamic changes in the value of the DEVICE TYPE
field maintained by ProvideX for device files. This directive is applicable primarily
to device drivers, and then only those that can support more than one device type on
the same port.

When you use this directive, the device driver '*DEV/DIAL-UP" changes the device
type field for a dial-up terminal based on the type of terminal actually connecting to
ProvideX.

chan Channel or logical file number of the file for which the device type
is being overridden.

lcs_devtype$ The lower-case string value defining the device type. Its maximum
length is 12 characters. String expression.

2. Directives SETDEV IOL=

ProvideX Language Reference V8.30 Back 310

SETDEV IOL= Directive SETDEV IOL= Change IOLis t of Open FileAlter IOList for Open Channel
Format SETDEV (chan) IOL= iolref$ [: {*|^|KEY }]

Where:

Description Use the SETDEV IOL= directive to alter the various IOLists associated with a
currently open channel. This will override the current IOList definition for a channel
while the channel is open, and will not physically alter the file.

Example 0020 IOLIST A$,B$,C$
0030 SETDEV (1)IOL=0020:* ! changes the embedded IOList
0040 SETDEV (1)IOL=0020:^ ! changes the alternate IOList
0050 SETDEV (1)IOL=0020:key ! changes the KEY IOList
0060 X$=cpl("IOLIST A$,B$")
0070 SETDEV (1)IOL=X$! changes the default IOList

* Optional indicator, changes the embedded IOList.

^ Optional indicator for changing the alternate IOList

chan Channel or logical file number.

iolref$ Valid IOList reference.

KEY Optional indicator for changing the KEY IOList

Note: If no {*|^|KEY } indicator is used, the default IOList will be changed.

2. Directives SETDEV KEY

ProvideX Language Reference V8.30 Back 311

SETDEV KEY Directive SETD EV KEY Change Keys of Open FileAlter Keys of Open Channel
SETDEV (chan) KEY: numexpr,strexpr

Where:

Description Use the SETDEV KEY directive to either assign or alter named keys for an open
channel. The name assigned to any given key is only valid while the channel is open,
and will not physically alter the file.

Example ->OPEN (1)"*msglib.en"
->SETDEV (1)KEY:0,"PrimaryKey"
->PRINT RCD(1,KEY="!PRINT",KNO="PrimaryKey")
{&P!Print}

chan Channel or logical file number.

numexpr Valid KNO value (file access key) for the file.

strexpr New key name.

2. Directives SETDEV PROGRAM

ProvideX Language Reference V8.30 Back 312

SETDEV PROGRAM Directive SETD EV PROGRAM Set I/O Pr ogramSet I/O Program
SETDEV (chan) PROGRAM "prog_name"

Where:

Description The SETDEV PROGRAM directive allows an Embedded I/O program to be attached
to an open channel if the file does not already have one associated with it. The
embedded I/O program will remain in affect only until the channel is closed.

Example ->load"Embedded.io"
->list
0010 ! Embedded.io
0020 Pre_Close:
0030 PRINT "This message generated by the Pre_Close routine"

->OPEN(1)"*msglib.en" ! Open a file
->SETDEV (1) PROGRAM "Embedded.io" ! Attach EIO Program
->CLOSE (1) ! Close file
This message generated by the Pre_Close routine
->

chan Channel or logical file number.

prog_name Name of Embedded I/O program.

2. Directives SETDEV SEP=

ProvideX Language Reference V8.30 Back 313

SETDEV SEP= Directive SETD EV SEP= Change File SEPChange File SEP
SETDEV (chan) SEP=char$

Where:

Description The SETDEV SEP= directive allows an application to change the standard field
separator character on a file-by-file basis. If the value of char$ is longer than 1
character, the system will generate a string length error. If the value of char$ is null,
the file will be set to have dynamic separators (length delimited).

chan Channel or logical file number.

char$ Field separator character. Hex or ASCII string value.

Note: This only affects the currently opened channel and does not physically alter the
field separator value stored within the file header – it reverts back to its original value
when the file is subsequently opened. This is applicable to native ProvideX files only.

2. Directives SETDEV TSK()

ProvideX Language Reference V8.30 Back 314

SETDEV TSK() Directive SETD EV TSK () Add t o TSK() Lis tAdd to TSK() List
Format SETDEV TSK() task$

Where:

Description Use the SETDEV TSK() directive to add a string to the end of the internal table for the
TSK() function. Each time SETDEV TSK() is used, the task$ is evaluated and appended
to the internal table.

Do not include a task number in the SETDEV TSK() directive. ProvideX automatically
supplies the next available number in sequence. The order of the table is determined by
the order in which SETDEV TSK() directives are executed. ProvideX places the string
from the first SETDEV TSK() into TSK(0), the second into TSK(1) and so on. If you use
the TSK() function with an invalid task number, ProvideX returns an Error #41:
Invalid integer encountered (range error or non-integer).

See Also TSK() Function, p.543.

Example 0100 SETDEV TSK()"lp - hp laserjet on johns desk"
0110 SETDEV TSK()"p1 - epson printer - spooled"
0120 PRINT TSK(0),'LF',TSK(1)
LP - hp laserjet on johns desk
P1 - epson printer - spooled

task$ String of characters to add to the TSK() table. String expression.

2. Directives SETDRIVE

ProvideX Language Reference V8.30 Back 315

SETDRIVE Directive SETDRIVE Set D ef ault Dr iveChange Default Drive
Format SETDRIVE {letter$ | number}

Where:

Description Use the SETDRIVE directive to change the default disk drive.

See Also CWDIR Change Working Directory, p.62.

letter$ String expression. Drive letter from A to Z representing the new disk
from which you want to work or run applications.

number Numeric expression. Number from 0 to 25 representing the drive letter
(A to Z) from which you want to work or run applications.

Note: This directive only functions with PVX for Windows, and is used primarily in
the conversion from legacy DOS-based Business BASIC languages.

2. Directives SETERR

ProvideX Language Reference V8.30 Back 316

SETERR Directive SETERR Set Er ror TransferSet Error Transfer
Formats 1. Error Transfer to Line/Label: SETERR stmtref

2. Error Transfer to Program: SETERR prog$[;entry$]

Where:

Description Use SETERR to define the transfer address for any error for which you have not used the
ERR= option. While a SETERR is in effect, any error (divide check, subscript range error,
etc.) transfers control to the statement number, label, or program specified in SETERR. To
disable the SETERR transfer in a program, use statement number 0000 as stmtref.

Once a SETERR transfer occurs, ProvideX inhibits further SETERR transfers until either
another SETERR is executed or a RETRY directive re-executes the statement which caused
the error. This prevents system looping caused by errors in an error handler.

The chart below shows the order of precedence for error handling:

ERROR_HANDLER READ can be used to determine the current ERROR_HANDLER or
SETERR program in effect.

See Also ERROR_HANDLER Define Generic Handler, p.121
Error Processing in the ProvideX User's Guide

Example 3160 SETERR 3230
3170 DATA 1,2,3,"CAT"
3180 DATA 4,5,6,"DOG"
3190 READ DATA IOL=3220
3200 PRINT IOL=3220
3210 GOTO 3190
3220 IOLIST X,Y,Z,A$
3230 PRINT "GOTCHA"
3240 SETERR 0000 ! Disables SETERR
3250 STOP
-:GOTO 3160; BEGIN; RUN
1 2 3CAT
4 5 6DOG
GOTCHA

;entry$ Optional entry label in the error-trapping program. Define once per session.

prog$ Name of a generic error-trapping program. Define it once per session.

stmtref Program line number or label to transfer control to.

ERR= Error trapping at the line level
SETERR stmtref General error trapping within a program
SETERR "prog;entry" General error trapping for the current session. Entry point is optional.
... else ... Drop to the console and report the error (provided the 'XT'

parameter is disabled).

2. Directives SETESC

ProvideX Language Reference V8.30 Back 317

SETESC Directive SETESC Set Inter rupt Pro cess ingSet Interrupt Processing
Formats 1. Subroutine Interrupt-Handler: SETESC stmtref

2. Subprogram Interrupt-Handler: SETESC prog_name$

3. Interrupt Process On/Off: SETESC {ON | OFF}

4. Enable/Disable for Range: SETESC {DISABLE | ENABLE}

Where:

Description Use the SETESC directive to

• Specify the subroutine or subprogam to handle a break request.

• Enable/disable recognition of the or keys in ProvideX.

Use this directive to prevent a user from breaking out of a program during critical
periods or for security reasons.

Format 1: Subroutine Interrupt-Handler
SETESC stmtref

Use this format to specify a subroutine written to handle break requests. If a SETESC is
active and the user enters a or , ProvideX performs a GOSUB to the statement
you designate in this format of the SETESC directive. Use the RETURN directive if you
want control to return to the original program flow after the subroutine processes the
break request. To deactivate the SETESC directive, set the stmtref to 0000.

Example:

0010 SETESC BREAK_IT
0020 FOR I = 1 TO 100000
0030 PRINT I
0040 NEXT I
0050 STOP
1000 REM -- BREAK HANDLER ---
1010 BREAK_IT:
1010 PRINT "Please wait till I'm finished"
1030 PRINT "... I've lost track"
1040 PRINT " I'll have to start again"
1050 I=1
1055 WAIT 5 ! Or messages flash by, user doesn't see, breaks again...and again
1060 RETURN

To terminate SETESC handling:

0020 SETESC 0000

prog_name$ Name of generic interrupt-handling program. Define it once per session.

stmtref Program line number or label to transfer control to.

Break Esc

Break Esc

2. Directives SETESC

ProvideX Language Reference V8.30 Back 318

Format 2: Subprogram Interrupt-Handler
SETESC prog_name$

Use this format to specify a program ProvideX is to CALL automatically to process
BREAK/ESCAPE signals. When the program exits, execution resumes.

Format 3: Interrupt On/Off in Program
SETESC {ON | OFF}

If you use SETESC ON, ProvideX recognizes the user's - input and halts
execution. If you apply a SETESC OFF directive in your current session or program,
ProvideX treats the user's subsequent use of the break keys as equivalent to a
carriage return or . That is, the user's key or -C terminates the current
input (e.g., by advancing to the next input) but does not let the user halt a program
in Execution mode from the keyboard. A - retries the current input but
does not halt program execution.

If you use SETESC ON, ProvideX recognizes the user's - input and halts
execution.

Example:

0010 SETESC BREAK_IT
0020 DATA 1,2,3,"CAT"
0030 DATA 4,5,6,"DOG"
0040 DATA 7,8,9,"PIG"
0050 DATA 3,2,1,"DONE"
0060 READ DATA A,B,C,X$,ERR=0110
0070 PRINT A,B,C,X$
0080 INPUT "Try to break out: ",Y$
0090 GOTO 0060
0100 BREAK_IT: PRINT "That was easy."; STOP
0110 PRINT "Error on the READ (EOF)"
0120 STOP

Results when run under Windows with SETESC ON, then SETESC OFF:

User Enters:
-:SETESC ON
-:RUN
 1 2 3CAT

-:SETESC OFF
-:RUN
 1 2 3CAT

Try to break out:
 4 5 6DOG

Try to break out:
 4 5 6DOG

Try to break out:
 7 8 9PIG

Try to break out:
 7 8 9PIG

Ctrl Break

Enter Esc Ctrl

Ctrl Break

Ctrl Break

Enter

Esc

2. Directives SETESC

ProvideX Language Reference V8.30 Back 319

The SETESC {ON | OFF} directive is in effect for the duration of the session or until
you reverse it with another SETESC {ON | OFF}.

Format 4: Enable/Disable for Range
SETESC {DISABLE | ENABLE}

When you use the SETESC DISABLE directive, that disables SETESC for a range of
statements. ProvideX ignores all subsequent SETESC stmtrefs until a SETESC
ENABLE is encountered. You can make use of the DISABLE option in debugging a
program which has embedded SETESC directives.

-C Try to break out:
 3 2 1DONE

Try to break out:
 3 2 1DONE

-

Try to break out: That
was easy.
-:

Try to break out: Try
to break out: Try to
break out: Try to break
out: Try to break out:

User Enters:
-:SETESC ON
-:RUN
 1 2 3CAT

-:SETESC OFF
-:RUN
 1 2 3CAT

Ctrl

Ctrl Break

2. Directives SETFID

ProvideX Language Reference V8.30 Back 320

SETFID Directive SETFID Set FID(0) D ef initionSet FID() Definition
Format SETFID [(chan)] fid_def$

Where:

Description Use the SETFID directive to make dynamic changes in the value returned by the FID()
function. Any open channel may have its FID value changed. If chan is not provided, it
defaults to affect channel 0. This is most commonly used to change the FID value of
channel 0 (i.e., the terminal) for legacy applications that require unique FID values.

By default, ProvideX uses the value of the operating system environment variable
PVXFID0 as the value for FID(0). If this environment variable is not defined, ProvideX
will dynamically assign a value starting at T0 (T zero).

See Also FID() Function, p.438.

Example In this example, the value in the WHO system variable is something like "SMITHJ":

0010 ! START_UP
0020 OPEN (1)"MYCONFIG"
0030 READ (1,KEY=WHO,ERR=0050)X$
0040 SETFID X$
0050 CLOSE (1)

The following example defines a unique session and terminal FID in a Windows
environment, given a directory called C:\Program Files\Application\FIDS with
the files "T5", "T5", "T6", "T7", "T8", and so on. (This could also be done with
terminal IDs of 3 characters or more.)

In a START_UP program,

0010 OPEN (1) "C:\Program Files\Application\FIDS"
0020 READ (1,END=1000) ID$
0030 IF ID$(1,1)="." GOTO 0020 ! Skip "." and ".."
0040 %FID_FILE=GFN
0050 OPEN LOCK (%FID_FILE,ERR=0020) PTH(1)+DLM+ID$
0060 SETFID ID$
0070 CLOSE (1)
....
1000 MSGBOX "Sorry. No free FID for this station. End another session & try again"
1010 QUIT

This logic will open and leave open a file pertaining to the station FID. Once the task
ends, the file will be available for another session.

chan Optional channel or logical file number.

fid_def$ String value to define FID(0). Its maximum length is 12 characters.
String expression.

2. Directives SETMOUSE

ProvideX Language Reference V8.30 Back 321

SETMOUSE Directive SETMOUSE Contr ol/Set M ouseControl/Set Mouse
Formats 1. Define Mouse Region: SETMOUSE [*]@(col,ln,wth,ht){= | :}[expression]

2. Use String to Define Event: SETMOUSE [*]string${= | :}[expression]

3. Use Current Window Size: SETMOUSE [*]@(*){= | :}[expression]

4. Clear All Settings: SETMOUSE CLEAR

5. Enable/Disable: SETMOUSE {ON | OFF}

Where

Description Use the SETMOUSE directive to define and control mouse events. By default, the
mouse events are tied to the current window only. The SETMOUSE directive now
supports fractional coordinates to two decimal places.

Format 1: Define Mouse Region
SETMOUSE [*]@(col,ln,wth,ht){= | :}[expression]

Use this format to define the region in which a mouse event can occur. Use an
optional asterisk * to define the mouse event as being for all windows instead of just
the current window.

* Optional. The first instance of an asterisk in Formats 2 through 4
above defines the mouse event as being for all windows. The second
instance in Format 4 is a size option. See the next row of this chart.

@(col,ln,
wth,ht)

Mouse region coordinates. Numeric expressions: starting column,
starting line, width (number of columns) and height (number of lines).
Using an optional single asterisk * instead of col,ln,wth,ht, defines the
mouse region for the event as equal in size to the current window.

= | : Operators control mouse event processing:
: (colon) when mouse button is pressed/dragged in the region.
= (equals sign) when mouse button is released in the region.

expression Expression to define the type of function for mouse events in the
specified region: if numeric, the CTL value to return; if string, the
directive to execute.

string$ Character string to be compared to the current screen contents. String
expression.

Note: Only a single SETMOUSE directive can be active for the same region at any time.

2. Directives SETMOUSE

ProvideX Language Reference V8.30 Back 322

Example:

0010 REM Return CTL=4 when mouse released on line 20 in columns 0 through 5
0010 SETMOUSE ON
0020 PRINT 'CS',@(0,20),"[Quit]",
0030 SETMOUSE @(0,20,6,1)=4
0100 INPUT @(10,10),"Enter name:",X$
0110 IF CTL=4 THEN GOTO 9000 ! Wrap-up

Format 2: Use String to Define Event
SETMOUSE [*]string${= | :}[expression]

Use this format to define a character string to set the function the mouse event will
generate. To remove a mouse event definition use a null "" expression. Use an
optional asterisk * to define the mouse event as being for all windows instead of just
the current window.

Example:

This logic returns CTL=6 whenever the mouse is released on the string 'Help' and
CTL=4 on the string 'Quit'. Whenever the mouse is released on the word 'Calc',
ProvideX calls "CALC" then returns to the current statement after "CALC" is
executed.

0010 SETMOUSE ON
0020 SETMOUSE *"Help"=6 ! Help request
0030 SETMOUSE *"Quit"=4 ! Quit
0040 SETMOUSE *"Calc"="CALL ""CALC"""

Format 3: Use Current Window Size
SETMOUSE [*]@(*){= | :}[expression]

The first optional asterisk * defines the mouse event as being for all windows instead
of just the current window. Use the second asterisk * in this format to define the
mouse region as equal to the dimensions of the current window.

Format 4: Clear All Settings:
SETMOUSE CLEAR

Use this format to remove all previously defined SETMOUSE regions.

Format 5: Enable/Disable Mouse (DOS Only)
SETMOUSE {ON | OFF}

This format is included for completeness only. It applies to legacy (character-based)
systems running under DOS.

2. Directives SETTIME

ProvideX Language Reference V8.30 Back 323

SETTIME Directive SETTIM E Set Local TimeSet Local Time
Format SETTIME [time]

Where:

Description Use the SETTIME directive to set or change the current processing time (returned in the
TIM, TME, and TMS variables). The value of time must be between 0 and 24 (the desired
time of day based on a 24 hour clock). Once set, the time will be continuously updated
based on the operating system clock.

ProvideX will continuously update the date and time based on the set time until the end
of the session or until the execution of a START directive. Then, ProvideX reverts to the
operating system's time.

Note that this directive calculates an offset from the current operating system date/time.
If that date/time is altered after the execution of the SETTIME directive, a corresponding
change will be reflected in the values of TIM/TME/TMS.

See Also TIM System Variable, p.573,
TME System Variable, p.574,
TME System Variable, p.574,
DTE() Function, p.422.

Example 0100 PRINT TIM
0110 SETTIME 1.10
0120 PRINT "Current time",TIM
RUN
8.51
Current time 1.10

If the OS time were advanced by an hour (i.e., from 8.51 to 9.51), that hour would
also be added to the time for the current session, advancing the current session's
time to 2.10 and setting TIM, TME and TMS to the new value.

time Current time of day for the user session. Numeric expression.

Note: This directive only affects the user executing the directive.

2. Directives SETTRACE

ProvideX Language Reference V8.30 Back 324

SETTRACE Directive SETTRA CE En able Prog ram Tr acingEnable Program Tracing
Formats 1. Set Trace, Define File: SETTRACE [(chan)]

2. Trace File String: SETTRACE PRINT (string$)

3. Set Tracing of Windows Host Program: SETTRACE SERVER

Where

Description When you use the SETTRACE directive, ProvideX lists all statements as they are
executed until an ENDTRACE is encountered.

The END and STOP directives halt tracing. Tracing is suppressed during the
execution of a password-protected program.

When tracing, ProvideX lists the statements either to the terminal or to a file (if you
designate a channel in a SETTRACE directive). If you use a file, you have to open it
first and if it's a serial file, you have to lock it.

It can be confusing if an error occurs in the output/trace file, since the error will be
reported as an error for the current statement being traced, which itself may not be
in error.

See Also ENDTRACE End Trace Output, p.118.

Example 0010 I=3
0020 A=A*A
0030 I=I-1; IF I<>0 THEN GOTO 0020
->SETTRACE
->run
0010 I=3
0020 A=A*A
0030 I=I-1; IF I<>0 THEN GOTO 0020
0020 A=A*A
0030 I=I-1; IF I<>0 THEN GOTO 0020
0020 A=A*A
0030 I=I-1; IF I<>0 THEN GOTO 0020
->endtrace

chan Channel or logical file number of the file to which the trace output
will be written.

PRINT Keyword indicating the trace of a file string.

SERVER For internal use only.

string$ Character string to be displayed in the trace output. String expression.
This is treated as a remark if no SETTRACE or Trace Window is active.

2. Directives SHORT_FORM

ProvideX Language Reference V8.30 Back 325

SHORT_FORM Directive SHORT_FORM U se Short Var iable NamesUse Short Variable Names
Format SHORT_FORM

Description Use the SHORT_FORM directive to have the compiler input-parsing accept only short
variable names (emulation/compatibility mode). Its complementary directive is
LONG_FORM which allows long variable names.

Programs can be written in either SHORT_FORM or LONG_FORM or in a combination
of both and can run in either mode.

See Also LONG_FORM Use Long Variable Names, p.201,
'SF' System Parameter, p.686.

Example SHORT_FORM
-:ABCDE$="ABCDE$ IS NOT OK"
Error #20: Syntax error ...BCDE$="ABC... (Long variable name not accepted)
-:A$="A$ IS OKAY"
-:LONG_FORM
-:LONG_NAME$="LONG_NAME$ IS OK"
-:

Note: This directive is included for compatibility with other languages.

2. Directives SHOW

ProvideX Language Reference V8.30 Back 326

SHOW Directive SH OW Show Cont rolShow Control
Format SHOW ctl_id

Where:

Description Use the SHOW directive to re-display a given hidden control object so that the user
can see it and the program can set the focus on it.

(The HIDE directive hides a control from display. While the control is hidden it is still
active for the purposes of reading/writing but the user cannot see it, nor can the
program set focus on it.)

See Also HIDE Hide Control, p.156.

Example 0010 BUTTON BTN.VISA,@(10,10,10,2)="&Visa Info"
0100 READ (1,KEY=CUST_ID$)IOL=1000
0110 IF CST.TERM$="CHQ" THEN HIDE BTN.VISA ELSE SHOW BTN.VISA

ctl_id Unique CTL value for the hidden object or custom control (BUTTON,
LIST_BOX, etc.)

2. Directives SORT

ProvideX Language Reference V8.30 Back 327

SORT Directive SORT Cr eat e File for Sor tingCreate File for Sorting
Format SORT filename$,max_keysize[,max_rec][,ERR=stmtref]

Where:

Description Use the SORT directive to create a data Sort file (a file with a key but no data record
portion). You must include the size of the key along with the name. The maximum
Sort key size allowed is 127. If the given filename already exists, ProvideX returns
Error #12: File does not exist (or already exists).

The type of file created can be determined by setting the 'KF'= System Parameter,
p.671. If 'KF' is not zero then the Sort file will be created as an EFF file. Only through
use of the 'KF' parameter will Sort files be created as EFF files

WindX supports the use of this directive via the [WDX] tag; e.g., SORT
"[WDX]somefile.ext"... for more information, see [WDX] Direct Action to
Client Machine, p.801.

See Also File Types, User’s Guide.

Examples 0010 SORT "CSTFLE",6,100 creates a file with the following structure:

Keyed file: C:\Program Files\Sage Software\ProvideX\CST\CSTFLE
Maximum Record size: 0 (Sort file)
Maximum # records: 100
Current # records: 0
Size of key block: 2048 bytes
External key size: 6

0010 SORT A$+"_"+B$,10,100,ERR=1090 creates the following structure:
Keyed file: C:\Program Files\Sage Software\ProvideX\CST\CST_TST
Maximum Record size: 0 (Sort file)
Maximum # records: 100
Current # records: 0
Size of key block: 3072 bytes
External key size: 10

filename$ Name of the SORT file to create. String expression.

max_keysize Maximum key size to be maintained for this file. Numeric
expression.

max_rec Estimated number of records that the file is to contain. Default is no
initial allocation of file space, with no limit on final size. Numeric
expression.

stmtref Program line number or label to transfer control to.

2. Directives START

ProvideX Language Reference V8.30 Back 328

START Directive START Rest ar t ProvideXRestart ProvideX
Formats 1. Restart Session: START [max_mem[,prog_name$]][,ERR=stmtref]

2. Launch Separate Task: START prog_name$,term_id[,ERR=stmtref]

Where:

Description Use the START directive to re-initialize the current session or to launch a completely
new session. START can be used to specify the maximum amount of memory to be
allocated to the user and optionally the program to LOAD and RUN. If you omit the
memory size, ProvideX uses the current memory limits.

Format 1: Restart Session
START [max_mem[,prog_name$]][,ERR=stmtref]

This format completely re-initializes the current session by closing all files, clearing all
user data (including Global variables), and clearing the current program. All memory
currently allocated to the session is released to the system and a new limit is defined.

Examples:

->START 10 ! Re-initializes with 10KB
->START 20,"INVGEN" ! Runs program INVGEN with 20KB
->START ! Re-initializes with same memory size.

To simplify conversion processes, you can set the 'QS' parameter to on, so that a
statement like START nnn,"this_prog" only clears local variables (the same as a
BEGIN) and starts the specified program. We recommend that you use BEGIN; RUN
"this_prog" to start a new program set. Use START to completely restart the session.

Format 2: Launch Separate Task
START prog_name$,term_id[,ERR=stmtref]]

You can launch a new session, separate from the task issuing the START command.
The contents of term_id (terminal identifier) will be assigned to the FID(0) value of
the new session.

max_mem Number of 1024-byte units of memory you want to limit ProvideX to using.
prog_name$ Character string defining the initial program to be loaded and run. String

expression (maximum 256 characters).`
term_id Terminal ID in FID(0) format for the new session. Numeric expression.
stmtref Program line number or label to transfer control to.

Note: Use of the START directive causes a session to disconnect if ProvideX is running
under WindX over a client-server connection.

Note: In ProvideX, the memory size might be different from other Business Basics due
to the nature of memory management for variables, arrays, program sizes, etc. You can
set the 'IZ' system parameter to have ProvideX ignore any memory size restrictions.

2. Directives STATIC

ProvideX Language Reference V8.30 Back 329

STATIC Directive STATIC Add Local Pr operties at RuntimeAdd Local Properties at Runtime
Format STATIC varlist

Where:

Description In Object Oriented Programming (OOP), the STATIC directive is used to create
variables for use within an object at runtime — basically, STATIC is used to extend
the list of LOCAL properties. This allows for the dynamic creation of variables which
are visible to operations within an object, yet which are not directly accessible to
outside code; e.g.,

STATIC A$,B, IOL=IOL(1)

All the named variables will be LOCAL so that their values will remain current while
executing logic within the object.

Using the STATIC clause, an object that is accessing a data file with an embedded
IOList will be able to handle extensions to the IOList going forward. This allows the
object to then read a record from the file and have the data elements remain available
for subsequent calls to the object's methods.

Duplicate variables are ignored; i.e., if a variable has already been declared STATIC,
is a PROPERTY, or has been declared LOCAL for an object, then no error is reported.

Static variables will include their associated arrays; therefore, STATIC A$ also
means that A$[1],... are all static.

See Also Object Oriented Programming, p.22
DEF CLASS Define Object Class, p.65
DROP CLASS Delete Class Definition, p.102
DROP OBJECT Delete Object, p.104
LOAD CLASS Pre-Load Class Definition, p.195
RENAME CLASS Change Name of Class, p.283
NEW() Function, p.489
REF() Function, p.512
Data Integration, User’s Guide

varlist List of variables for use within an object.

Note: Ensure that the STATIC declaration occurs before the variables are used - static
variables will only take effect on references that follow their declaration.

2. Directives STOP

ProvideX Language Reference V8.30 Back 330

STOP Directive STOP Halt Progr am ExecutionHalt Program Execution
Format STOP

Description Use the STOP directive to halt the currently running program. If the current program
is a subprogram, then control is immediately passed back to the calling program.
Otherwise all open files are closed, a RESET operation is performed, and the next
location counter is set to the start of the program.

If an application is invoked directly by an operating system command that specifies
a lead program, then the STOP directive performs the function of a QUIT and
automatically returns the user to the operating system. If the application is RUN
from Command mode, ProvideX returns to Command mode.

When you use the STOP directive in a compound statement, it must be the final
directive. (Exception: A remark can follow the STOP directive.)

The END directive is functionally identical to the STOP directive.

See Also QUIT Terminate ProvideX, p.264,
RELEASE Terminate ProvideX, p.279,
END Halt Program Execution, p.113.

2. Directives SWITCH..CASE

ProvideX Language Reference V8.30 Back 331

SWITCH..CASE Directive SWITCH..CA SE Br an ch Cont rolBranch Control
Format SWITCH expression CASE range_1 [...CASE range_n] [BREAK] [DEFAULT] ..END SWITCH

Where:

Description The SWITCH directive defines an expression that will direct control to one of multiple
branch points. The results of the SWITCH expression is compared with values in each
CASE statement to determine a branch. If a match is found, execution continues with
statement(s) after the matching CASE (until the next BREAK or END SWITCH). If there are
no matches in any of the CASE statements, control falls through to the DEFAULT clause (if
present), and the statements that follow are executed automatically.

See Also IF..THEN..ELSE Test Condition, p.157
Decision Structures, User’s Guide

Example 00100 PROCESS_TAXCODE:
00110 LiquorTax=0,SalesTax=0,ServiceTax=0
00120 SWITCH UCS(TaxCode$)
00130 CASE "X","Z" ! two codes are tax exempt
00140 BREAK ! stop processing for case "X" here
00150 CASE "L" ! liquor pays all liquor,sales and service tax
00160 LiquorTax=cost*LiquorTaxRate
00170 ! no break here, logic falls through
00180 CASE "S" ! pays sales and service tax
00190 SalesTax=cost*SalesTaxRate
00200 ! no break here, logic falls through
00210 CASE "V" ! service tax
00220 ServiceTax=cost*ServiceTaxRate
00230 BREAK ! end processing for this case and any that fell through
00240 DEFAULT ! enter here if case not found
00250 MSGBOX "Unknown tax code","Error"
00260 END SWITCH
00270 TotalTax=LiquorTax+SalesTax+ServiceTax
00280 RETURN

CASE range_1..
CASE range_n

List of string or numeric values for comparison with expression,
used to define a branch point.

BREAK Optional directive defining immediate exit from the CASE structure.

DEFAULT Optional directive defining a default branch point should no
matching CASE be found.

END SWITCH Directive required to end branching sequence.

expression String or numeric expression to test for branching to subsequent
CASE statements.

Note: Since branch controls are maintained on the stack, you must not break within
another stacked context. When ProvideX encounters EXITTO or RETURN within the
scope of a SWITCH, it removes the current FOR/GOSUB/WHILE/REPEAT entry from
the stack, but does not exit the SWITCH.

2. Directives SYSTEM_HELP

ProvideX Language Reference V8.30 Back 332

SYSTEM_HELP Directive SYSTEM_HELP Invoke Windo ws HelpInvoke Windows Help
Format 1. Invoke Standard Help: SYSTEM_HELP help_path$[,help_key$][,ERR=stmtref]

2. Invoke Application Help: SYSTEM_HELP " 'help_msg","", ctl_id [,ERR=stmtref]

Where:

Description Use the SYSTEM_HELP directive to invoke standard or application-supplied Help.

Format 1: Invoke Standard Help
SYSTEM_HELP help_path$[,help_key$][,ERR=stmtref]

Use this format to invoke the standard Windows Help system and CHM-based Help
files. Help files must be created in accordance with the Windows standard.

Indicate the key to start with in the Help index. (Optional.) If a partial key (?) is
used, the Help subsystem tries to find the entry in the Help index that most closely
matches it. If the first character is a # then the key is considered the Help index for
the file. If it is neither ? nor #, the key must be an exact match for an entry in the
Help index.

Example:

1000 INPUT "Enter customer ID:",C$
1010 IF CTL=1 THEN SYSTEM_HELP "OENTRY.HLP","Client"; GOTO 1000

SYSTEM_HELP allows you to use files other than those with a .HLP extension.
ProvideX passes these directly to the Windows Shell command for processing,
allowing Windows to apply normal file associations to automatically launch the
appropriate application.

ctl_id Unique logical identifier for object. Numeric expression. Use
integers, range: -32000 to +32000. Avoid integers that conflict with
keyboard definitions (e.g., using 4 can cancel CTL=4 for the key).

help_key$ Key to start with in the help file. This string expression must exactly
match an entry unless the first character is:
? to denote a partial key
to denote that the key is the help index.

help_path$ Pathname of the help file. Maximum string size 8kb.

'help_msg Application supplied message text, prefixed with an apostrophe.

stmtref Program line number or label to transfer control to.

F4

Note: This directive only functions in Windows or with the WindX terminal driver.
When using WindX, the help file must be resident on, or directly accessible to, the
remote workstation.

2. Directives SYSTEM_HELP

ProvideX Language Reference V8.30 Back 333

Preface the second argument with a # and append it to the first argument for URL
handling; e.g.,

SYSTEM_HELP "http://www.pvx.com/support.htm","mymark"

would be http://www.pvx.com/support.htm#mymark.

Passing this to SYSTEM_HELP will automatically launch the default browser (if any)
and jump to the web page requested.

Format 2: Invoke Application-Supplied Help
SYSTEM_HELP " 'help_msg","", ctl_id [,ERR=stmtref]

If this format is used, the text following the single quote in the Help message is
displayed in a popup Help box; e.g.,

SYSTEM_HELP "’Press Me","",10

2. Directives SYSTEM_JRNL

ProvideX Language Reference V8.30 Back 334

SYSTEM_JRNL Directive SYSTEM_JRNL File System Journ alizationFile System Journalization
Formats 1. Open System Journal: SYSTEM_JRNL OPEN journal$

2. Close System Journal: SYSTEM_JRNL CLOSE
3. Enable Journalization: SYSTEM_JRNL ENABLE filename$
4. Disable Journalization: SYSTEM_JRNL DISABLE filename$
5. Add Entry to Journal File: SYSTEM_JRNL WRITE var$
6. EFF Begin Transaction: SYSTEM_JRNL BEGIN
7. ODB/OCI/DB2 Auto-Commit Control: SYSTEM_JRNL AUTO {ON | OFF}
8. ODB/OCI/DB2/EFF Commit Transaction: SYSTEM_JRNL SAVE
9. ODB/OCI/DB2/EFF Roll Back Transaction: SYSTEM_JRNL RESTORE
10. Dirty File Indicator: SYSTEM_JRNL DIRECTORY directory$
11. Track Updates: SYSTEM_JRNL UPDATE log$

Where:

Description Use SYSTEM_JRNL to have ProvideX log all updates to specified data files.

See Also SERIAL Create a Sequential File, p.302.

Format 1: Open System Journal
SYSTEM_JRNL OPEN journal$

This format opens the journal (serial file); e.g.,
SERIAL "MYJRNL"
SYSTEM_JRNL OPEN "MYJRNL"

Journal Contents
The physical journal file is a binary file that has a special format designed for quick
write access and retrieval. Each record has a 16-byte header consisting of:

directory$ Name of common directory where tracking files are to be created.
filename$ Data file identified for journalization.
journal$ Name of the serial file being used as the journal. String expression.

First, create the journal as an empty serial file; via SERIAL journal$
log$ Log file containing entry for each keyed/EFF and indexed file updated.
var$ String containing data to be added to an open journal.

 1 Type of record indicated by the letters:
O Open system journal file
C Close system journal file
o Open file (1st update request)
c Close file
B Before image of record
A After image of record

2. Directives SYSTEM_JRNL

ProvideX Language Reference V8.30 Back 335

The remainder of the record is the before/after image of the data. The file itself has a
four-byte header with the address of the last record on the file. Individual entries
written to a journal file are linked together by their prior and related record addresses.

The first record in a session will start with an O record type (SYSTEM_JRNL OPEN).
This record contains addition information including the user ID (WHO/UID) and the
FID(0) value separated by a ; semicolon. Closing a journal file will generate a C
record which links back to the original O record for the session.

Any files opened during the session will be written as an o type record which will
contain a prior record address that links back to the start of the session (or the O
record). Closing or updating a file (c, A, B, D type records) will link back to the file
open entry (o record) to identify which file the update pertains to.

Additional data contained within an A, B or D type record is broken down as follows:

Format 2: Close System Journal
SYSTEM_JRNL CLOSE

This format closes the open system journal.

Format 3: Enable Journalization
SYSTEM_JRNL ENABLE filename$

Use this format to enable journalization for the specified data file (Keyed or Indexed
files only). Enabling journalization sets a bit in the file header for the specified file.

D Delete record
E Erase file
P Purge file
U User transaction

 2-4 Record size in bytes
 5-8 Time of day when record was written in seconds past 01/01/1970 GMT
 9-12 Address of prior record for session
13-16 Address of related record; e.g., After/Before image points to file Open

record. Open file record points to User login record

Byte 1 Length of the key/index value which follows immediately,
padded with 00 to the full length of the key definition (use
asc(data$(1,1)) to determine the length)

Bytes 2,n The actual key/index value
Bytes 2+n,2 Length of the data itself (use dec(00+data$(2+n,2)) to

retrieve the length)
Bytes 2+n+2,x The actual data

Note: If you have enabled journalization for a data file, you cannot access that file unless
a journal file is open. Attempting to open a file set for journalization without an open
journal file will result in Error #69: No Journalization file open.

2. Directives SYSTEM_JRNL

ProvideX Language Reference V8.30 Back 336

Format 4: Disable Journalization

SYSTEM_JRNL DISABLE filename$

Use this format to disable journalization for the specified data file.

Format 5: Add Entry to Journal File

SYSTEM_JRNL WRITE var$

This format adds the contents of var$ to the currently open journal (serial file).

Format 6: EFF Begin Transaction

SYSTEM_JRNL BEGIN

This format starts a transaction for Enhanced File Format (EFF) files.

Format 7: ODB/OCI/DB2 Auto-Commit Control

SYSTEM_JRNL AUTO {ON | OFF}

This format is used to control auto-commit mode of an ODBC, Oracle, or DB2
database connection. Auto-commit means that all updates to the database are made
immediately and cannot be rolled back in case of an error. See previous note.

SYSTEM_JRNL AUTO OFF will disable the auto-commit mode of operation. All
updates to the database are deferred until the application successfully ends or a
SYSTEM_JRNL SAVE directive is issued. Also, SYSTEM_JRNL AUTO ON re-enables
Auto-commit mode.

Format 8: ODB/OCI/DB2/EFF Commit Transaction

SYSTEM_JRNL SAVE

This format will commit an ODBC, Oracle, or DB2 database transaction if
auto-commit mode is disabled; Error #15 is reported if a database error occurs.

Pending EFF transactions will be committed as well.

Format 9: ODB/OCI/DB2/EFF Roll Back Transaction

SYSTEM_JRNL RESTORE

This format will roll back an ODBC, Oracle, or DB2 database transaction if
auto-commit mode is disabled; Error #15 is reported if a database error occurs.

Pending EFF transactions will be rolled back as well.

2. Directives SYSTEM_JRNL

ProvideX Language Reference V8.30 Back 337

Format 10: Dirty File Indicator

SYSTEM_JRNL DIRECTORY directory$

This format is used to track potential file corruption (dirty files) by maintaining a list
of all the files that have been opened and modified during a ProvideX session.
ProvideX creates a single tracking file per active process in directory$.

When a session terminates normally, it deletes its tracking file; therefore, the
existence of a tracking file means there is either a ProvideX task currently active, or
that a ProvideX task has terminated abnormally (due to software fault or operating
system failure).

Specifying a null directory name will disable this feature. If the directory name
specified does not already exist, an Error #12: File does not exist (or
already exists) will be generated. An Error #13: File access mode
invalid is reported if a file of the same name exists, but not as a directory.

Tracking Files
Each tracking file (log) is created with a unique name using the following format:

username.MMDDHHMMSS.log

Where:

The tracking file contains a list of all the data files that have been physically updated
and not yet closed by the ProvideX process. Every time a file has an update issued
against it, the system will add the pathname to the tracking file. Each line will be
separated by a standard (OS dependant) end-of-line sequence.

Multiple occurrences of the same file may exist in the tracking file as entries are
maintained based on open channels.

The tracking file is updated to indicate when a file is being updated prior to the
execution of the WRITE or REMOVE directives. When a file that was logged is closed,
its entry from the log file will be removed.

To help ensure that the contents of the tracking file are accurate, ProvideX will close
the tracking file after each write.\

username Name for the session. In the case of client-server applications, the
workstation name (if present) or IP address will be used,
otherwise the user name for the host process will be used. No
attempt is made to determine the true workstation end-user
name – only the workstation name, as returned from the socket's
'GetPeerName' function, will be used.

MMDDHHMMSS Date and time that the log started.

Note: Only Keyed files (EFF, VLR and FLR) and Indexed files are tracked.

2. Directives SYSTEM_JRNL

ProvideX Language Reference V8.30 Back 338

Format 11: Track Updates

SYSTEM_JRNL UPDATE log$

SYSTEM_JRNL UPDATE writes entries to the specified log$ file for every ProvideX
keyed/EFF and indexed file updated during a session. Each entry consists of the name
of the file being updated for each channel a file is updated on. A subsequent
SYSTEM_JRNL UPDATE resets the status of whether a file has been included in a
previous log allowing all updates to be tracked from a specific point in the application.

Examples The following code sample illustrates parsing of a SYSTEM_JRNL file:

00010 ! DumpJrnl - Sample routine to parse a System_Jrnl file
00020 ! Note: Time is in GMT
00030 OPEN (1,ISZ=1)"jrnl.dat"
00040 READ RECORD (1,IND=0,SIZ=4,ERR=0500)filesize$
00050 LET filesize=DEC(00+filesize$)
00060 PRINT "Size of Journal file is: ",filesize
00070 LET nextindex=4
00100 !^100
00110 IF nextindex>filesize \
 THEN GOTO 0500
00120 READ RECORD (1,IND=nextindex,SIZ=16,ERR=0500)header$
00130 LET type$=header$(1,1)
00140 LET recsize=DEC(00+header$(2,3))
00150 LET time=DEC(00+header$(5,4))
00160 LET priorrec=DEC(00+header$(9,4))
00170 LET relatedrec=DEC(00+header$(13,4))
00180 LET datarec$="";
 IF recsize>16 \
 THEN READ RECORD

(1,IND=nextindex+16,SIZ=recsize-16,ERR=0500)datarec$
00190 LET nextindex+=recsize
00300 !^100 - Format & display
00310 LET disprec$=SUB(SUB(datarec$,SEP,"~"),ESC,"~")
00320 LET days=INT(time/86400);
 IF (days*86400)>time \
 THEN days--
00330 LET time=time-days*86400
00340 LET sv_by=PRM('BY');
 SET_PARAM 'BY'=1970
00350 LET t$=DTE(days,time/3600:"%Ms%Dz/%Ys-%hz:%mz:%sz%p")
00360 SET_PARAM 'BY'=sv_by
00370 !
00380 PRINT t$," Type: ",type$," Prior Rec:",priorrec:"####,##0","

RelatedRec:",relatedrec:"####,##0"," RecSize",recsize:"###,##0","
Record:",disprec$

00390 GOTO 0100
00400 !
00500 !^100

2. Directives SYSTEM_JRNL

ProvideX Language Reference V8.30 Back 339

The following illustrates use of the SYSTEM_JRNL for tracking potential file
corruption (dirty file indicator):

Dir$="/SysJrnl.Dir/"; DIRECTORY Dir$,ERR=*NEXT
 WorkFile$="WorkFile.Dat"; KEYED WorkFile$,10,0,-256,ERR=*NEXT
 !
 ! Generate a log file
 SYSTEM_JRNL DIRECTORY Dir$
 OPEN (UNT)WorkFile$; WorkFile=LFO
 WRITE (WorkFile,KEY="Test")"Test","Record"
 !
 List$=""
 SELECT Log$ FROM Dir$ WHERE POS(".log"=Log$)
 SELECT File$ FROM Dir$+Log$
 IF POS(File$+SEP=List$) \
 THEN CONTINUE \
 ELSE List$+=File$+SEP
 PRINT "Checking: ",File$," ",
 CALL "*ufac",ERR=*NEXT,File$,1; PRINT "Okay"; CONTINUE
 PRINT File$,":",MSG(ERR)
 NEXT RECORD
 NEXT RECORD
 !
 CLOSE (WorkFile)

2. Directives TABLE

ProvideX Language Reference V8.30 Back 340

TABLE Directive TABLE D efine Trans lation TableDefine Translation Table
Format TABLE hex-table

Where:

Description Use the TABLE directive to define the translation table ProvideX is to use to convert
data from one format to another. The translation table to use is identified via the
TBL= option in I/O operations (READ, WRITE, etc.) or within the TBL() function.

Use the first pair of hex digits to define the conversion mask, the remaining hex pairs
to define the converted data bytes.

A translation table is defined by a statement with the TABLE directive followed by a
series of hex digits. Each pair of hex digits represent a single byte. The first byte in
the table (first two hex digits) is the translation and mask. It is ANDed with the hex
value of each byte as it is being converted. The results of this AND operation is then
used as an offset (base zero) into the rest of the transliteration table. The byte at this
offset is the resultant data byte which is either returned in the case of the TBL()
function and file input, or is written to a file in the case of a file output.

Translation tables are usually used to convert one character set to another such as
ASCII to EBCDIC or for data encryption.

See Also TBL() Function, p.532

Example 0010 TABLE 0F30313233343536373839414243444546

The above table would result in the following:

hex-table Hex conversion table which consists of multiple hex digit pairs.

Input After Output

ASCII Hex AND ASCII Hex

A 41 01 1 31

B 42 02 2 32

z 7A 0A A 41

[5B 0B B 42

P 50 00 0 30

2. Directives TRANSLATE

ProvideX Language Reference V8.30 Back 341

TRANSLATE Directive TRANSLATE Trans lat e Contents of VariableTranslate Contents of Variable
Formats 1. Translate From String: TRANSLATE var$,table$,offset

2. Translate From Variable to Variable: TRANSLATE to_var$,from_var$,offset

3. Translate Single Character: TRANSLATE var$,to_char$,from_char$

4. Translate Character via Hex Value: TRANSLATE var$,hex_string$

Where:

Description Use the TRANSLATE directive to convert/translate a string variable on a
character-by-character basis using a conversion table or value. Use this directive to
convert data from one character set to another (e.g., ASCII to EBCDIC).

Format 1: Translate From String
TRANSLATE var$,table$,offset

Use this format to replace a character in a string variable with a character from a
table string/expression. ProvideX performs the conversion by taking each character
from the variable, subtracting the offset from its binary value, and using the result as
an offset into the table whose character will then replace the original character in the
variable. When ProvideX computes the offset into the table, it will treat an offset of
zero as the first character from the table. If the result of the subtraction is an offset
that exceeds the length of the table, then no conversion takes place for the character.

from_char$ Character to be searched_for and replaced.

from_var$ Conversion table to be used as the new value(s) in the translation.
String expression.

hex_string$ Formatted hex string indicating characters and replacement characters.

offset Base value to subtract from the characters in the variable to calculate
the offset into the table during conversion. Numeric expression.

table$ Conversion table to be used as the new value(s) in the translation.
String expression.

to_char$ New character to replace the original from_char$. All instances of
the from_char$ in the var$ string are replaced with the to_char$.

to_var$ Variable in which the translation is performed. Starting at the offset,
to_var$ receives the translation of its own old values to the
corresponding new values (from the table or from_var$ string).

var$ String variable to be translated.

2. Directives TRANSLATE

ProvideX Language Reference V8.30 Back 342

Example:

0110 LET A$="ABCD"
0130 TRANSLATE A$,"ZYXWVUTS",DEC("A")
0140 PRINT A$
->GOTO 110
->RUN
ZYXW

Format 2: Translate From Variable to Variable
TRANSLATE to_var$,from_var$,offset

Use this format to copy the character-by-character values from one variable to
another variable up to the length of the shorter variable. In this format, ProvideX
also uses a numeric starting offset into the target table.

Example:

0110 LET A$="1234567890"
0120 LET B$="ABCD"
0130 TRANSLATE A$,B$,DEC("3")
0140 PRINT A$
->GOTO 110
->RUN
12ABCD7890

Format 3: Translate Single Character
TRANSLATE var$,to_char$,from_char$

Use this format to replace all instances of a given character in a string variable with
another character.

Example:

0110 LET STRVAR$="ABxDEFG xxx"
0120 TRANSLATE STRVAR$,"C","x"
0130 PRINT STRVAR$
-:run
ABCDEFG CCC

Format 4: Translate Character via Hex Value
TRANSLATE var$,hex_string$

Use this format to replace a single character in a string variable with designated
character(s). hex_string$ consists of a string of hexadecimal values indicating the
character to be replaced, the number of characters to replace that character, then the
replacement character(s).

2. Directives TRANSLATE

ProvideX Language Reference V8.30 Back 343

Examples:

TRANSLATE R$,$0A020D0A$

The line-feed character ($0A$) will be replaced by two (02) characters:
carriage-return and line-feed ($0D0A$).

Multiple sets of characters may be translated by extending the translation string; e.g.,

TRANSLATE R$,$0A020D0A090120$

In this case, the line-feed character ($0A$) will be replaced by the two (02)
carriage-return and a line-feed characters ($0D0A$), and the tab character (09)
will be replaced by one (01) space character (20).

2. Directives TRISTATE_BOX

ProvideX Language Reference V8.30 Back 344

TRISTATE_BOX Directive TRISTATE_BOX Contr ol Tr is tate BoxControl Tristate Box
Formats 1. Define/Create: TRISTATE_BOX [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]

2. Remove: TRISTATE_BOX REMOVE [*]ctl_id[,ERR=stmtref]

3. Disable/Enable: TRISTATE_BOX {DISABLE | ENABLE} [*]ctl_id[,ERR=stmtref]

4. Force Focus: TRISTATE_BOX GOTO [*]ctl_id[,ERR=stmtref]

5. Logical Push/Release: TRISTATE_BOX {ON | OFF} [*]ctl_id[,ERR=stmtref]

6. Read Activation State: TRISTATE_BOX READ [*]ctl_id,state$[,ERR=stmtref]

7. Update: TRISTATE_BOX WRITE [*]ctl_id,state$[,ERR=stmtref]

Where

* Optional. Use a leading asterisk to denote a global tristate box.

@(col,ln,
wth,ht)

Position and size of tristate box region. Numeric expressions. Column and
line coordinates for top left corner, width in number of columns and
height in number of lines are for the total area (box plus text/description).
Use line coordinate -1 to display the tristate box on the tool bar.

contents$ Text/pictures for the tristate box. Both {bitmap} and {icon} images are
supported. String expression. See TRISTATE_BOX contents$, p.346.

ctl_id Unique logical identifier for a tristate box control (any integer -32000 to
+32000). Avoid integers that conflict with keyboard definitions (e.g., 4
cancels CTL=4 for the key) or Negative CTL Definitions, p.817. Use
this value with the apostrophe operator to access various Tristate Box
Properties.

ctrlopt Control options. Supported options for TRISTATE_BOX include:
ERR=stmtref Error transfer
FNT="font,size[,attr]" Font name, size, optional properties

Refer to the 'FONT' Mnemonic, p.609 for details.
MSG=text$ Message string.
MNU=ctl CTL value associated with right-click menu event.
OPT=char$ (See TRISTATE_BOX OPT= Settings:, p.345)
OWN=name$ Name assigned for automated testing of this control.
TBL=char$ Single character translation.
TIP=text$ Mouse pointer message.

To change the colour, refer to the 'TC'= System Parameter, p.689.

state$ Current state of the TRISTATE_BOX ON or OFF or other (e.g., as is).

stmtref Program line number or label to transfer control to.

F4

2. Directives TRISTATE_BOX

ProvideX Language Reference V8.30 Back 345

TRISTATE_BOX OPT= Settings:
Available attribute/behaviour settings are listed below. Some characters may be
combined. Invalid settings are ignored.

Combined options can be used to create several different tristate box types. The "f",
"T", and "U" options provide the ability to turn tristate boxes into hotspots. This allows
for clickable areas on bitmaps or hyperlinked text in dialogues; e.g.,

"<" Bitmap Left. Places bitmap left of text.
">" Bitmap Right. Places bitmap right of text.
"^" Drop-down. Adds drop-down functionality.
"*" Default. Defines tristate box as default.
"A" Auto. Generates a CTL value signal for every character the user enters.
"B"

-
Bitmap. Has a bitmap whose width is divided into four images. Use this
attribute to custom design tristate boxes of any colour, style or shape by
controlling the bitmap image that appears. Each of the four divisions
represents what a button will look like in a particular state:
1st quarter: Bitmap image when button is disabled.
2nd quarter: Bitmap image when button is in normal (released) state.
3rd quarter: Bitmap image when the mouse is over the button.
4th quarter: Bitmap image when the button is pressed.

"D" Disabled. Tristate box is grayed out and is not accessible to the user.
"F"

-
Flat. Tristate box shows no raised outline unless the mouse is over the
button or the button is pushed.

"f" Flat-No Shift. Same as "F", but will not shift when pressed.
"G" Global. Keep active when focus changes to new/non-concurrent window. When

using secondary commands (REMOVE or SET_FOCUS) on controls created with
OPT="G" identify the control by prefixing the CTL value with an asterisk.; e.g.,
TRISTATE_BOX 100,@(10,10,10,1)="Global",OPT="G"
TRISTATE_BOX REMOVE *100

"H"
-
Hide. The user can't see the tristate box even though it is still active and
accessible through the program.

"S"
-
Signal Only. ProvideX generates a CTL value, but does not shift focus to the
tristate box automatically (the default), but only when focus is explicitly
passed to it. Use this to have a tristate box act like a function key.

"s" Scroll. Tristate box can scroll within a resizable/scrollable dialogue box.
"T" Transparent. Tristate box is "see-through" to window data behind.
"U" Underscore. Text is underlined.
"V" Hovertext. Indicates that text will change colour when mouse is over control.
"Y" System Tray. Places an icon in the Taskbar Notification Area.

"VTf" Creates a general hotspot.
"VUTf" Creates an HTML-like hotspot (e.g., URL hyperlink).
"F^" Creates a word-style toolbar with drop list

2. Directives TRISTATE_BOX

ProvideX Language Reference V8.30 Back 346

Description Use the TRISTATE_BOX directive to create/control a tristate box on the screen or to place
an icon in the Taskbar Notification Icon (see User’s Guide, p.155). A tristate box is a
check box in which the user can toggle between three states: ON to select an option, OFF
to disable it, or your choice of a third state. Refer to the Tristate Box example under
Format 1: Define/Create, p.347, for an illustration. See Chapter 7. Control Object
Properties, p.701 for a list of properties you can use with tristate boxes.

TRISTATE_BOX contents$
The contents$ string expression defines the text or picture to appear on the tristate
box. In the text, you can use an ampersand "&" preceding a character to identify it as
a hot key the user can press in conjunction with the key to activate the tristate
box from the keyboard.

Using Images
When adding an image to a tristate box, enclose the image name in curly braces. Use
a leading exclamation point (!) to identify the image as internal, or specify the
relative path and filename to access an image file that is external. There are no icons
in the ProvideX executable and ProvideX does not support retrieving icons from
either resource libraries or other system DLLs /executables. For more information on
the options available for displaying internal/external images and the recognized image
file types, see Images and Icons, p.153 in the User’s Guide.

When you use text as well as images, the relative positions of the image and the text
set their relative placement. The following are example contents$ expressions:

"{!Add}Add" ! Displays the {!Add} bitmap in front of the text "Add"
"Delete{!Del}" ! Displays the {!Del} bitmap after the text "Delete"

If your string expression includes three bitmaps separated by a vertical bar inside a
single set of curly braces, the first will be displayed when the tristate box is in its
normal state, OFF, the second while the tristate box is ON, and the third when the
tristate box is in a third other state.

You can also use the OPT="B" clause for a Bitmap Button to display different images
for different states.

Tristate Box Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
tristate box are described in Chapter 7. Control Object Properties, p.707.

Alt

2. Directives TRISTATE_BOX

ProvideX Language Reference V8.30 Back 347

Format 1: Define/Create
TRISTATE_BOX [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]

Use the value in ctl_id to give your tristate box a unique identifier. This value
generates a CTL value whenever the tristate box is toggled. If ctl_id has a leading
asterisk *, the tristate box is considered global (not tied to a specific window).

Examples:

0120 TRISTATE_BOX 102,@(2,19,12,3)="{!File_Save}&Save"
0130 TRISTATE_BOX 103,@(22,15,12,2)="&Destroy{!Trash|!Trash_open|!Bomb_blast}"
0140 TRISTATE_BOX 104,@(22,19,12,3)="{!Lite_Green|!Lite_Yellow|!Lite_Red}"
0150 INPUT (0,HLP="Tristate_Box")@(40,18),"Select...: ",'CL',X$
0160 IF CTL>100 AND CTL<105 THEN TRISTATE_BOX READ CTL,B$; PRINT @(40,19),"Sele
0160:ction:",CTL,":",B$,'CL',; GOTO 0150
0170 IF CTL=0 OR CTL>=3 THEN STOP ELSE GOTO 0150

Format 2: Remove
TRISTATE_BOX REMOVE [*]ctl_id,@(col,ln,wth,ht)=contents$[,ctrlopt]

Use the TRISTATE_BOX REMOVE format to delete a tristate box. By default, if tristate
boxes are not global, they are deleted when a window is removed/dropped or the
application issues a BEGIN. Global tristate boxes can be removed manually or
cleared by a START.

Format 3: Disable/Enable
TRISTATE_BOX {DISABLE | ENABLE} [*]ctl_id[,ERR=stmtref]

Use the TRISTATE_BOX DISABLE format to gray-out a tristate box so that it will be
visible but inaccessible to users. To reactivate it, use TRISTATE_BOX ENABLE.

Format 4: Force Focus
TRISTATE_BOX GOTO [*]ctl_id[,ERR=stmtref]

Use the TRISTATE_BOX GOTO format to reactivate and force focus to a tristate box,
ready for the next user action.

Format 5: Logical Push/Release
TRISTATE_BOX {ON | OFF} [*]ctl_id[,ERR=stmtref]

Use the TRISTATE_BOX ON format to make it appear that a tristate box selection has
been made. Use the OFF format to make it appear that it has been released.

Format 6: Read Activation State
TRISTATE_BOX READ [*]ctl_id,state$[,ERR=stmtref]

The TRISTATE_BOX READ format returns the current state of the tristate box ("0" for
OFF, "1" for ON, or "2" for other).

2. Directives TRISTATE_BOX

ProvideX Language Reference V8.30 Back 348

Format 7: Update
TRISTATE_BOX WRITE [*]ctl_id,state$[,ERR=stmtref]

Use the TRISTATE_BOX format above to write/update new values for the tristate
box.

See Also RADIO_BUTTON Control Radio Button, p.265
BUTTON Control Button, p.34
CHECK_BOX Control Check Box, p.47
Chapter 7. Control Object Properties, p.701.

2. Directives UNLOCK

ProvideX Language Reference V8.30 Back 349

UNLOCK Directive UNLOC K Rem ove Exclus ive U se fr om FileRemove Exclusive Use from File
Format UNLOCK (chan[,ERR=stmtref])

Where:

Description Use the UNLOCK directive to release a previously locked file. If the given file is not already
locked, ProvideX returns Error #14: Invalid I/O request for file state.

See Also LOCK Reserve File for Exclusive Use, p.200.

Example 0010 OPEN (30,ERR=0100)"GLFILE"
0020 LOCK (30,ERR=0120)
0030 READ (30,KEY="HEProvideXR")A
0040 IF A>0 THEN GOTO 0100
0050 UNLOCK (30)
0060 PRINT "Nothing on file to process.."
0070 STOP
0100 REM 100 Error handling

chan Channel or logical file number of the file to be unlocked.

stmtref Program line number or label to transfer control to.

2. Directives UNTIL

ProvideX Language Reference V8.30 Back 350

UNTIL Directive UNTIL End REPEAT LoopEnd REPEAT Loop
Format UNTIL expression

Where:

Description Use the UNTIL directive to define the end of a REPEAT loop in a program.

See Also REPEAT..UNTIL Repetitive Execution, p.287.

Example 0010 PRINT 'CS',"Standard TAX calculation..."
0020 INPUT "How much was your INCOME? $",CASH
0110 REPEAT
0120 INPUT "How much TAX did you pay? $",TAXES
0130 LET CASH=CASH-TAXES
0140 PRINT "You have $",CASH," left"
0150 UNTIL CASH<=0
0160 PRINT "Okay you have paid enough."
-:BEGIN
-:RUN
Standard TAX calculation...
How much was your INCOME? $1.98
How much TAX did you pay? $1.65
You have $ 0.33 left
How much TAX did you pay? $.33
You have $ 0 left
Okay you have paid enough.

expression Condition to end REPEAT looping when true.

Note: Refer to REPEAT..UNTIL Repetitive Execution, p.287, for complete syntax.

2. Directives UPDATE

ProvideX Language Reference V8.30 Back 351

UPDATE Directive UPDATE Updat e Exist ing Recor d in FileUpdate Existing Record in File
Formats UPDATE (chan[,fileopt])varlist

Where:

Description The UPDATE directive is used to update an existing record to a file (logical file
number / channel). The syntax for this directive is identical to the WRITE Directive,
p.383; however, UPDATE only updates a record if it already exists and will return an
error if the record does not exist.

UPDATE may be used against Keyed, Memory, ODBC, and OCI files. When IND= is
used with *MEMORY*, this directive overwrites an existing index.

See Also WRITE Add/Update Data in File, p.383
WRITE RECORD Write Record, p.386
INSERT Insert New Record in File, p.162

chan Channel or logical file number of the file to which to write.

fileopt Supported file options (see also, File Options, p.810):
BSY=stmtref Traps Error #0: Record/file busy
DOM=stmtref Missing record transfer
END=stmtref END-OF-FILE transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key
REC=name$ Record prefix (REC=VIS(string$) can also be used)
RTY=num Number of retries (one second intervals)
TIM=num Maximum time-out value in integer seconds (support
write operations for TCP channels).

stmtref Program line number or label to transfer control to.

varlist Comma-separated list of variables, literals, and IOL= options.

2. Directives USER_LEX

ProvideX Language Reference V8.30 Back 352

USER_LEX Directive U SER_LEX Define Alter nat e Keyword sDefine Alternate Keywords
Format 1. Define Alternate Keyword: USER_LEX alt_string$=directive$

2. Load Alternate Lexicon: USER_LEX LOAD filename$

3. Clear Alternate Lexicon: USER_LEX CLEAR

Where:

Description Use the USER_LEX directive to define alternate keywords in order to simplify
conversions from other languages to ProvideX or to provide support for languages
other than English.

Format 1: Define Alternate Keyword
USER_LEX alt_string$=directive$

Use the USER_LEX directive to extend the internal ProvideX compiler definitions to
include a new directive or symbol.

After ProvideX executes the USER_LEX directive, any statements sent to the
ProvideX compiler where the alternate string expression is found will be translated
into the internal object code for the standard string in directive$. It is mandatory that
you use valid ProvideX syntax in the directive$. Use spaces in the string expression
to indicate that spaces can exist in the string when compiling.

Example:

To allow the use of SPC() in lieu of PAD():

USER_LEX "SPC ("= "PAD ("

Format 2: Load Alternate Lexicon
USER_LEX LOAD filename$

Use the USER_LEX LOAD directive to load an alternate internal lexicon table. This
lexicon table can be used to simplify a conversion from other programming
languages to ProvideX or to provide support for languages other than English.

alt_string$ Alternate keyword/symbol to be used in place of a ProvideX directive.

directive$ Standard ProvideX directive.

filename$ Name of a file containing an alternate lexicon. String expression.

Note: The internal syntax values in the directive$ must include the proper spacing
and all related control characters. In the above example "SPC"="PAD" alone is not
acceptable. You must include the space and open parenthesis after SPC and after
PAD to indicate that a space can occur between the words (SPC / PAD) and the open
parenthesis.

2. Directives USER_LEX

ProvideX Language Reference V8.30 Back 353

The lexicon table consists of all the ProvideX keywords for directives, functions and
system variables. ProvideX supplies a utility program, *LEXEDIT, to create and
maintain these tables.

Format 3: Clear Alternate Lexicon
USER_LEX CLEAR

The USER_LEX CLEAR directive removes an alternate internal lexicon table and
restores the standard directive keywords.

Warning: Be very careful when modifying syntax tables. While it is possible to create
syntax tables for other languages and to add additional syntax to the external table, the
wrong changes can make your programs un-listable. (The syntax tables affect both the
listing and editing of programs.) Do not attempt to create or edit the syntax tables
unless you are an experienced programmer and are familiar with these tables.
Please contact your local distributor of ProvideX for assistance.

2. Directives VARDROP_BOX

ProvideX Language Reference V8.30 Back 354

VARDROP_BOX Directive V ARDROP_BOX Contr ol Variable D rop BoxControl Variable Drop Box
Formats 1. Define/Create: VARDROP_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]

2. Remove: VARDROP_BOX REMOVE ctl_id[,ERR=stmtref]

3. Disable/Enable: VARDROP_BOX {DISABLE | ENABLE}ctl_id[,ERR=stmtref]

4. Hide/Show: VARDROP_BOX {HIDE | SHOW} ctl_id[,ERR=stmtref]

5. Force Focus: VARDROP_BOX GOTO ctl_id[,ERR=stmtref]

6. Signal on Focus: VARDROP_BOX SET_FOCUS ctl_id, ctl_val[,ERR=stmtref]

7. Load Via Delimited String: VARDROP_BOX LOAD ctl_id,dlm_list$[,ERR=stmtref]

8. Load Via Array: VARDROP_BOX LOAD ctl_id,array_name${ALL}[,ERR=stmtref]
Note: The curly braces enclosing {ALL} are part of the syntax.

9. Load/Delete Element: VARDROP_BOX LOAD ctl_id,index,{element$|*}[,ERR=stmtref]

10. Retrieve Element: VARDROP_BOX FIND ctl_id,index,var$[,ERR=stmtref]

11. Read Current String: VARDROP_BOX READ ctl_id,var$[,mode$][,ERR=stmtref]

12. Read Current Index: VARDROP_BOX READ ctl_id,var[,mode$][,ERR=stmtref]

13. Write Current Selection: VARDROP_BOX WRITE ctl_id,element$[,ERR=stmtref]

14. Update Using Index: VARDROP_BOX WRITE ctl_id,index[,ERR=stmtref]

15. Clear Current Selection: VARDROP_BOX WRITE ctl_id, ""[,ERR=stmtref]

16. Report All Changes: VARDROP_BOX AUTO ctl_id[,ERR=stmtref]

Where:

@(col,ln,
wth,ht)

Position and size of the variable drop box region when expanded.
Numeric expressions. Column and line coordinates for top left
corner width in number of columns, and height in number of lines.
(Note that drop box height, when not expanded, is governed by the
system and is roughly 1.5 times the standard graphic font height.)

array_name$ Name of array to load into variable drop box. String variable followed by
{ALL}.

ctl_id Unique logical identifier for a variable drop box (any integer -32000 to
+32000). Avoid integers that conflict with keyboard definitions (e.g., 4
cancels CTL=4 for the key) or Negative CTL Definitions, p.817.
Use this value with the apostrophe operator to access Variable Drop
Box Properties.

ctl_val CTL value to generate when the variable drop box gains focus.

F4

2. Directives VARDROP_BOX

ProvideX Language Reference V8.30 Back 355

Description Use the VARDROP_BOX directive to create and control variable drop boxes on the
screen. A variable drop box normally displays a single line on the screen with a
DOWN-ARROW on the right side and allows variable input. That is, the user can select
any element from a list of items associated with the variable drop box or can enter
any other value. To view the list the user clicks on the DOWN-ARROW.

ctrlopt Control options. Supported options for VARDROP_BOX include:
ERR=stmtref Error transfer
FNT="font,size[,attr]" Font name, size, optional properties

Refer to the 'FONT' Mnemonic, p.609 for details.
KEY=char$ Hot key
LEN=num Maximum input length
MSG=text$ Message line
MNU=ctl CTL value associated with right-click menu event.
TBL=char$ Single character translation
TIP=text$ Mouse pointer message.

To change the colour, refer to the 'TC'= System Parameter, p.689.
OWN=name$ Name assigned for automated testing of this control.
OPT=char$ Attribute/behaviour settings:
"D" - Disabled. User cannot access the drop box.
"G" - Global. Keep active on focus change to new/non-concurrent window.
"H" - Hide. Do not display the drop box.
"S" - Signal. Generate CTL value but without shifting focus.
"A" - Auto. Generate CTL signal for every character entered.
"T" - Strip trailing spaces.
"X" - Signal on Exit.
"s" - Scroll. Allow scroll within resizable/scrollable dialogue box.

Some characters may be combined. Invalid settings are ignored.

dlm_list$ Delimited list of elements to load. String expressions.

element$ Single element to load. String expression. Use the asterisk * instead, to
delete an element. For instance, VARDROP_BOX LOAD 86,4,* will
"eighty-six" (remove) element 4 from VARDROP_BOX 86.

index Position of the element in the variable drop box. Numeric expression.
Integers: the index of the 1st element is 1.

mode$ String variable. ProvideX returns a single-character hex value in this
variable to report the last method / keystroke the user chose to
activate the drop box (01 for MOUSE-CLICK or $0D$ for).

stmtref Program line number or label to transfer control to.

var[$] Variable to receive value. String variable for element/numeric for index.

Enter

2. Directives VARDROP_BOX

ProvideX Language Reference V8.30 Back 356

Because a variable drop box list is in drop-down form, it takes a smaller amount of
space on the screen than a comparable variable list box. In addition, ProvideX
automatically supplies vertical scrollbars if the number of elements overflows the
drop-down box size. Combine these features to optimize screen design when display
space is at a premium.

Variable Drop Box Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
variable drop box are described in Chapter 7. Control Object Properties, p.708.

Format 1: Define/Create

VARDROP_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]

Use the format above to create a variable drop box, giving it a unique ctl_id. When a
user selects an item from a variable drop box, or enters an item that is not on the list,
the associated ctl_id you give to the variable drop box is used to generate a CTL
value. Use the FNT= option to establish the font for variable drop box. If you omit
the font option, ProvideX uses the system default font. Use FNT="*" to set the font as
standard text mode fixed font.

The following example creates a variable drop box that generates a CTL=100 when
any item is selected from it. It's loaded with the items Cat, Dog, and Pig.

0010 VARDROP_BOX 100,@(2,14,12,6)
0020 VARDROP_BOX LOAD 100,"Cat/Dog/Pig/"

The user can select any of the three items supplied or enter any other value.

Format 2: Remove

VARDROP_BOX REMOVE ctl_id[,ERR=stmtref]

Use the VARDROP_BOX REMOVE format to delete a drop box.

Format 3: Disable/Enable

VARDROP_BOX {DISABLE | ENABLE}ctl_id[,ERR=stmtref]

Use the VARDROP_BOX DISABLE format to gray out a variable drop box so that it
will be visible but inaccessible to users. To reactivate it, use VARDROP_BOX ENABLE.

Format 4: Hide/Show

VARDROP_BOX {HIDE | SHOW} ctl_id[,ERR=stmtref]

With the VARDROP_BOX HIDE format, the drop box remains active, but is not
displayed. It is still accessible programmatically. Use the SHOW format to restore the
display and user access.

2. Directives VARDROP_BOX

ProvideX Language Reference V8.30 Back 357

Format 5: Force Focus
VARDROP_BOX GOTO ctl_id[,ERR=stmtref]

Use VARDROP_BOX GOTO to reactivate and force focus to a variable drop box, ready
for the next user action.

Format 6: Signal on Focus

VARDROP_BOX SET_FOCUS ctl_id, ctl_val[,ERR=stmtref]

Use the VARDROP_BOX SET_FOCUS format to define an alternate CTL value to
generate whenever focus shifts to the variable drop box.

Formats 7, 8 and 9: Load a Variable Drop Box

Use the VARDROP_BOX LOAD formats below to load items into a variable drop box.
The element(s) can be loaded as a delimited string, as an array of string elements, or
individually.

VARDROP_BOX LOAD ctl_id,dlm_list$[,ERR=stmtref]

Load List. When you load items from a delimited string, the last character in the
string must be the delimiter; e.g.,

0100 VARDROP_BOX LOAD 10000,"Fox/Cat/Dog/Cow/Sheep/Horse/Pig/Elephant/Ant/"
0500 VARDROP_BOX LOAD 15000,"Fox"+SEP+"Cat"+SEP+"Dog"+SEP

VARDROP_BOX LOAD ctl_id,array_name${ALL}[,ERR=stmtref]

Load Array. Use this format to load a complete array into the variable drop box. Note
that the curly braces enclosing {ALL} are part of the syntax.

VARDROP_BOX LOAD ctl_id,index,{element$ | *}[,ERR=stmtref]

Load Element. When you load a variable drop box one element at a time, the index
value refers to the element before which the new element is to be inserted. For
instance, if index is 1, the new element will be inserted before 1, at the start of the
list. If index is 0 zero, the new element will be appended to the end of the list.

If you have more items in the list than will fit the physical screen size of the variable
drop box, ProvideX automatically supplies scrollbars. To delete or remove a
specified element from a variable drop box, use an asterisk * in place of the element
string; e.g.,

VARDROP_BOX LOAD 86,4,* ! Deletes item whose index=4 from drop box 86.

2. Directives VARDROP_BOX

ProvideX Language Reference V8.30 Back 358

Format 10: Retrieve Element

VARDROP_BOX FIND ctl_id,index,var$[,ERR=stmtref]

Use VARDROP_BOX FIND to retrieve a specific element from a drop box.

Formats 11 and 12: Read Current Selection

Use the VARDROP_BOX READ formats to read which element the user has selected
from the variable drop box. Note that you must READ the user's selection before
your application can use it.

Use a string variable to return information on how the element was selected. The
value returned will be:

01 for MOUSE-CLICK.
$0D$ for .
After this value is read, it resets to 00 (null).

VARDROP_BOX READ ctl_id,var$[,mode$][,ERR=stmtref]

Read Current Element. Use a string variable in a VARDROP_BOX READ to receive the
value of the currently selected element. Use an optional second variable to receive
the selection method (i.e., mode$).

VARDROP_BOX READ ctl_id,var[,mode$][,ERR=stmtref]

Read Current Index. Use a numeric variable in a VARDROP_BOX READ to receive the
index of the element the user has selected. Once a user has made a selection, it is
your responsibility to read it to return the value to your program.

Formats 13 and 14: Write Current Selection

Use the VARDROP_BOX WRITE formats described below to update the current
selection in the variable drop box. The value you write can be one of the elements
loaded into the drop box or any other value.

VARDROP_BOX WRITE ctl_id,element$[,ERR=stmtref]

Update Current Setting. Use VARDDROP_BOX WRITE with a string expression to
update the current selection by element.

VARDROP_BOX WRITE ctl_id,index[,ERR=stmtref]

Update Current Index. Use VARDDROP_BOX WRITE with a numeric expression to
update the current selection by element index.

Enter

2. Directives VARDROP_BOX

ProvideX Language Reference V8.30 Back 359

Format 15: Clear Current Selection

VARDROP_BOX WRITE ctl_id,"" [,ERR=stmtref]

Use this format to clear the currently selected entry in variable drop boxes.

Format 16: Report All Changes

VARDROP_BOX AUTO ctl_id[,ERR=stmtref]

Use the VARDROP_BOX AUTO format to have ProvideX generate a CTL value
whenever the current selection is changed. This lets you track changes in which
selection is highlighted in a VARDROP_BOX.

Note: This behavior can be altered by use of the '+N' & '-N' Mnemonics, p.623.

2. Directives VARLIST_BOX

ProvideX Language Reference V8.30 Back 360

VARLIST_BOX Directive VA RLIST_BOX Cont rol Lis t BoxControl Variable List Box
Formats 1. Define/Create: VARLIST_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]

2. Remove: VARLIST_BOX REMOVE ctl_id[,ERR=stmtref]

3. Disable/Enable: VARLIST_BOX {DISABLE | ENABLE}ctl_id[,ERR=stmtref]

4. Force Focus: VARLIST_BOX GOTO ctl_id[,ERR=stmtref]

5. Signal on Focus: VARLIST_BOX SET_FOCUS ctl_id, ctl_val[,ERR=stmtref]

6. Load List: VARLIST_BOX LOAD ctl_id,dlm_list$[,ERR=stmtref]

7. Load Array: VARLIST_BOX LOAD ctl_id,array_name${ALL}[,ERR=stmtref]
Note: The curly braces enclosing {ALL} are part of the syntax.

8. Load/Delete Element: VARLIST_BOX LOAD ctl_id,index,{element$|*}[,ERR=stmtref]

9. Retrieve Element: VARLIST_BOX FIND ctl_id,index,var$[,ERR=stmtref]

10. Read Current Selection: VARLIST_BOX READ ctl_id,var$[,mode$][,ERR=stmtref]

11. Read Current Index: VARLIST_BOX READ ctl_id,var[,mode$][,ERR=stmtref]

12. Update Current Item: VARLIST_BOX WRITE ctl_id,element$[,ERR=stmtref]

13. Update Current Index: VARLIST_BOX WRITE ctl_id,index[,ERR=stmtref]

14. Clear Current Selection: VARLIST_BOX WRITE ctl_id,"" [,ERR=stmtref]

15. Report All Changes: VARLIST_BOX AUTO ctl_id[,ERR=stmtref]

Where:

@(col,ln,
wth,ht)

Position and size of the variable list box region when expanded.
Numeric expressions. Column and line coordinates for top left
corner, width in number of columns and height in number of lines.
(Note that list box height, when not expanded, is governed by the
system and is roughly 1.5 times the standard graphic font height.)

array_name$ Name of array to load into variable list box. String variable followed by {ALL}.
ctl_id Unique logical identifier for a variable list box (any integer -32000 to

+32000). Avoid integers that conflict with keyboard definitions (e.g., 4
cancels CTL=4 for the key) or Negative CTL Definitions, p.817.
Use this value with the apostrophe operator to access Variable List Box
Properties.

ctl_val CTL value to generate when the variable list box gains focus.
ctrlopt Control options. Supported options for VARLIST_BOX include:

ERR=stmtref Error transfer
FNT="font,size[,attr]" Font name, size, optional properties

Refer to the 'FONT' Mnemonic, p.609 for details.

F4

2. Directives VARLIST_BOX

ProvideX Language Reference V8.30 Back 361

Description Use the VARLIST_BOX directive to create and control variable list boxes on the
screen. That is, the user can select any element from a list of items associated with
the variable list box or can enter any other value.

Variable List Box Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
variable list box are described in Chapter 7. Control Object Properties, p.708.

Format 1: Define/Create

VARLIST_BOX ctl_id,@(col,ln,wth,ht)[,ctrlopt]

Use the format above to create a variable list box, giving it a unique ctl_id. When a
user selects an item from a variable list box, or enters an item that is not on the list,
the associated ctl_id you give to the variable list box is used to generate a CTL value.

KEY=char$ Hot key
LEN=num Maximum input length
MSG=text$ Message line
MNU=ctl CTL value associated with right-click menu event.
TIP=text$ Mouse pointer message.

To change the colour, refer to the 'TC'= System Parameter, p.689.
OWN=name$ Name assigned for automated testing of this control.
OPT=char$ Attribute/behaviour settings:
"D" - Disabled. User cannot access the list box.
"G" - Global. Keep active on focus change to new/non-concurrent window.
"H" - Hide. Do not display the list box.
"S" - Signal. Generate CTL value but without shifting focus.
"s" - Scroll. Allow scroll within resizable/scrollable dialogue box.

Some characters may be combined. Invalid settings are ignored.
dlm_list$ Delimited list of elements to load. String expressions.
element$ Single element to load. String expression. Use the asterisk * instead to

delete an element. For instance, VARLIST_BOX LOAD 86,4,* will
"eighty-six" (remove) element 4 from VARLIST_BOX 86.

index Position of the element in the variable list box. Numeric expression.
Integers: the index of the 1st element is 1.

mode$ String variable. ProvideX returns a single-character hex value in this
variable to report the last method / keystroke the user chose to select
an item from the list box (01 for MOUSE-CLICK or $0D$ for).

stmtref Program line number or label to transfer control to.
var[$] Variable to receive value. String variable for element/numeric for index.

Enter

2. Directives VARLIST_BOX

ProvideX Language Reference V8.30 Back 362

Use the FNT= option to establish the font for the variable list box. If you omit the
font option, ProvideX uses the system default font. Use FNT="*" to set the font as
standard text mode fixed font.

The following example creates a variable list box that generates a CTL=100 when
any item is selected from it. It's loaded with the items Cat, Dog, and Pig.

0010 VARLIST_BOX 100,@(2,14,12,6)
0020 VARLIST_BOX LOAD 100,"Cat/Dog/Pig/"

The user can select any of the three items supplied or enter any other value.

Format 2: Remove
VARLIST_BOX REMOVE ctl_id[,ERR=stmtref]

Use the VARLIST_BOX REMOVE format to delete a variable list box.

Format 3: Disable/Enable
VARLIST_BOX {DISABLE | ENABLE}ctl_id[,ERR=stmtref]

Use the VARLIST_BOX DISABLE format to gray out a variable list box so that it will
be visible but inaccessible to users. To reactivate it, use VARLIST_BOX ENABLE.

Format 4: Force Focus
VARLIST_BOX GOTO ctl_id[,ERR=stmtref]

Use VARLIST_BOX GOTO to reactivate and force focus to a variable list box, ready for
the next user action.

Format 5: Signal on Focus

VARLIST_BOX SET_FOCUS ctl_id, ctl_val[,ERR=stmtref]

Use the VARLIST_BOX SET_FOCUS format to define an alternate CTL value to
generate whenever focus shifts to the variable list box.

Formats 6, 7 and 8: Load a Variable List Box

Use the VARLIST_BOX LOAD formats below to load items into a variable list box. The
element(s) can be loaded as a delimited string, as an array of string elements, or individually.

VARLIST_BOX LOAD ctl_id,dlm_list$[,ERR=stmtref]

Load List. When you load items from a delimited string, the last character in the
string must be the delimiter; e.g.,

0100 VARLIST_BOX LOAD 10000,"Fox/Cat/Dog/Cow/Sheep/Horse/Pig/Elephant/Ant/"
0500 VARLIST_BOX LOAD 15000,"Fox"+SEP+"Cat"+SEP+"Dog"+SEP

2. Directives VARLIST_BOX

ProvideX Language Reference V8.30 Back 363

VARLIST_BOX LOAD ctl_id,array_name${ALL}[,ERR=stmtref]

Load Array. Use this format to load a complete array into the variable list box. Note
that the curly braces enclosing {ALL} are part of the syntax.

VARLIST_BOX LOAD ctl_id,index,{element$ | *}[,ERR=stmtref]

Load Element. When loading a variable list box one element at a time, the index
value refers to the element before which the new element is to be inserted. For
instance, if index is 1, the new element will be inserted before 1, at the start of the list.
If index is 0 zero, the new element will be appended to the end of the list.

If you have more items on a list than will fit the physical screen size of a variable list
box, ProvideX automatically supplies scrollbars. To delete or remove a specified
element from a variable list box, use an asterisk * in place of the element string; e.g.,

VARLIST_BOX LOAD 86,4,* ! Deletes item whose index=4 from list box 86.

Format 9: Retrieve Element

VARLIST_BOX FIND ctl_id,index,var$[,ERR=stmtref]

Use VARLIST_BOX FIND to retrieve a specific element from a list box.

Formats 10 and 11: Read Current Selection

Use the VARLIST_BOX READ formats to read which element the user has selected
from the variable list box. Note that you must read the user's selection before an
application can use it.

Use a string variable to return information on how the element was selected. The
value returned will be:

02 for DOUBLE MOUSE-CLICK.
$0D$ for .
After this value is read, it resets to 00 (null).

VARLIST_BOX READ ctl_id,var$[,mode$][,ERR=stmtref]

Read Current Element. Use a string variable in a VARLIST_BOX READ to receive the
value of the currently selected element. Use an optional second variable to receive
the selection method (i.e., mode$).

VARLIST_BOX READ ctl_id,var[,mode$][,ERR=stmtref]

Read Current Index. Use a numeric variable in a VARLIST_BOX READ to receive the
index of the element the user has selected. Once a user has made a selection, it is
your responsibility to read it to return the value to your program.

Enter

2. Directives VARLIST_BOX

ProvideX Language Reference V8.30 Back 364

Formats 12 and 13: Write Current Selection

Use the VARLIST_BOX WRITE formats described below to update the current
selection in the variable list box. The value you write can be one of the elements
loaded into the list box or any other value.

VARLIST_BOX WRITE ctl_id,element$[,ERR=stmtref]

Update Current Setting. Use VARDLIST_BOX WRITE with a string expression to
update the current selection by element.

VARLIST_BOX WRITE ctl_id,index[,ERR=stmtref]

Update Current Index. Use VARDLIST_BOX WRITE with a numeric expression to
update the current selection by element index.

Format 14: Clear Current Selection

VARLIST_BOX WRITE ctl_id,"" [,ERR=stmtref]

Use this format to clear the currently selected entry in variable list boxes.

Format 15: Report All Changes

VARLIST_BOX AUTO ctl_id[,ERR=stmtref]

Use the VARLIST_BOX AUTO format to have ProvideX generate a CTL value
whenever the current selection is changed. This lets you track changes in which
selection is highlighted in a VARLIST_BOX.

Note: This behavior can be altered by use of the '+N' & '-N' Mnemonics, p.623.

2. Directives V_SCROLLBAR

ProvideX Language Reference V8.30 Back 365

V_SCROLLBAR Directive V_SCROLLBAR C ontrol Vert ical ScrollbarControl Vertical Scrollbar
Formats 1. Define/Create: V_SCROLLBAR ctl_id,@(col,ln,wth,ht)[,ctrlopt]

2. Define at Edge of Window: V_SCROLLBAR ctl_id WINDOW [,ctrlopt]

3. Remove: V_SCROLLBAR REMOVE ctl_id[,ERR=stmtref]

4. Disable/Enable: V_SCROLLBAR {ENABLE | DISABLE} ctl_id[,ERR=stmtref]

5. Hide/Show: V_SCROLLBAR {HIDE | SHOW} ctl_id[,ERR=stmtref]

6. Force Focus: V_SCROLLBAR GOTO ctl_id[,ERR=stmtref]

7. Read: V_SCROLLBAR READ ctl_id,setting,max,[rgn_chg][,arrow_chg][,ERR=stmtref]

8. Update: V_SCROLLBAR WRITE ctl_id,marker,max[,ERR=stmtref]

Where

@(col,ln,
wth,ht)

Position and size of the vertical scrollbar region. Numeric expressions.
Column and line coordinates for top left corner, width in number of
columns and height in number of lines.

arrow_chg Amount to increase/decrease the V_SCROLLBAR setting when the user
selects the arrow at the top/bottom edge of the vertical scrollbar.
Numeric expression. (Default: 1)

ctl_id Unique logical identifier for a vertical scrollbar (any integer -32000 to
+32000). Avoid integers that conflict with keyboard definitions (e.g., 4
cancels CTL=4 for the key) or Negative CTL Definitions, p.817. Use
this value with the apostrophe operator to access various Variable List
Box Properties.

ctrlopt Control options. Supported options for V_SCROLLBAR include:
ERR=stmtref Error transfer
OWN=name$ Name assigned for automated testing of this control.
OPT=char$ Attribute/behaviour settings:
"D" - Disabled. User cannot access the scrollbar.
"G" - Global. Keep active on focus change to new/non-concurrent window.
"H" - Hide. Do not display the scroll bar.
"A" - Auto. Generate CTL signal for each movement.
"s" - Scroll. Allow scroll within resizable/scrollable dialogue box.

Some characters may be combined. Invalid settings are ignored.

marker Relative position to set as the V_SCROLLBAR marker. Numeric
expression between 1 and the maximum.

max Logical maximum value of the V_SCROLLBAR. Numeric expression.

rgn_chg Amount to increase/decrease the V_SCROLLBAR setting when the user
selects the region above/below the marker. Numeric expression.
(Default: max/width.)

setting Numeric variable to receive the current scrollbar setting.

F4

2. Directives V_SCROLLBAR

ProvideX Language Reference V8.30 Back 366

Description Use the V_SCROLLBAR directive to create a vertical scrollbar control object on the screen.
Your program logic can read and adjust a value by increments to control logical record
position within a file every time the user moves the vertical scrollbar.

Use either V_SCROLLBAR Format 1 or 2 (described below) to define or create a vertical
scrollbar. The value in ctl_id gives the vertical scrollbar a unique identifier. This is
generated as a CTL value whenever the vertical scrollbar is selected and changed.

Vertical Scrollbar Properties
The Apostrophe Operator can be used with the unique logical identifier (ctl_id) to
dynamically read and alter a wide variety of control attributes (properties) directly
from the programming language. The list of properties available for manipulating a
vertical scrollbar are described in Chapter 7. Control Object Properties, p.708.

Format 1: Create
V_SCROLLBAR ctl_id,@(col,ln,wth,ht)[,ctrlopt]

Use this format to create a vertical scrollbar inside the current window; e.g.,

0010 V_SCROLLBAR 100,@(70,2,2,20)

defines a vertical scrollbar 2 columns wide, 20 lines high, starting at column 70 on line 2.
Whenever the scrollbar is selected a CTL=100 is generated.

Format 2: Define at Edge of Window
V_SCROLLBAR ctl_id WINDOW[,ctrlopt]

Use the V_SCROLLBAR format with WINDOW to create a vertical scrollbar at the edge
of the window.

Format 3: Remove
V_SCROLLBAR REMOVE ctl_id[,ERR=stmtref]

Use the V_SCROLLBAR REMOVE format to delete the vertical scrollbar.

Format 4: Disable/Enable
V_SCROLLBAR {DISABLE | ENABLE} ctl_id [,ERR=stmtref]

Use the V_SCROLLBAR DISABLE format to gray-out a vertical scrollbar so that it will
be visible but inaccessible to users. To reactivate it, use V_SCROLLBAR ENABLE.

Format 5: Hide/Show
V_SCROLLBAR {HIDE | SHOW} ctl_id[,ERR=stmtref]

With the V_SCROLLBAR HIDE format, the scrollbar remains active, but is not
displayed. It is still accessible programmatically. Use the SHOW format to restore the
display and user access.

stmtref Program line number or label to transfer control to.

2. Directives V_SCROLLBAR

ProvideX Language Reference V8.30 Back 367

Format 6: Force Focus
V_SCROLLBAR GOTO ctl_id[,ERR=stmtref]

Use the V_SCROLLBAR GOTO format to reactivate and force focus to a vertical
scrollbar, ready for the next user action.

Format 7: Read Setting
V_SCROLLBAR READ ctl_id,setting,max,[rgn_chg][,arrow_chg][,ERR=stmtref]

Use this format to read the current setting of the vertical scrollbar.

Example:

0120 V_SCROLLBAR READ 100,X,1000
0130 V_SCROLLBAR WRITE 100,X,1000

Line 0120 reads the scrollbar position relative to 1000 and line 0130 updates the
settings.

Format 8: Update
V_SCROLLBAR WRITE ctl_id,marker,max[,ERR=stmtref]

Use the V_SCROLLBAR WRITE format to update or write the V_SCROLLBAR settings.

See Also H_SCROLLBAR Control Horizontal Scroll Bar, p.153,
Chapter 7. Control Object Properties, p.701.

Examples 0110 LET VAL=1,MX=400,BJMP=25,SJMP=1

0120 V_SCROLLBAR 101,@(6,14,1,10)
0130 V_SCROLLBAR 102,@(15,14,2,10)
0140 V_SCROLLBAR 103,@(25,14,3,10)
0150 V_SCROLLBAR 104 WINDOW
0160 INPUT (0,HLP="V_SCROLLBAR")@(40,18),"Select...: ",'CL',X$
0170 IF CTL<101 OR CTL>104 THEN GOTO 0210
0180 V_SCROLLBAR READ CTL,VAL,MX,BJMP,SJMP
0190 V_SCROLLBAR WRITE CTL,VAL,MX
0200 PRINT @(40,19),"Selection:",CTL,":",STR(VAL),'CL',; GOTO 0160
0210 IF CTL=0 OR CTL>=3 THEN STOP ELSE GOTO 0160
0100 ! 100 - Vertical Scroll Bar Example

Note: Once a new position is selected, you must read it before your application can
use the value to update the actual V_SCROLLBAR position.

2. Directives VIA

ProvideX Language Reference V8.30 Back 368

VIA Directive VIA Assign Var iab le Indir ectlyAssign Variable Indirectly
Formats 1. Assign to Variable: VIA var$=expression [,var$=...] [,ERR=stmtref]

2.Assign to Composite Variable: VIA comp$,var_1$[[,subscr]]=expression[,...n] [,ERR=stmtref]
Note: The inner set of brackets enclosing [,subscr] are part of the syntax.

Where:

Description Use the VIA directive to assign a value to a variable where the variable name is
contained in another string variable. The target variable's type (numeric or string) is
based on the type of expression.

Format 1: Assign to Variable
VIA var$=expression [,var$=...]

Use this VIA format to assign the value in the expression to a variable whose name is
stored in var$ (i.e., to assign VIA the var$). If you use a string, then ProvideX
automatically appends a $ to the variable name.

Example:

0030 LET ANIMAL$="pet", PET$="dog"
0040 VIA ANIMAL$="cat"
0050 PRINT ANIMAL$," ",PET$

... when run, the result is pet cat.

0060 LET VAR$="number", NUMBER=23
0070 VIA VAR$=30
0080 PRINT VAR$," ",NUMBER; END

... when run, the result is number 30.

comp$ Composite string variable. (Name of variable defined as composite string.).

[,subscr] Optional subscript(s) of a variable in the composite string. String
expression. You can include from 1 to 3 optional numeric expressions
in square brackets, comma-separated, as subscripts for the variable.

expression Value you want assigned to the named variable.

var$ String variable containing the name of the variable to be used.

var_1$ to
var_2$

String expression containing the name of a variable in the composite
string.

stmtref Program line number or label to transfer control to.

2. Directives VIA

ProvideX Language Reference V8.30 Back 369

Format 2: Assign to Composite Variable
VIA composite$,var_1$[[,subscr]]=expression[,...n]

You can assign the value of the expression to a variable in a composite string. In this
format, you can specify up to 3 subscripts for the variable(s).

Example:

0010 IOLIST X$,Y$,Z$
0020 DIM PET$:IOL=0010
0030 LET X$="Dogs",Y$="Cats",Z$="!" REM Assign values to variables
0040 VIA PET$,"X$"="Lotsa",PET$,"Y$"="and",PET$,"Z$"="It's raining"
0050 PRINT PET.X$," ",X$," ",PET.Y$," ",Y$
0060 LET PET.X$=X$,PET.Y$=Y$
0070 PRINT PET.Z$," ",PET.Y$," and ",PET.X$,Z$
-:run
Lotsa Dogs and Cats
It's raining Cats and Dogs!

2. Directives VIDEO_PALETTE

ProvideX Language Reference V8.30 Back 370

VIDEO_PALETTE Directive VIDEO_PALETTE Cont rol Video Colour sControl Video Colours
Formats 1. Read Palette: VIDEO_PALETTE READ var$[,ERR=stmtref]

2. Change Palette: VIDEO_PALETTE string$[,ERR=stmtref]

3. Read Palette Indexed Table: VIDEO_PALETTE INDEXED READ var$[,ERR=stmtref]

4. Change Palette Indexed Table: VIDEO_PALETTE INDEXED string$[,ERR=stmtref]

Where

Description ProvideX supplies access to the standard 0 - 15 colours as well as any extended 16 - 254
colours in the colour video palette (internal colour index) in Windows. This directive
can be used to modify the palette in ProvideX; however, the 'OPTION' mnemonic is
the preferred method for assigning colours (by RGB code).

See Also 'COLOUR' & '_COLOUR' Mnemonics, p.596
'OPTION' Mnemonic, p.624

Format 1: Read Palette
VIDEO_PALETTE READ var$[,ERR=stmtref]

Use this format to read the current settings of the video palette. The video palette
consists of a string of 16 to 254 3-byte entries, where each byte defines the intensity
of the colours Red, Green and Blue. For example, the 3-byte entry for bright
(foreground) green is $00FF00$, magenta is $FF00FF$...

VIDEO_PALETTE READ X$ will return you the following defaults in a single string:

$000000 FF0000 00FF00 FFFF00$
$0000FF FF00FF 00FFFF FFFFFF$
$808080 800000 008000 808000$
$000080 800080 008080 C0C0C0$

The string is only punctuated by spaces to show you the initial sixteen 3-byte entries.

string$ String expression containing the new VIDEO_PALETTE or INDEXED
table settings to be used.

stmtref Program line number or label to transfer control to.

var$ String variable to receive the current VIDEO_PALETTE or INDEXED
table settings.

2. Directives VIDEO_PALETTE

ProvideX Language Reference V8.30 Back 371

Format 2: Change Palette
VIDEO_PALETTE string$[,ERR=stmtref]

Use this format to change/reset the video palette, as in VIDEO_PALETTE X$ where
X$ contains your new values.

Format 3: Read Palette Indexed Table
VIDEO_PALETTE INDEXED READ var$[,ERR=stmtref]

There is also an indexed table to reference the video palette. This index table consists
of 48 entries: six 8-byte tables, where each byte represents an index into the video
palette described above:

• The first 8 bytes represent the standard foreground colours.

• The second 8 bytes represent the colours used when the 'SB' mnemonic is in effect

• The third 8 bytes represent the colours used when the 'BB' mnemonic is in effect

• The fourth 8 bytes represent the colours used when both 'BB' and 'SB' are in effect

• The fifth 8 bytes represent the "Background" colours

• The sixth 8 bytes represent the colours used when 'BR' and 'SB' are in effect

Use the READ format to return the current settings in the index table, as in
VIDEO_PALLETTE INDEXED READ X$. For more information, refer to the 'BB'
Mnemonic, p.588, the 'BR' Mnemonic, p.592, and the 'SB' Mnemonic, p.638.

Format 4: Change Palette Indexed Table
VIDEO_PALETTE INDEXED string$[,ERR=stmtref]

Use this format to change/reset the video palette index table, as in VIDEO_PALLETTE
INDEXED X$ where X$ contains your new values.

Note: Changing the palette may not work on all systems. This depends on the colour
capabilities of the PC hardware.

2. Directives WAIT

ProvideX Language Reference V8.30 Back 372

WAIT Directive WAIT Temporar ily H alt ExecutionTemporarily Halt Execution
Format WAIT seconds

Where:

Description Use the WAIT directive to have the system suspend execution for the number of
seconds you indicate in the numeric expression. During the time the program is
suspended, the SETESC directive is deferred. This directive will only be processed
once the WAIT interval has elapsed.

Example 0110 READ (1,ERR=1000,KEY=K$)N$
1000 REM Test for busy record
1010 IF ERR=0 THEN PRINT @(0,22),"Busy. will retry";
1010: WAIT 5; RETRY

seconds Value determines the number of seconds to wait. Numeric expression.

Note: The accuracy of the timing varies from operating system to operating system.
On most UNIX/LinuX systems, the WAIT is accurate to within one second.

Note: WAIT 0 is often used to flush the display cache; e.g.,
PRINT ’IMAGE’("Bar"),’FILL’(1,4),’PEN’(1,1,4),’IMAGE’(""),
WAIT 0

2. Directives WAIT FOR EVENT

ProvideX Language Reference V8.30 Back 373

WAIT FOR EVENT Directive W AIT FOR EVENT Temporar ily H alt ExecutionWait for Event
Format WAIT FOR EVENT

Description Use the WAIT FOR EVENT directive to relinquish control and wait until an event
occurs from any object.

See Also ENABLE EVENT Directive, p.112
DISABLE EVENT Directive, p.94

Note: For more information on internal events and event handling in ProvideX, refer
to the directives ENABLE EVENT Internal Event Enable, p.112, and DISABLE Disable
Use of Prefix Table Entry, p.92.

2. Directives WEND

ProvideX Language Reference V8.30 Back 374

WEND Directive WEND End WH ILE LoopEnd WHILE Loop
Format WEND

Description The WEND directive marks the end of a WHILE/WEND loop. When ProvideX
reaches the WEND directive, the expression defined in the currently active WHILE is
re-evaluated. If the result of the evaluation is not zero, control is returned to the
directive following the WHILE. If the value is 0 (zero, false), control transfers to the
directive following the WEND.

See Also WHILE..WEND Repeat Statements, p.375

Example 0100 WHILE A$<>"E"
0110 LET K$=KEY(1,END=1000)
0120 READ (1)N$
0130 PRINT "Key: ",K$," Name: ",N$
0140 INPUT "Delete (Y/N):",A$
0150 IF A$="Y" THEN REMOVE (1,KEY=K$)
0160 WEND
0170 STOP
1000 PRINT "End-of-file..."
1010 EXITTO 0170

Note: Refer to WHILE..WEND Repeat Statements, p.375, for complete syntax.

2. Directives WHILE..WEND

ProvideX Language Reference V8.30 Back 375

WHILE..WEND Directive WH ILE..WEND Repeat Statement sRepeat Statements
Format WHILE expression ..WEND

Where:

Description Use the WHILE directive for conditional looping in a program. ProvideX executes all
directives between a WHILE directive and the next WEND directive repeatedly until
the value of the expression is 0 zero.

When ProvideX encounters a WHILE directive, it evaluates the expression. If the
result is not 0 zero, ProvideX continues execution until a corresponding WEND
directive is encountered, at which point the expression is re-evaluated. ProvideX
continues to loop back to the directive following the WHILE directive until a 0 value
is reached. At this point, ProvideX advances to the next WEND directive, where it
terminates the loop. Then control transfers to the statement following the WEND.

The expression would normally include a logical operator (such as an equals =, less-than
symbol <, or the LIKE Operator, p.822), but you can use any numeric expression.

If ProvideX encounters a WEND directive but is not currently processing a WHILE /
WEND loop, it returns an Error #27: Unexpected or incorrect WEND,
RETURN, or NEXT. All FOR/NEXT, GOSUB/RETURN, and WHILE/WEND sequences
executed within the WHILE/WEND loop must be completed.

Use a conditional EXITTO or BREAK to exit a WHILE/WEND loop early.

See Also BREAK Immediate Exit of Loop, p.33,
CONTINUE Initiates Next Iteration of Loop, p.57
EXITTO End Loop, Transfer Control, p.125
LIKE Operator, p.822
Loop Structures, User’s Guide.

Example 0100 WHILE A$<>"E"
0110 LET K$=KEY(1,END=1000)
0120 READ (1)N$
0130 PRINT "Key: ",K$," Name: ",N$
0140 INPUT "Delete (Y/N):",A$
0150 IF A$="Y" THEN REMOVE (1,KEY=K$)
0160 WEND
0170 STOP
1000 PRINT "End-of-file..."
1010 EXITTO 0170

expression Numeric expression. When the evaluated value of the expression is 0
(zero, false) looping ends.

WEND Directive required to end the WHILE sequence.

2. Directives WINPRT_SETUP

ProvideX Language Reference V8.30 Back 376

WINPRT_SETUP Directive WINPRT_SETU P Windows Print er SetupWindows Printer Setup
Formats 1. Read Current Selection: WINPRT_SETUP [SERVER] READ var$[,ERR=stmtref]

2. Read Properties: WINPRT_SETUP [SERVER] READ PROPERTIES var$[,ERR=stmtref]

3. Update Selection: WINPRT_SETUP [SERVER] WRITE printer$[,ERR=stmtref]

4. Update Properties: WINPRT_SETUP [SERVER] WRITE PROPERTIES settings$[,ERR=stmtref]

5. List Available Printers: WINPRT_SETUP [SERVER] LIST var$[,ERR=stmtref]

6. List Printer Names Only: WINPRT_SETUP [SERVER] DIRECTORY var$

7. Display Printer Dialogue: WINPRT_SETUP INPUT var$[,ERR=stmtref]

Where

Description Use WINPRT_SETUP to control settings for the currently-selected Windows printer
and its properties. This directive can also be used to access and report information
about the printer’s available on the system.

If network account privileges are a consideration, set the 'AW' system parameter to
ensure that WINPRT_SETUP accesses printers that are available to the current user.
Otherwise, information about all printers may be reported.

WINPRT_SETUP Properties
The default properties of a printer are determined by the individual printer/driver
manufacturers. Some properties are not available for all drivers (e.g., collate, ordered
printing). Others vary from printer to printer (e.g., font, point size). Default paper size is
usually letter size (8 1/2" x 11", expressed as PAPERSIZE=1 for DMPAPER_LETTER).
Refer to Paper Sizes below for the complete list of PAPERSIZE=num codes.

The following properties can be assigned to a Windows printer:

printer$ String expression to select the current printer by name.

settings$ String expression for assigning property values.

SERVER Optional keyword enabling access to printers defined on a Windows
server when using WindX.

stmtref Program line number or label to transfer control to.

var$ String variable for the returned value for printer name(s) / properties.

COLLATE= YES | NO | AUTO Collate paper (if supported by printer driver).
COLOUR= YES | NO Coloured print (if supported by printer driver).
COPIES= num Set number of copies.
DUPLEX= 1 | 2 | 3 Set for double-sided printing (if supported

by printer driver) where
1 = Duplex is off
2 = Duplex in Portrait
3 = Duplex in Landscape.

2. Directives WINPRT_SETUP

ProvideX Language Reference V8.30 Back 377

Margin Control
The MARGINS= property accepts values for left, top, right and bottom in 1000ths of
an inch. These values affect both text mode printing (e.g., PRINT (x)"ABC",) and
graphical printing (e.g., PRINT (x)'PICTURE(...),). The following example
indicates a 1 inch margin on all sides of the page.

WINPRT_SETUP WRITE PROPERTIES "MARGINS=1000:1000:1000:1000"

FILE=+|- filename Print to file. Use a - minus to disable prompt
and print directly to filename.

FORCE6X10= YES | NO Adjust column width to 60% of the line height as
defined in font size specifications. This may
solve minor alignment issues when printing
proportional fonts to a graphical print device.

MARGINS= left:top:right:bottom Define margins. See Margin Control below.
OFFSET= x:y Offset print area from the upper left corner of

the page. Values x and y are in thousandths of an
inch (e.g., OFFSET=750:500 sets the print area
three-quarters of an inch from the left margin
and half an inch down from the top.)

ORIENTATION= PORTRAIT|LANDSCAPE Swaps output width for length, and vice versa.
See also *WINPRT* Printing Options, p.629.

PAPERLENGTH= num Force specific paper length in 1/10 millimetres.
PAPERSIZE= num Define paper size. See Paper Sizes below.
PAPERWIDTH= num Force specific paper width in 1/10 millimetres.
PRESTRETCH Override default image stretching.
QUALITY= -1 | -2 | -3 | -4 Specifies print density, where

-1 = Draft
-2 = Low Resolution
-3 = Medium Resolution
-4 = High Resolution

RANGE= from:to Select page range to print.
RESOLUTION= x:y Set specific resolution by defining x:y in dots

per inch (DPI) . This value overrides the
QUALITY= parameter.

SCALE= num Reduce or increase the size of output image as
a percentage of the original.

SOURCE= num Set specific Paper Source (below). See also
WINPRT Printing Options, p.629.

TRUETYPE= num Set True Type font handling where
1 = Print TT fonts as graphics
2 = Download TT fonts as soft fonts
3 = Substitute device fonts for TT fonts

2. Directives WINPRT_SETUP

ProvideX Language Reference V8.30 Back 378

The default values are -1:-1:-1:-1, which is the equivalent of no margin setting.
If only two values are given, the right and bottom margins default to the
hardware-imposed print margins. A value of -1 indicates that the printer is to use it’s
default physical margin.

The software internally adjusts the top and left margins by any hardware imposed
printing offsets. Most laser or ink jet printers impose a margin around the edge of the
paper where they cannot print. These values are taken into account by the property
settings in order to assure consistent output positioning regardless of printer type.

The keyword MARGIN may be used instead of MARGINS, if preferred; however,
WINPRT_SETUP READ PROPERTIES always returns MARGINS= as the property name.

Paper Sizes
The PAPERSIZE=num option is mapped to paper sizes according to print.h. The
following chart shows the num value followed by the internal name and a general
description of the paper.

Note: Due to printer wear and tear, paper slippage, and other outside factors, the
output position is never guaranteed to be 100% correct. However, the ProvideX logic
for handling margins is consistent with most other Windows-based software. The
alignment will be similar to the output from other programs printed on the same
printer using the same OS and printer drivers.

Warning: The PostScript driver mistakenly uses DMPAPER_ values between * 50
and 56. Do not use this range when defining new paper sizes.

num Internal Name Paper Size / Description
 1 DMPAPER_LETTER Letter 8 1/2 x 11 in
 2 DMPAPER_LETTERSMALL Letter Small 8 1/2 x 11 in
 3 DMPAPER_TABLOID Tabloid 11 x 17 in
 4 DMPAPER_LEDGER Ledger 17 x 11 in
 5 DMPAPER_LEGAL Legal 8 1/2 x 14 in
 6 DMPAPER_STATEMENT Statement 5 1/2 x 8 1/2 in
 7 DMPAPER_EXECUTIVE Executive 7 1/4 x 10 1/2 in
 8 DMPAPER_A3 A3 297 x 420 mm
 9 DMPAPER_A4 A4 210 x 297 mm
 10 DMPAPER_A4SMALL A4 Small 210 x 297 mm
 11 DMPAPER_A5 A5 148 x 210 mm
 12 DMPAPER_B4 B4 250 x 354
 13 DMPAPER_B5 B5 182 x 257 mm
 14 DMPAPER_FOLIO Folio 8 1/2 x 13 in
 15 DMPAPER_QUARTO Quarto 215 x 275 mm
 16 DMPAPER_10X14 10x14 in
 17 DMPAPER_11X17 11x17 in
 18 DMPAPER_NOTE Note 8 1/2 x 11 in
 19 DMPAPER_ENV_9 Envelope #9 3 7/8 x 8 7/8
 20 DMPAPER_ENV_10 Envelope #10 4 1/8 x 9 1/2

2. Directives WINPRT_SETUP

ProvideX Language Reference V8.30 Back 379

Paper Source
The SOURCE=num option is mapped to the following internal paper tray definitions:

Format 1: Read Selection
WINPRT_SETUP READ var$[,ERR=stmtref]

Use the WINPRT_SETUP READ format to read the currently selected default printer
name. The value returned in var$ will be the OS name of an existing physical queue.

Example:

-: WINPRT_SETUP READ PRTR$
-: ?PRTR$
HPLaserJet III on \\machine_1\hp

 21 DMPAPER_ENV_11 Envelope #11 4 1/2 x 10 3/8
 22 DMPAPER_ENV_12 Envelope #12 4 \276 x 11
 23 DMPAPER_ENV_14 Envelope #14 5 x 11 1/2
 24 DMPAPER_CSHEET C size sheet
 25 DMPAPER_DSHEET D size sheet
 26 DMPAPER_ESHEET E size sheet
 27 DMPAPER_ENV_DL Envelope DL 110 x 220mm
 28 DMPAPER_ENV_C5 Envelope C5 162 x 229 mm
 29 DMPAPER_ENV_C3 Envelope C3 324 x 458 mm
 30 DMPAPER_ENV_C4 Envelope C4 229 x 324 mm
 31 DMPAPER_ENV_C6 Envelope C6 114 x 162 mm
 32 DMPAPER_ENV_C65 Envelope C65 114 x 229 mm
 33 DMPAPER_ENV_B4 Envelope B4 250 x 353 mm
 34 DMPAPER_ENV_B5 Envelope B5 176 x 250 mm
 35 DMPAPER_ENV_B6 Envelope B6 176 x 125 mm
 36 DMPAPER_ENV_ITALY Envelope 110 x 230 mm
 37 DMPAPER_ENV_MONARCH Envelope Monarch 3.875 x 7.5 in
 38 DMPAPER_ENV_PERSONAL 6 3/4 Envelope 3 5/8 x 6 1/2 in
 39 DMPAPER_FANFOLD_US US Std Fanfold 14 7/8 x 11 in
 40 DMPAPER_FANFOLD_STD_GERMAN German Std Fanfold 8 1/2 x 12 in
 41 DMPAPER_FANFOLD_LGL_GERMAN German Legal Fanfold 8 1/2 x 13 in
256 DMPAPER_USER

num Internal Name num Internal Name
 1 DMBIN_UPPER 6 DMBIN_ENVMANUAL

 1 DMBIN_ONLYONE 7 DMBIN_AUTO

 2 DMBIN_LOWER 8 DMBIN_TRACTOR

 3 DMBIN_MIDDLE 9 DMBIN_SMALLFMT

 4 DMBIN_MANUAL 10 DMBIN_LARGEFMT

 5 DMBIN_ENVELOPE 14 DMBIN_CASSETTE

num Internal Name Paper Size / Description

2. Directives WINPRT_SETUP

ProvideX Language Reference V8.30 Back 380

Format 2: Read Properties
WINPRT_SETUP READ PROPERTIES var$[,ERR=stmtref]

Use the WINPRT_SETUP READ PROPERTIES format to read the current settings of all
properties associated with your current printer. The values are returned in a
semicolon-separated list.

Example:

->OPEN (1)"*WINPRT*"
->WINPRT_SETUP READ PROPERTIES PROP$
->?PROP$
RANGE=ALL;COLLATE=NO;COPIES=1;ORIENTATION=PORTRAIT;PAPERSIZE=1;SOURCE=1;RE
SOLUTION=300:300;OFFSET=0:0;TRUETYPE=2;DRIVER=WINSPOOL

Format 3: Update Selection
WINPRT_SETUP WRITE printer$[,ERR=stmtref]

Use the WINPRT_SETUP WRITE format to write or change the currently selected
default printer, using a string expression to pass the system the name of the printer
to use.

Example:
->WINPRT_SETUP WRITE "Canon BJC-4300 on \\machine_2\canon"

Format 4: Update Properties
WINPRT_SETUP WRITE PROPERTIES settings$[,ERR=stmtref]

Use the WINPRT_SETUP WRITE PROPERTIES format to write or change the current
properties, using a string expression to pass the system the property assignments to use.

Example:

LET P$="COPIES=2;ORIENTATION=LANDSCAPE"
WINPRT_SETUP WRITE PROPERTIES P$

Format 5: List Available Printers
WINPRT_SETUP LIST var$[,ERR=stmtref]

Use WINPRT_SETUP LIST to obtain a comma-delimited list of all the printers defined
in the system. Note that if you use this format on a workstation which does not have
printers installed, there will be no value in your string variable and ProvideX returns
an Error #12: File does not exist (or already exists).

Example:
->winprt_setup list choices$
->? choices$
HP LaserJet III on \\machine_1\hp,Envoy 7 Driver on EVY:,Canon BJC-4300 on
\\machine_2\canon,Acrobat PDFWriter on LPT1:,Default PostScript Printer on
LPT1:,Default PostScript Pri (Copy 1) on LPT1:,Acrobat Distiller 3.0 on
LPT1:,Acrobat Distiller 3.0 (Copy 1) on LPT1:,

2. Directives WINPRT_SETUP

ProvideX Language Reference V8.30 Back 381

Format 6: List Printer Names Only
WINPRT_SETUP DIRECTORY var$

Using the DIRECTORY keyword returns a comma-delimited list of printers with just
the printer portion of the names, excluding the ON Device portion.

Example:

->winprt_setup directory choices$
->? choices$
HP LaserJet III,Envoy 7 Driver,Canon BJC-4300,Acrobat PDFWriter,Default
PostScript Printer,Default PostScript Pri (Copy 1),Acrobat Distiller 3.0,
Acrobat Distiller 3.0 (Copy 1),HP LaserJet 2100 Series PCL 6,

Format 7: Display Printer Dialogue
WINPRT_SETUP INPUT var$[,ERR=stmtref]

Use the WINPRT_SETUP INPUT format to display the Windows Printer Selection
dialogue box, allowing the user to select a printer. The string variable returns the
name of the printer selected by the user.

Example:

->? current$! Colour inkjet is current setting
Canon BJC-4300 on \\machine_1\canon
->winprt_setup input current$! User changes current selection to laser
->? current$
HP LaserJet 2100 Series PCL 6 on \\machine_1\hp
->

See Also *WINPRT* Windows Printing, p.760,
WINDEV Raw Print Mode, p.756,
Printing in Windows, User’s Guide
PDF PDF Print Interface, p.744

Note: When the 'AW' system parameter is set, the printer device name and port
location returned by WINPRT_SETUP DIRECTORY may be presented differently.

2. Directives WITH..END WITH

ProvideX Language Reference V8.30 Back 382

WITH..END WITH Directive WITH Object Reference Const ructObject Reference Construct
Format WITH object ..END WITH

Where:

Description The WITH directive is used in Object Oriented Programming (OOP) to simplify the coding
of multiple statements that refer to the same object. A logical "." variable is used in
place of the object name prior to the Apostrophe Operator in all property/ method
references; e.g.,
WITH Button_1.ctl
.'col=1,.'line=49,.'text$="Push Me"
END WITH

When a WITH directive is encountered, the current value of the logical "." variable is
preserved on a stack, which is restored upon execution of an END WITH. Each WITH
should be terminated by an END WITH. The "." variable is only allowed to be
referenced as an object handle; therefore, any other "." references (without the
Apostrophe Operator) are invalid; e.g.,

. = 3 (Invalid)
PRINT . (Invalid)
.'value$="ABC" (Valid)

The value of the "." variable is global; i.e., if it is set in mainline code, it will be
maintained over a CALL or PERFORM to a subprogram or object method. However, if
it changes, the change will not be passed back to the mainline. Subroutines (GOSUB)
can change the value and alter the WITH stack.

The WITH stack is maintained separately from the GOSUB/FOR/WHILE stack. Each
program level (CALL/PERFORM) has its own WITH stack, which is freed upon exit of
the program level. The maximum number of WITH values that can be stacked is 20
per program level. Attempting to issue an END WITH without a corresponding WITH
will generate an Error #27 (Unexpected WEND, RETURN, or NEXT).

Transferring into the middle of a WITH structure is allowed; however, it is the
developer's responsibility to assure that the WITH stack is properly maintained.

The current value of "." is available in TCB(93).

See Also Object Oriented Programming, p.22

END WITH Directive to end WITH construct.

object Object handle.

2. Directives WRITE

ProvideX Language Reference V8.30 Back 383

WRITE Directive WRITE A dd/Updat e D ata in FileAdd/Update Data in File
Formats 1. Write: WRITE (chan[,fileopt])varlist

2. Write Lock: WRITE LOCK (chan[,fileopt])varlist

Where:

Description Use the WRITE directive to add/update a record to a file (logical file number /
channel). ProvideX also supports use of the WRITE directive with *MEMORY* (a
memory-resident file or queue of records.

Automatic Padding with KEY=Option
When you use KEY=string$:string$[:string$][...] ProvideX automatically pads key
segments. This is valid only if you have Keyed files with segmented key definitions.
ProvideX right-pads the key segment using 00 (nulls) to the segment's full length.
The last segment in a compound key is not padded; e.g.,

KEYED "TEST", [1:1:5]+[2:1:6]+[3:1:8]
READ (1,KEY=A$:B$:C$)

is the same as

READ (1,KEY=PAD(A$,5,$00$)+PAD(B$,6,00)+C$)

Format 1: Write
WRITE (chan[,fileopt])varlist

If the specific record already exists (indexed, direct, or sort files) and you include the
DOM=stmtref option, control transfers to the stmtref. Otherwise, the specified
record is updated.

chan Channel or logical file number of the file to which to write.

fileopt Supported file options (see also, File Options, p.810):
BSY=stmtref Traps Error #0: Record/file busy
DOM=stmtref Missing record transfer
END=stmtref END-OF-FILE transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=num Record key (see Automatic Padding with KEY=Option)
REC=name$ Record prefix (REC=VIS(string$) can also be used)
RTY=num Number of retries (one second intervals)
TIM=num Maximum time-out (support write operations for TCP channels)

stmtref Program line number or label to transfer control to.

varlist Comma-separated list of variables, literals, and IOL= options.

2. Directives WRITE

ProvideX Language Reference V8.30 Back 384

Examples:

0410 WRITE (1,ERR=1000,DOM=1200)A,B,Z9$

An IND=index clause is mandatory if you are writing to an indexed file; e.g.,

0810 LET I=0
0820 OPEN (8)"PVX_INDX"
0830 READ (8)IOL=110,ERR=0950
0840 LET I=I+1 ! This reserves an empty record at index 0
0850 CALL "SOMETHING",IOL=0110,ERR=950
0900 WRITE (8,IND=I,ERR=9000)IOL=0110
0910 GOTO 0830

The KEY=num is mandatory if you are writing to a Keyed file with an external key or
to a DIRECT or SORT file; e.g.,

0710 OPEN (7)"PVX_SORT"
0720 READ (6)CUST$,NAME$,*,*,*,*,*,*,*,*,*,ERR=0750
0730 WRITE (7,KEY=CUST$)

No KEY= option is allowed if you are writing to a Keyed file whose primary key is
composed of data fields embedded in the record data. In Keyed files with multiple
keys, the WRITE directive will automatically update all alternate keys. For instance,
alternate keys 0 [1:1:6] and 1 [2:1:10] are updated as follows:

KEYED "PVX_KEYD",[1:1:6],[2:1:10],,256
0210 OPEN (2)"PVX_KEYD"
0220 READ (6)CUST$,NAME$,*,*,*,*,*,START_DT$,CRED_LIM,TERMS,END_DT$,ERR=0250
0230 WRITE (2)IOL=0100

ProvideX uses the variables in the variable list either in delimited form or in
accordance with any format specified (with headers, etc.). The contents of these
fields are used to generate the actual data record. Numeric data converted during a
WRITE directive does not use the 'DP' Decimal Point Symbol or 'TH' Thousands
Separator system parameters for European decimal settings.

The list of variables can refer to an IOList (using IOL=iolref) as above. The iolref can be
the line number or label of the line containing the IOList, or it can be a string
containing a compiled IOList. If you omit the list of variables from the WRITE
directive, ProvideX uses the IOL specified (if any) on your OPEN statement for the file.

Writing to *MEMORY*
A WRITE operation will check the last entry in the key table for the key being added
before proceeding to the top of the key chain to determine the new entry point. This
dramatically increases the speed of writing additional records in sequential order.

You can use WRITE and/or WRITE RECORD directives to update records in a
Memory file using an IOList or a string expression. Records may be inserted by
index at a given index number. If the index does not already exist, the record will be
automatically appended at the last unused index.

2. Directives WRITE

ProvideX Language Reference V8.30 Back 385

ProvideX will not overwrite existing records. Use the DOM= option when you write
to a memory file. The following two examples below insert a new record at index 3
without overwriting the current record at index 3. The record that was at index 3 is
now at index 4 and the number of records in the file has increased by one.

WRITE (14,IND=3)IOL=2010 or
WRITE RECORD (14,IND=3)"DOGCATPIG"

To update a given record in a Memory file, use KEY= with a given key value:

0910 WRITE (14,KEY=KK$,DOM=0920)IOL=2010 or
WRITE RECORD (14,KEY=KK$)A$

Format 2: Write Lock
WRITE (chan[,fileopt])varlist

Use the WRITE LOCK format to ensure that once the file has been written to, it
remains locked; e.g.,

9010 WRITE LOCK (9,ERR=2000)IOL=0110

When you use the LOCK option, ProvideX doesn't release an extracted record. It
maintains the extraction to prevent potential timing problems and maintain counters
and totals in batch processing, sparing you the need to re-extract; e.g.,

9010 WRITE LOCK (9, KEY=K$)

Example:

SERIAL "PVX_SER",,256
0510 OPEN LOCK (5)"PVX_SER"
0520 READ (6)CUST$,NAME$,ADDR1$,ADDR2$,CITY$,PROV$,POSTAL$,START_DT$,CREDLIM,
0520:TERMS,END_DT$,ERR=0550
0530 WRITE (5)IOL=0090
0540 GOTO 0520
0550 STOP

See Also INSERT Insert New Record in File, p.162
UPDATE Update Existing Record in File, p.351
WRITE RECORD Write Record, p.386
OPEN Open for Processing, p.232,
RCD() Function, p.508
'XI' System Parameter, p.696,
MEMORY Create & Use Memory File, p.741

Note: If a serial file is not locked before you write to it, an Error #13: File access
mode invalid will occur on the WRITE directive. Use OPEN LOCK for your serial file
to prevent this error from occurring on the WRITE.

2. Directives WRITE RECORD

ProvideX Language Reference V8.30 Back 386

WRITE RECORD Directive WRITE RECORD Write RecordWrite Record
Format WRITE RECORD (chan[,fileopt])contents$

Where:

Description Use the WRITE RECORD directive to add / update a record for a file (logical file
number / channel). If the specific record already exists (indexed, direct, or sort files)
and you include the DOM=stmtref option, control transfers to the stmtref.
Otherwise, the specified record is updated.

In Keyed files with multiple keys, the WRITE RECORD directive automatically
updates all alternate keys. ProvideX supports use of the WRITE RECORD directive
with *MEMORY*.

Automatic Padding with KEY=Option
When you use KEY=string$:string$[:string$][...] ProvideX automatically pads key
segments. This is valid only if you have Keyed files with segmented key definitions.
ProvideX right-pads the key segment using 00 (nulls) to the segment's full length.
The last segment in a compound key is not padded; e.g.,

Example:

KEYED "TEST", [1:1:5]+[2:1:6]+[3:1:8]
READ (1,KEY=A$:B$:C$)

is the same as
READ (1,KEY=PAD(A$,5,$00$)+PAD(B$,6,00)+C$)

chan Channel or logical file number of the file to which to write.

contents$ String (literal, expression, or variable) that contains the contents of the
record to write.

fileopt Supported file options (see also, File Options, p.810):
DOM=stmtref Missing record transfer
END=stmtref END-OF-FILE transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=num Record key (see Automatic Padding below)
REC=name$ Record prefix (REC=VIS(string$) can also be used)
RTY=num Number of retries (one second intervals)
SIZ=num Number characters to write
TIM=num Maximum time-out value in integer seconds.

stmtref Program line number or label to transfer control to.

2. Directives WRITE RECORD

ProvideX Language Reference V8.30 Back 387

Writing to *MEMORY*
A WRITE operation will check the last entry in the key table for the key being added
before proceeding to the top of the key chain to determine the new entry point. This
dramatically increases the speed of writing additional records in sequential order.

You can use WRITE and/or WRITE RECORD directives to update records in a
Memory file using an IOList or a string expression. You can add records by index,
inserting records at the given index number.

ProvideX will not overwrite existing records. Use the DOM= option when you write
to a Memory file. The following two examples below insert a new record at index 3
without overwriting the current record at index 3. The record that was at index 3 is
now at index 4 and the number of records in the file has increased by one.

WRITE (14,IND=3)IOL=2010 or
WRITE RECORD (14,IND=3)"DOGCATPIG"

To update a given record in a Memory file, use KEY= with a given key value:

0910 WRITE (14,KEY=KK$,DOM=0920)IOL=2010 or
WRITE RECORD (14,KEY=KK$)A$

Example 0010 OPEN (1)"OLDFIL"
0020 OPEN LOCK (2)"NEWFIL"
0030 READ RECORD (1,END=1000)R$
0040 WRITE RECORD (2)R$
0050 GOTO 0030
1000 CLOSE
1010 END

See Also WRITE Add/Update Data in File, p.383
INSERT Insert New Record in File, p.162
UPDATE Update Existing Record in File, p.351

2. Directives WRITE RECORD

ProvideX Language Reference V8.30 Back 388

ProvideX Language Reference V8.30 Back 389

Language Reference 3
System Functions

Over view

Overview B MK

This chapter provides an alphabetically arranged list of all the system functions in
ProvideX. Each definition includes the correct syntax (showing associated
parameters), values returned, a general description, examples, and sometimes a
cross reference to related documentation. The list begins on the following page.

@()
@X() / @Y()
ABS()
ACS()
AND()
ARG()
ASC()
ASN()
ATH()
ATN()
BIN()
BSZ()
CHG()
CHR()
CMP()
COS()
CPL()
CRC()
CSE()
CTL()
CVS()
DEC()
DIM()
DIR()
DLL()
DSK()
DTE()
ENV()
EPT()
ERR()
EVN()

EVS()
EXP()
FFN()
FIB()
FID()
FIN()
FPT()
GAP()
GBL()
GEP()
HSA()
HSH()
HTA()
HWN()
I3E()
IND()
INT()
IOL()
IOR()
JUL()
JST()
KEC()
KEF()
KEL()
KEN()
KEP()
KEY()
KGN()
LCS()
LEN()
LNO()

LOG()
LRC()
LST()
MAX()
MEM()
MID()
MIN()
MNM()
MOD()
MSG()
MSK()
MXC() / MXL()
NEW()
NOT()
NUL()
NUM()
OBJ()
OPT()
PAD()
PCK()
PFX()
PGM()
POS()
PRC()
PRM()
PTH()
PUB()
RCD()
RDX()
REC()
REF()

RND()
RNO()
SEP()
SGN()
SIN()
SQR()
SRT()
SSZ()
STK()
STP()
STR()
SUB()
SWP()
SYS()
TAN()
TBL()
TCB()
TMR()
TRX()
TSK()
TXH()
TXW()
UCP()
UCS()
UPK()
VIN() / VIS()
XEQ()
XFA()
XOR()

3. System Functions @()

ProvideX Language Reference V8.30 Back 390

@() Function Lis t of System Fun ct ion s@() Lo cation FunctionLocation Function
Formats @(column[,line][,ERR=stmtref])

Where:

Returns String, position code mapped to a location on an output device.

Description The @() location function is used to print/display text at a specific position on a
printer or terminal screen. This function can be used with directives wherever text is
to be sent to an output device, most commonly via INPUT or PRINT statements.

Column 0 represents the column on the far left side of the screen/printer, and line 0
represents the top line. Output is positioned at the column specified on the current
line only if the column number is provided. When used with a printer (or print file)
and the line number is less than the current line, a new page is started.

Examples The following statement prints the date in the upper left hand corner of the screen
with the time starting in column 75 of the top line:

PRINT @(0,0),"Date: ",DAY,@(75),TIM

This prompts for information on the left side, 5 lines from the top:

INPUT @(0,5),"Enter favorite sport:",@(30),SPORT$,@(0,6),"Thanks"

This prints the date right-justified in the upper right hand corner of the screen:

LET D$=DTE(0:"%Dl %Ms %D")
PRINT 'BLUE',@(80-LEN(D$),0),D$,

column Column number. Integer value indicating a column position on a printer
or terminal screen (0 to the number of columns available on the screen -1)

line Optional line number. Integer value indicating a line position on a printer
or terminal screen (0 to the number of lines available on the screen -1)

stmtref Program line number or label to transfer control to.

3. System Functions @X() / @Y()

ProvideX Language Reference V8.30 Back 391

@X() / @Y() Functions @X () and @Y() C onver t X/Y Coord in at esConvert X/Y Coordinates
Formats 1. Return Column Position: @X(col[,chan][,ERR=stmtref])

2. Return Line Position: @Y(line[,chan][,ERR=stmtref])

Where:

Returns Integers (x-axis coordinate for column and y-axis coordinate for line, in graphical
units – similar to pixels).

Description Use these functions to convert column and line number addresses for graphics
output into x- and y-axis coordinates in graphical units (similar to pixels). The values
returned are integers. In the example below, the functions return 16 graphical units
as the coordinate for column 1 and 60 for line 2:

->0010 LET A=1, B=2
-:0020 PRINT @X(A),@Y(B)
-:RUN
 16 60

These functions take the column/line numbers and, based on your given channel,
return the corresponding graphics coordinates. Numeric variables, fractions and
negative numbers are allowed as column and line values.

If you do not include a channel, the default is 0 zero, the terminal/console. If you use
either of these functions in a print statement, the output will go to the channel or
logical file number you specify in the PRINT directive; i.e., to a terminal, file or
printer.

Examples 1010 PRINT @(5,5),"CUSTOMER LISTING",
1020 PRINT 'FILL'(0,0),'RECTANGLE'(@X(4),@Y(5),@X(22),@Y(6)),

When the example above is RUN, the words "CUSTOMER LISTING" are displayed on
the screen, outlined by a rectangle. The @X(col) values start the rectangle at the
graphical equivalent of column 4 (one column before the text) and end it one column
after the text. The @Y(line) values are equivalent to lines 5 and 6, and they define the
rectangle as 1 line high starting at the top of line 5.

chan Channel or logical file number of the device or file.

col,line Standard print positions. Numeric expressions. Column & line numbers.

stmtref Program line number or label to transfer control to.

3. System Functions ABS()

ProvideX Language Reference V8.30 Back 392

ABS() Function ABS() A bsolut e ValueAbsolute Value
Format ABS(num[,ERR=stmtref])

Where:

Returns Numeric, absolute value of expression. Always positive or zero.

Description The ABS() function returns the absolute value of the numeric expression num. The
value returned is a positive numeric value or zero. For instance, the absolute value of
the numeric expression (X) is returned as follows:

• ABS (X) ... If X>0 ... Returns X

• ABS (X) ... If X<0 ... Returns X * -1 (positive result)

• ABS (X) ... If X=0 ... Returns X (zero).

Examples 0010 INPUT "Give me your first number ",X
0020 INPUT "Give me another one ",Y
0030 PRINT "The difference is ",ABS(X-Y)
-:RUN
Give me your first number 12.345
Give me another one 23.456
The difference is 11.111

num Numeric expression whose absolute value is to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions ACS()

ProvideX Language Reference V8.30 Back 393

ACS() Function AC S() Return A rc- CosineReturn Arc-Cosine
Format ACS(num[,ERR=stmtref])

Where:

Returns Numeric value between 0 zero and π (pi=3.14159...)

Description The ACS() function returns the Arc-Cosine of the numeric expression num. It
returns a value between 0 zero and π (pi) rounded to the current PRECISION in effect.
This is the inverse of the COS() function.

The value of your numeric must be in the range of -1 to +1 inclusive. Otherwise
ProvideX returns

Error #40: Divide check or numeric overflow.

Examples 0060 FOR I=-1 TO 1 STEP .1
0070 PRINT ACS(I),
0080 NEXT
0090 PRINT " DONE"
0100 END
-:run
3.14 2.69 2.5 2.35 2.21 2.09 1.98 1.88 1.77 1.67 1.57 1.47 1.37 1.27 1.16

1.05 0.93 0.8 0.64 0.45 0 DONE

num Numeric expression (range: -1 to +1) whose Arc-Cosine is to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions AND()

ProvideX Language Reference V8.30 Back 394

AND() Function AND () Logical AND

 Logical AND
Format AND(value1[$],value2[$][,ERR=stmtref])

Where:

Returns Result of bit-wise logical 'AND' comparison of two expressions/variables.

Description The AND() function performs a bit-wise 'AND' comparison of two string or
numeric expressions/variables, and generates a value as a result. The length of the
two string expressions must be equal or ProvideX returns an Error #46: Length
of string invalid.

See Also IOR() OR Comparison, p.460
XOR() Exclusive OR Comparison, p.554

Example 0040 READ (1,END=1000) F$
0050 R$=AND(F$(1,2),$7F7F$) ! Turn off high bit
0060

BITS$=$03$
IF AND(BITS$,$02$)=$02$ THEN PRINT "bit 2 is on"

stmtref Program line number or label to transfer control to.

value1[$]
value2[$]

Compared values. String or numeric expressions/variables. If strings,
value1$ must be the same length as value2$

Binary Result

0 and 0 0

1 and 0 0

0 and 1 0

1 and 1 1

3. System Functions ARG()

ProvideX Language Reference V8.30 Back 395

ARG() Function ARG() Command- Line Ar gumentCommand-Line Argument
Format ARG(position[,ERR=stmtref])

Where:

Returns String, value of start up argument.

Description The ARG() function returns the string value of one of the arguments specified in the
operating system command that launched ProvideX. The numeric expression
position indicates which argument is to be returned:

If you refer to an invalid argument, ProvideX returns:

Error #41: Invalid integer encountered (range error or non-integer)

See Also NAR System Variable, p.567,
ProvideX Installation Guide, Launching ProvideX

Example Given

PVX -SZ=20 -ARG TOM JONES

Then

ARG(-1) yields the INI filename in use for the current session
ARG(0) yields PVX (the command that launched ProvideX)
ARG(1) yields TOM
ARG(2) yields JONES
ARG(3) yields Error #41: Invalid integer encountered...

position Position of the argument you want returned. Numeric expression.

stmtref Program line number or label to transfer control to.

-4 Original command line used to start ProvideX.
-3 ProvideX Activation Key directory name.
-2 ProvideX Library Directory name.
-1 INI file in use (fully resolved path to the INI file). Returns "" on

UNIX/Linux.
0 The command that launched ProvideX

1, 2, 3, etc. Other arguments after the command

3. System Functions ASC()

ProvideX Language Reference V8.30 Back 396

ASC() Function ASC() Get Internal Character ValueGet Internal Character Value
Format ASC(char$[,ERR=stmtref])

Where:

Returns Integer, ASCII character set number, range 0 to 255.

Description The ASC() function returns the internal numeric value of a given character char$,
based on its position in the ASCII character set/table. The value returned is an
integer, range 0 to 255 (ASCII character set number). Only the first character in the
string is converted to its internal value.

Examples ?ASC("A")! yields 65
string$="a";?ASC(string$) ! yields 97
?ASC("abc") ! also yields 97 (the ASCII value for "a")

char$ Single-character whose ASCII value is to be returned. String expression.

stmtref Program line number or label to transfer control to.

3. System Functions ASN()

ProvideX Language Reference V8.30 Back 397

ASN() Function ASN() Ret urns A rc-Sin e FunctionReturns Arc-Sine Function
Format ASN(num[,ERR=stmtref])

Where:

Returns Numeric value, range -π/2 to +π/2.

Description The ASN() function returns the Arc-Sine of the given numeric expression num. The
function returns a value between -π (negative pi) divided by 2 and +π (+pi) divided
by 2, rounded to the current PRECISION in effect. This is the inverse of the SIN()
function.

If num is not in the range -1 to +1 inclusive, the result will be:

Error #40: Divide check or numeric overflow

Examples 0060 FOR I=-1 TO 1 STEP .1
0070 PRINT ASN(I),
0080 NEXT
0090 PRINT "DONE"
0100 END
-:run
-1.57-1.12-0.93-0.78-0.64-0.52-0.41-0.3-0.2-0.1 0 0.1 0.2 0.3 0.41 0.52

0.64 0.7 8 0.93 1.12 1.57 DONE

num Numeric expression (range: -1 to +1) whose ARC-Sine is to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions ATH()

ProvideX Language Reference V8.30 Back 398

ATH() Function ATH () Convert H exConvert Hex
Format ATH(hex_string$[,ERR=stmtref])

Where:

Returns ASCII value corresponding to string of hex data.

Description The ATH() function converts string containing valid hexadecimal data to ASCII. The
ASCII string returned by the ATH() function is the converted value of each set of
two hex characters to one ASCII character.

Examples -:h$="414243"
-:?ath(h$)
ABC

ATH ("414240") ! yields AB@ (Hex 40= "@")

hex_string$ Hex string expression to be converted to ASCII. The string must be
an even number of bytes in length and consist of only the characters
0 through 9 and A through F.

stmtref Program line number or label to transfer control to.

3. System Functions ATN()

ProvideX Language Reference V8.30 Back 399

ATN() Function ATN() Return A rc-TangentReturn Arc-Tangent
Format ATN(num[,ERR=stmtref])

Where:

Returns Numeric value, range -π/2 to +π/2.

Description The ATN() function returns the Arc-Tangent of the numeric expression num. It will
return a value between -π (negative pi) divided by 2 and π divided by 2, rounded to
the current PRECISION in effect. This is the inverse of the TAN() function.

Examples 0060 FOR I=-10 TO 10 STEP 1
0070 PRINT ATN(I),
0080 NEXT
0090 PRINT " DONE"
0100 END
-:RUN
-1.47-1.46-1.45-1.43-1.41-1.37-1.33-1.25-1.11-0.79 0 0.79 1.11 1.25 1.33

1.37 1.41 1.43 1.45 1.46 1.47 DONE

num Numeric expression whose Arc-Tangent is to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions BIN()

ProvideX Language Reference V8.30 Back 400

BIN() Function BIN () Binary String f rom Numeric ValueBinary String from Numeric Value
Format BIN(num,len[,ERR=stmtref])

Where:

Returns Binary value of ASCII string corresponding to the numeric expression.

Description The BIN() function converts the numeric expression num to an ASCII string (as its
binary value). The string returned will be the length specified, len. The value is right
justified in the resultant string.

The value is converted to two's complement format before the string is generated. If
the number was negative the leading bits will all be set to ON (binary 1).

2 is binary 00000010
1 is binary 00000001
0 is binary 00000000
-1 is binary 11111111
-2 is binary 11111110

Examples B$=BIN(40,1);PRINT HTA(B$) ! yields 28 00101000
B$=BIN(40,2);PRINT HTA(B$) ! yields 0028 00000000 00101000
B$=BIN(2048,2);PRINT HTA(B$) ! yields 0800 00001000 00000000
B$=BIN(-64,2);PRINT HTA(B$) ! yields $FFC0$ 11111111 11100000

len Length of the string to be returned. Use a numeric expression. Integer
value.

num Numeric value to convert to a string. Use a numeric expression. Integer
value.

stmtref Program line number or label to transfer control to.

3. System Functions BSZ()

ProvideX Language Reference V8.30 Back 401

BSZ() Function BSZ() Bank Memory SizeBank Memory Size
Format BSZ(num[,ERR=stmtref)

Where:

Returns 0 zero in most ProvideX implementations.

Description The BSZ() function is primarily included in ProvideX for compatibility with other
Business Basic languages. The value it returns is 0 zero in most ProvideX
implementations.

num Bank number (ignored). Numeric expression.

stmtref Program line number or label to transfer control to.

Note: This function is included for compatibility with other languages.

3. System Functions CHG()

ProvideX Language Reference V8.30 Back 402

CHG() Function CH G() Notif y if V ar iab le H as ChangedNotify if Variable Has Changed
Formats 1. Notify & Change Status: CHG(varlist[,ERR=stmtref])

2. Non-Destructive Read: CHG(READ varlist[,ERR=stmtref])

Where:

Returns String, listing variables that have changed.

Description Use the CHG() function to determine if the contents of a variable has changed.
Re-assignment of the same data is still considered a change. Given a
comma-separated list of variable names, the CHG() function will return a
comma-separated list of those variables that have changed. Use += (add to), -=
(subtract from), and other operators with the CHG() function.

Format 1: Notify & Change Status
CHG(varlist[,ERR=stmtref])

The "changed" status of a variable is affected when the data in the variable changes
or when the CHG() function is applied. When this format of the CHG() function is
used, it will reset the "changed" status of the variables listed; e.g.,

0010 PRINT CHG("A,B,D$,E$")
0020 LET A=1.234
0030 LET E$="MIKEY"
0040 PRINT CHG("A,B,D$,E$") ! Prints A,E$
0050 PRINT CHG("A,B,D$,E$") ! Prints nothing

Format 2: Non-Destructive Read
CHG(READ varlist[,ERR=stmtref])

The CHG(READ) format allows you to do a non-destructive read of the value
returned by the CHG() function. The "changed" status will not be reset when the
function is applied; e.g.,

0010 PRINT CHG("A,B,D$,E$")
0020 LET A=1.234
0030 LET E$="MIKEY"
0040 PRINT CHG(READ "A,B,D$,E$") ! Prints A,E$
0050 PRINT CHG("A,B,D$,E$") ! Prints A,E$

stmtref Program line number or label to transfer control to.

varlist Comma-separated list of variable names to be tested.

Note: You should not use the CHG() function with NOMADS applications (except for
variables not referenced by the panel), because when you set the REFRESH_FLG,
NOMADS itself uses the CHG() function to determine which variables are to be refreshed.

3. System Functions CHR()

ProvideX Language Reference V8.30 Back 403

CHR() Function CHR() ASCII Character of ValueASCII Character of Value
Format CHR(num[,ERR=stmtref])

Where:

Returns Single ASCII character.

Description The CHR() function returns a single-character ASCII string of the numeric
expression defined by num. The value of num must be an integer in a range from 0
to 255 (the position of the character in the ASCII table). The first printable character
in the ASCII character set is the blank, 20, which is CHR(32).

See Also ASC() Get Internal Character Value, p.396

Examples LET X$=CHR(65) ! (Sets X$ to "A")
LET X$=CHR(33) ! (Sets X$ to "!")

num Value of the character to return. Numeric expression. Range: integer
from 0 to 255 (the character's number in the ASCII table).

stmtref Program line number or label to transfer control to.

3. System Functions CMP()

ProvideX Language Reference V8.30 Back 404

CMP() Function CMP() Compr ess DataCompress Data
Format CMP(string[,ERR=stmtref])

Where:

Returns Compressed data string.

Description The CMP() function uses standard ZLib compression libraries to compress a data
string. To expand (uncompress) the data, use the UCP() Function, p.547. TCB(195)
will return 1 if ZLib support is available.

The data returned from the CMP() function includes a single header byte (value
between 01 and FF) to facilitate ZLib uncompression routines. This represents a
multiplier value that can be used against the length of the compressed data to
estimate uncompressed data size (basically, original size/compressed size rounded
up and capped at 255). When expanding the compressed data using the UCP()
function, the length of the compressed data will be multiplied by this header byte to
determine an estimated uncompressed buffer size.

Typically, the compressed data will be smaller than the original data; however, in
rare instances or when dealing with short strings, the compressed data might be
longer. Also be aware that data returned from the compression logic may contain
any potential character; therefore, if writing to a data file, do not use field delimiters
since they may occur within the compressed data.

Interfacing with Other ZLib-compliant Utilities
The header byte should be removed from the compressed data if it is to be used
outside of ProvideX.

Example 0100 ! ^100 - CMP and UCP functions
0110 Original$=dim(512,"String to compress ")
0120 Compressed$=cmp(Original$)
0130 print "Length of Original: ",'BR',str(len(Original$)),'ER'
0140 print "Original String: ",'BR',Original$,'ER'
0150 print "Length of Compressed:",'BR',str(len(Compressed$)),'ER'
0160 print "Compressed String: ",'BR',cvs(Compressed$,16:"~"),'ER'
0170 print
0180 !
0200 ! ^100 - Due to Zlib overhead, not all strings yield smaller strings

string Original data to be compressed.

stmtref Program line number or label to transfer control to.

Note: Since the CMP() and UCP() compression routines are not supported on all
platforms, systems using these functions may not be fully portable.

3. System Functions CMP()

ProvideX Language Reference V8.30 Back 405

0210 for StrLen=16 to 64 step 8
0220 Original$=dim(StrLen,"This is a short string")
0230 Compressed$=cmp(Original$)
0240 o=len(Original$),c=len(Compressed$)
0250 print "Orig:",o," CMP:",c," ",tbl(o>c,'red'+"Not Shorter"+'RM',"")
0260 next

See Also PCK() Pack Numeric Data, p.498
UCP() UnCompress Data, p.547

3. System Functions COS()

ProvideX Language Reference V8.30 Back 406

COS() Function COS() Retur n CosineReturn Cosine
Format COS(num[,ERR=stmtref])

Where:

Returns Value between -1 and +1.

Description The COS() function returns the Cosine of the numeric expression. It returns a value
between -1 and +1, rounded to the current PRECISION in effect. ACS() is its inverse
function.

Examples 00010 PRINT 'CS'
00020 X=0,Y=80
00030 LASTX=0,LASTY=80
00040 FOR I=-20 TO 1 STEP .5
00050 X=X+25
00060 Y=50*COS(I)+80
00070 PRINT 'LINE'(LASTX,LASTY,X,Y)
00080 LASTX=X
00090 LASTY=Y
00100 NEXT

num Numeric expression whose Cosine is to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions CPL()

ProvideX Language Reference V8.30 Back 407

CPL() Function CPL() C ompile St ringCompile String
Format CPL(statement$[,ERR=stmtref])

Where:

Returns ProvideX compiled format of the statement.

Description The CPL() function returns the ProvideX internal (compiled) format of the statement
provided in the string argument statement$.

Example MYSRS_IOL$=CPL("IOLIST A$,B$,C$")
READ DATA FROM CUR_RECORD$ TO IOL=MYSRS_IOL$

statement$ String containing the statement to compile.

stmtref Program line number or label to transfer control to.

3. System Functions CRC()

ProvideX Language Reference V8.30 Back 408

CRC() Function C RC() Cyclic-Redundancy- CheckCyclic-Redundancy-Check
Format CRC(chars$[,basis$][,ERR=stmtref])

Where:

Returns Cyclic redundancy checksum (in internal format).

Description The CRC() function returns the cyclic redundancy checksum of a string of
characters.

Use the initial value (basis$) to generate an overall CRC() of multiple strings. See the
example below, where CRC(B$) with an initial value of CRC(A$) will be the same
as CRC(A$+B$). If you omit the initial value, ProvideX uses the default value,
0000.

Examples A$="Hello",B$="World"
0010 LET C$=CRC(A$)
0020 LET C$=CRC(B$,C$)

Yields the same result as:

0030 LET C$=CRC(A$+B$)

That is:

basis$ Optional initial value to be used as the basis of the CRC. It must be two
characters long if included in the statement. Default: 0000.

chars$ String of characters on which to calculate a cyclic redundancy check.

stmtref Program line number or label to transfer control to.

Note: The CRC() function is used primarily for generating transmission checksums
on synchronous communications.

HTA(C$) Value

After line 0010 $F353$

After line 0020 6053

After line 0030 6053

3. System Functions CSE()

ProvideX Language Reference V8.30 Back 409

CSE() Function CSE() C ase CompareCase Compare
Format CSE(expression[$],compare1[$],compare2[$] …[,ERR=stmtref])

Where:

Returns Integer representing the sequence number of a match, or 0 zero if no match.

Description The CSE() function is used to compare an expression with a series of values. If the
expression has a match, the resulting number will point to the location of the
matched value in the series; i.e., if expression matches the 5th value in the compare
series, then CSE() returns 5. If no match is found, CSE() returns 0.

Examples 1000 INPUT X$
1010 ON CSE(CTL,1,2,1000,1020,1030) GOTO NOFKY,FK1,FK2,QRY_CST,DEL_CST,ADD_CST

In the example above, if the value of CTL is 1000 then the CSE() function returns 3; if
the value of CTL is 1030, then 5 is returned; etc.

The example below shows strings in the comparison.

1010 ON CSE(TEST$,"ANTIDISESTABLISHMENTARIANISM","DOG","CAT","PIG") GOTO 1000,
1010:2000,3000,4000

See Also TBL() Convert String Via Table, p.532
SWITCH..CASE Directive, p.331
CASE Directive, p.42

compare1[$]
compare2[$] ...

Comma-separated list of numeric or string expressions for
comparison with expression[$].

expression[$] Numeric or string expression to be used for comparison.

stmtref Program line number or label to transfer control to.

3. System Functions CTL()

ProvideX Language Reference V8.30 Back 410

CTL() Function C TL() Retur n CTL D ef initionReturn CTL Definition
Format 1. Return CTL Definition: CTL(chan,input[$][,ERR=stmtref])

2. Return Input Sequence: CTL(READ chan,ctlval[,ERR=stmtref])

Where:

Returns CTL code associated with input, or input sequence associated with CTL.

Description The CTL() function is designed for use in programs that interact directly with the
terminal. It provides access to the CTL lookup tables maintained internally in
ProvideX. When an input sequence is passed to CTL(), it returns the CTL values
associated with the input; e.g., PRINT CTL(0,$000002e$) returns -1007. When a
CTL value is passed to CTL(READ ..), it returns the input sequence associated with
the control.

See Also DEFCTL Directive, p.78
Negative CTL Definitions, p.817

Examples The following example reads an uppercase string into Y$ without editing and stops on a
CTL code > 0:

0020 OPEN (1) FID(0); Y$=""
0030 READ RECORD (1,SIZ=1)X$
0040 IF X$<" " OR X$=$7F$ THEN GOTO 0100
0050 LET X$=UCS(X$),Y$=Y$+X$
0060 PRINT X$,; GOTO 0030
0100 LET C=CTL(0,X$,ERR=0050); GOTO 0130
0110 READ RECORD (1,SIZ=1)X1$
0120 LET X$=X$+X1$; GOTO 0100
0130 IF C>0 THEN GOTO 1000 ! Found it
0140 LET C=CTL(0,C,ERR=0160) ! Check alternates
0150 GOTO 0130
0160 PRINT 'RB',; GOTO 0030
1000 PRINT "DONE"; STOP

chan Channel or logical file number. Usually 0 zero, the terminal.

ctlval CTL value whose input sequence is to be returned.

input[$] Input sequence. Either the keyboard character string received or the
invalid CTL value. String or numeric expression.

stmtref Program line number or label to transfer control to.

3. System Functions CTL()

ProvideX Language Reference V8.30 Back 411

In the example below, the CTL() function returns a string value containing a list of
control sequences for a specified CTL value. The string is made up of a series of
fields where the 1st byte preceding each field indicates the number of characters in
the control sequence; the rest of the field shows the actual control sequence. To print
control sequences for function keys through :

0010 FOR CTL_CODE=1 TO 4
0020 PRINT 'LF',STR(CTL_CODE:"#0")," ",
0030 LET X$=CTL(READ 0,CTL_CODE)
0040 IF X$="" THEN GOTO 0070
0050 LET X=DEC(X$(1,1)); PRINT PAD(HTA(X$(2,X)),10),
0060 LET X$=X$(X+2); GOTO 0040
0070 NEXT
0080 PRINT " DONE"; STOP
-:RUN
 1 000070
 2 000071
 3 000072
 4 1B 000073 00FF82 DONE

If the expression is numeric, ProvideX returns any alternate CTL value that has been
assigned; e.g., PRINT CTL(0,000070) returns 1 (CTL=1 or the key).

F1 F4

F1

3. System Functions CVS()

ProvideX Language Reference V8.30 Back 412

CVS() Function CVS() Convert St ringConvert String
Formats 1. Reformat String: CVS(data$,[cvs_code[:ctl_char$],...][,ERR=stmtref])

2. Return Accent Table: CVS(*)

Where:

Returns Converted value of string expression, or accent translation table.

Description The CVS() function converts a string of data to different forms based on the numeric
values used for cvs_code (e.g., to convert to upper case, stripped string, etc). The
numeric expression tells ProvideX the type of conversion to perform. If you append
a colon ":" and string value, the control character used in the conversion will be the
first character of the string. Otherwise, it will be a space.

You can also use the function to return the current accent translation table and do translations
based on it. For more information, refer to the DEF systab= Directives, p.74.

The value of cvs_code is made up of a series of binary values indicating:

* Asterisk. Returns the current 256-byte accent translation table.

ctl_char$ Optional control character. String expression. Default: blank character

cvs_code Conversion type. Numeric expression. See the chart below.

data$ Data to convert. String expression.

stmtref Program line number or label to transfer control to.

Value Conversion to Take Place:

 1 Strip leading control characters

 2 Strip trailing control characters

 4 Convert string to upper case

 8 Convert string to lower case

 16 Replace non-printable characters with the control character

 32 Replace multiple occurrences of the character with one

 64 Replace $ with a defined currency symbol, comma with a defined
thousands separator, and period with a defined decimal point. See also,
'CU'= System Parameter, p.660,
'DP'= System Parameter, p.662,
'TH'= System Parameter, p.690

128 Replace a defined currency symbol, thousands separator and decimal point
with $, comma, and period respectively (inverse of value 64 above).

3. System Functions CVS()

ProvideX Language Reference V8.30 Back 413

Examples PRINT "|",CVS(" The Cat ",1:" "),"|"

yields |The Cat |

PRINT "|",CVS(" The Cat ",2:" "),"|"

yields |The Cat|

PRINT "|",CVS(" The Cat ",39),"|"

yields |THE CAT| Note: 32+4+2+1=39 (you can use a sum)

PRINT CVS("$$$123",32:"$")

yields $123

See Also STP() Strip Leading/Trailing Characters, p.523,
LCS() Return Lowercase String, p.472,
UCS() Return Upper Case String, p.546
DEF systab= Directives, p.74.

256 Convert string to mixed case (first letter of each word is upper case, the
rest of the letters are lower case).

512 Translate the string expression provided in data$ based on the current
accent translation table.

Value Conversion to Take Place:

3. System Functions DEC()

ProvideX Language Reference V8.30 Back 414

DEC() Function DEC() Get Binary of St ringGet Binary of String
Format DEC(string$[,ERR=stmtref])

Where:

Returns Two's complement binary equivalent of the string.

Description The DEC() function converts a string to its corresponding binary equivalent. (The
value returned is a two's complement binary integer which corresponds to the value
of the string.)

Examples 0020 LET A$="a"; PRINT DEC(A$),
0030 LET B$=$0040$; PRINT " | ",DEC(B$),
0040 LET C=DEC("A"); PRINT " | ",C,
0050 LET A=DEC(FE); PRINT " | ",A,
0060 PRINT " | DONE"
-:RUN
 97 | 64 | 65 | -2 | DONE

stmtref Program line number or label to transfer control to.

string$ Character string or variable containing value to be converted to binary.

3. System Functions DIM()

ProvideX Language Reference V8.30 Back 415

DIM() Function D IM() Generat e St ring/Get A rray SizeGenerate String/Get Array Size
Formats 1. Generate or Initialize String: DIM(len[,fill$][,ERR=stmtref])

2. Read Total elements in Array: DIM(READ NUM(array_name[$][,subscript]))

3. Read Max. in Array: DIM(READ MAX(array_name[$][,subscript]))

4. Read Min. in Array: DIM(READ MIN(array_name[$][,subscript]))

Where:

Returns Initialized string, or information about dimensions of array.

Description Use the DIM() function to generate or initialize a string. You can also use it to obtain
information about the size of an array you have already defined using the DIM
directive.

Format 1: Generate or Initialize String

DIM(len[,fill$][,ERR=stmtref])

Use this format to generate or initialize a string whose length you specify. The
function fills the string by using the value for fill$.

If you omit the fill string, ProvideX uses spaces as fill characters; e.g.,

0100 PRINT ":",DIM(11,"*Cat"),":"
 ->RUN
*Cat*Cat*Ca:

array_name[$] Name of a previously dimensioned array.

fill$ Text string or value which will be used to fill the variable up to the
length specified. String expression.

len Desired length of the string variable. Numeric expression, integer.

stmtref Program line number or label to transfer control to.

subscript Array's dimensions (first, second, or third).

Note: This format of the function behaves almost like the DIM directive's format to
initialize strings. However, instead of repeating only the first character of the string,
as in the directive, the function repeats the complete value of the fill string. (Refer to
the DIM Directive, p.86, for the format to initialize strings).

3. System Functions DIM()

ProvideX Language Reference V8.30 Back 416

0100 PRINT 'CS',"A Title",@(0,1),DIM(80,"-")
0110 REM The DIM() above returns a string of hyphens "-" 80 characters long
 ->RUN
A Title
-------------------- ... etc.

See Also '+S' & '-S' Mnemonics, p.637.

Formats 2,3,4: Read Dimensions (Size) of Array

Use Formats 2, 3, and 4 of the DIM() function (listed below) to read a given array's
total number of elements, the minimum element's number and the maximum
element's number. If the variable you specify is not an array, NUM and MIN will
return 0, MAX will return -1.

DIM(READ NUM(array_name[$][,subscript]))

Use the DIM(READ NUM()) function to read the total number of elements in a
dimensioned array; e.g.,

0100 DIM X[0:15]
0110 PRINT DIM(READ NUM(X))
->run
 16

DIM(READ MAX(array_name[$][,subscript]))

Use the DIM(READ MAX()) function to read the maximum element number in a
dimensioned array; e.g.,

0110 DIM X[0:15]
0120 PRINT DIM(READ MAX(X))
->run
 15

DIM(READ MIN(array_name[$][,subscript]))

Use the DIM(READ MIN()) function to read the minimum element number in a
dimensioned array; e.g.,

0110 DIM X[0:15]
0120 PRINT DIM(READ MIN(X))
->run
 0

3. System Functions DIR()

ProvideX Language Reference V8.30 Back 417

DIR() Function D IR() Get Current DirectoryGet Current Directory
Format DIR(disk_id[$][,ERR=stmtref])

Where:

Returns String, name of current directory.

Description The DIR() function returns a string naming the current directory for the disk drive
specified. Use either a string or numeric value to specify the drive.

If a string is given, the first character indicates the drive (A, B, C and so on). A null ("")
string returns the name of the current directory for the current drive. If a numeric value is
given, it must be an integer in a positive range starting at zero. A value of zero (0)
indicates the first drive, 1 the second ...

When reporting items based on the universal naming convention, this function returns
the UNC-style pathname; i.e., for a current directory of \\server\share\path\ DIR()
returns \path\.

Examples The following illustrates use of the DIR() function in a Windows environment.

0100 PRINT "Available Drives by Drive Number"
0110 FOR X=0 TO 25 ! Check for Drives 0 to 25
0120 LET A$=DIR(X,ERR=*NEXT); PRINT STR(X)," ",A$
0130 NEXT X
0200 PRINT "Available Drives by Drive Letter"
0210 FOR X=65 TO 90 ! Check for Drives A to Z
0220 LET A$=DIR(CHR(X),ERR=*NEXT); PRINT CHR(X)," ",A$
0230 NEXT X
->run
Available Drives by Drive Number
0 \
2 \Program Files\Sage Software\ProvideX\
3 \WINDOWS\
6 \applicationlogos\
7 \
Available Drives by Drive Letter
A \
C \Program Files\Sage Software\ProvideX\
D \WINDOWS\
G \applicationlogos\
H \

disk_id[$] Disk to check. String or numeric expression.

stmtref Program line number or label to transfer control to.

Note: This function is primarily for use in PVX for Windows. Under UNIX, ProvideX
assumes that there is only one disk drive and will only returns the current directory.

3. System Functions DLL()

ProvideX Language Reference V8.30 Back 418

DLL() Function DLL() Call Windows D LLCall Windows DLL
 Formats 1. Load Library: lib_num=DLL(ADDR lib_string$[,ERR=stmtref])

2. Unload Library: DLL(DROP lib_num[,ERR=stmtref])

3. Get Function Address: fnc_addr=DLL(FIND lib_num,fnc_name$[,ERR=stmtref])

4. Call Using String: DLL(lib_string$,fnc_name$,arg[,arg,arg...][,ERR=stmtref])

5. Call by Library Number: DLL(lib_num,fnc_name$,arg[,arg,arg...][,ERR=stmtref])

6. Call Using Function Address: DLL(*,fnc_addr,arg[,arg,arg...][,ERR=stmtref])

Where:

Returns Windows DLL (Dynamic Link Library), UNIX/Linux shared object module, or
address to a function within an external library.

Description Use the ProvideX DLL() function to access functions within DLLs that are external to
ProvideX. This function is available under MS Windows as well as most
UNIX/Linux environments (in which case, TCB(196) returns 1 if the function is
supported). It's similar to a call to execute external functions from inside ProvideX
applications. The ProvideX DLL() function will also return any function identifiers
and addresses, as defined by the DLL routine.

DLLs do not need to be registered in Windows to be used in ProvideX. Under
WindX, it is important to note that DLLs run on the host. Use a call to a WindX
program to invoke a DLL.

Use the function DLX() to return 32-bit values from within a 16-bit Windows
environment. For further information on calling DLLs and other external
components from ProvideX, refer to the User’s Guide, Chapter 9.

arg, arg... Parameters or arguments to pass to the function. The number and type
of arguments you use vary from function to function. See DLL()
Parameters, p.420.

fnc_addr Address of the desired function. Numeric expression.

fnc_name Name of the function. The function name is the case-sensitive entry
point in the DLL. Some API functions have an appended letter A for
ASCII, others have an appended W for wide character UNICODE.
String expression.

lib_num Internal library identifier used to reference a loaded library. Numeric
expression.

lib_string$ Name of the .dll or . exe that contains the function to be used. String
expression.

stmtref Program line number or label to transfer control to.

3. System Functions DLL()

ProvideX Language Reference V8.30 Back 419

See Also User’s Guide, Calling DLLs from ProvideX, p.214
MEM() Return Memory Value, p.479

Format 1: Load Library
:lib_num=DLL(ADDR lib_string$[,ERR=stmtref])

Use the DLL(ADDR ...) format to address or load the DLL. This lets you load and
lock a library into memory and obtain the addresses of its functions and the internal
identifier. You can then use this identifier on subsequent DLL() functions to avoid
having to reload the DLL. Note that the return value is the handle to the DLL and
should be used in all subsequent DLL() calls.

Format 2: Unload Library
DLL(DROP lib_num[,ERR=stmtref])

Use the DLL(DROP ...) format to unload a loaded DLL when you no longer need it.
Note that if you LOAD a DLL, you must DROP or unload it to free up the memory
that was allocated to it.

Format 3: Get Function Address
fnc_address=DLL(FIND lib_num,fnc_name$[,ERR=stmtref])

You can obtain the address of a DLL() function in an addressed (loaded) library by
using the FIND format. This format asks the DLL() function to return its current
address, which you can then use in subsequent calls. The address is only valid while
the library is loaded.

In some cases, you may need to use the return value as a memory pointer. The
MEM() function can be used to obtain memory information (address, contents, etc.).

When you call an external function and pass arguments to it, you can identify it
using a string, a library number, or a function address. For more information, refer to
DLL() Parameters, p.420 and MEM() Return Memory Value, p.479.

Format 4: Call Using String
DLL(lib_string$,fnc_name$,arg[,arg,arg...][,ERR=stmtref])

Use this format to call the DLL() function using strings to identify the library and
function by name.

Note: In some instances (e.g., when the DLL maintains internal data structures) it is
mandatory to keep the DLL loaded in order to use or call the function. When in doubt,
load the DLL (not needed for Windows API DLLs). Keeping the DLL loaded has
memory consequences, but commonly lets you gain access speed.

3. System Functions DLL()

ProvideX Language Reference V8.30 Back 420

Format 5: Call by Library Number
DLL(lib_num,fnc_name$,arg[,arg,arg...][,ERR=stmtref])

Use this format to call the DLL() function using a numeric to identify the library by
its internal identifier and the function name.

Format 6: CALLs Using Function Address
DLL(*,fnc_address,arg[,arg,arg...][,ERR=stmtref])

Use this format to call a DLL() function in a loaded library using the internal
function address as a memory pointer.

DLL() Parameters
DLLs normally expect one of two types of parameters: integers and pointers. The
arguments/parameters you use when you call the DLL() function are passed to the
function in the following ways:

Note: The address is only valid while the library is loaded.

Example Type 32-Bit Data Format Passed 16-Bit Data Format Passed
X$ Strings Address of string Address of string
X Numeric Variables Double word value (32-bit) Double word value (32bit)
X% Integer Variables 16-bit value passed as 32-bit Single word value (16bit)
INT(X+1) INT() Function Standard 32 bit Single word value (16 bit)
X+Y Numeric Expression 32-bit value 32-bit value

3. System Functions DSK()

ProvideX Language Reference V8.30 Back 421

DSK() Function DSK() Get Cur rent D isk Dr iveGet Current Disk Drive
Format DSK(disk_id[$][,*][,ERR=stmtref])

Where:

Returns Current disk drive identifier

Description The DSK() function checks for the existence of a disk drive and returns the current
disk drive identifier, volume name. Use either a string or numeric value to specify
the drive. If a string is given, the first character indicates the drive (A, B, C, etc). A
null ("") string returns the current disk identifier.

This function returns the operating system's drive prefix ("A:","B:", etc.). If you
place an asterisk * after disk_id, the function returns the name of the volume mounted
on your drive, if any; e.g., DSK("C",*) or DSK(2,*). If the disk drive or volume
doesn't exist, ProvideX returns an Error #17: Invalid file type or
contents.

If a numeric value is given, then the value must be a positive integer in a range starting
at zero. Use 0 zero as the value for the first drive, 1 for the second, and so on.

When reporting items based on the universal naming convention, this function returns
the UNC-style pathname; i.e., for a current directory of \\server\share\path\ DSK()
returns \\server\share\.

Examples ->?dsk("")
C:
->?dsk(0)
A:

* Asterisk. Returns the name of the volume (rather than the drive).

disk_id[$] Disk to check. String or numeric expression.

stmtref Program line number or label to transfer control to.

Note: This function is primarily for use in PVX for Windows. Under UNIX, ProvideX
assumes that there is only one disk drive and returns a null ("") string.

3. System Functions DTE()

ProvideX Language Reference V8.30 Back 422

DTE() Function DTE() Convert DateConvert Date
Formats 1. Convert Numeric Date: DTE(jul_date[,time][:fmt$][,ERR=stmtref])

2. Convert Date String: DTE(date$[:fmt$][,ERR=stmtref])

Where:

Returns Formatted date (converted from Julian).

Description The DTE() function converts a date (and time) from Julian form to a formatted
string. fmt$ defines the format to be returned, in which each component of the date
is represented by percent sign (%) followed by a one- or two-letter code. The first
letter indicates a source for the data (day, month, year etc.). The second character (if
specified) indicates how to format the returned value. The chart below shows the
results of the various format options:

In general, when the second character is l (lowercase L), the result is long text format – an
s indicates short text format. ProvideX maintains the exact contents of the text internally.
The contents can be changed using a DEF DTE() directive. If the second letter is z,

date$ Date string in the same format as the DAY_FORMAT (MM/DD/YY).

fmt$ Format of the date to be returned. If omitted, the default format is
%Mz/%Dz/%Yz (date formatted as MM/DD/YY).

jul_date Julian date to convert. Numeric expression. If the value is zero, the
current date is used. DTE(-1) returns a null ("") string if ‘BY'=0.

stmtref Program line number or label to transfer control to.

time Time value containing hours and fractions of hours since midnight.
Optional. Numeric expression. If you omit this, the current time is used.

% Char1 Source Format Default Char2 = l Char2 = s Char2 = z
 %h Hour (12) 0-12 0-12 0-12 00-12
 %m Minute 0-59 0-59 0-59 00-59
 %p am or pm am,pm am,pm am,pm am,pm
 %s Hour in seconds 0-59 0-59 0-59 00-59
 %A Year 00-99, A0-Z9
 %D Day of month 1-31 Monday-Sunday Mon-Sun 01-31
 %H Hour (24) 0-24 0-24 0-24 00-24
 %J Day in year 1-365 1-365 1-365 01-99
 %M Month in year 1-12 January-December Jan-Dec 01-12
 %P AM or PM AM,PM AM,PM AM,PM AM,PM
 %S Day in seconds 0-86399 0-86399 0-86399 00-86399
 %W Day of week 1-7 Monday-Sunday Mon-Sun 01-07
 %Y Year 1970-9999 1970-9999 1970-9999 00-99

3. System Functions DTE()

ProvideX Language Reference V8.30 Back 423

ProvideX supplies the value converted to a two digit value. ProvideX returns a 1-byte
binary value if the second letter is p (for compatibility with other languages). The format
can also contain YYYY, YY, MM, and DD (e.g., "YYYY/MM/DD") for current Long Year, Year,
Month and Day values:

If you include any other characters in the date format (e.g., punctuation: slashes,
spaces, etc.) ProvideX copies them, as literals, to the output. To include a percent
sign as a literal in the output, use %% in the format.

ProvideX includes the DTE("%A") format to deal with legacy application Y2K
conversions (Version 4.10). The current year is returned using 00-99 for 1900
through 1999, A0-A9 for 2000 through 2009, B0-B9 for 2010 through 2019, etc.
ProvideX supports fractional values in the DTE() function, using the
DTE(fraction,*:"form") format.

Examples PRINT DTE(0:"%Dl %Ml %D/%Y %hz:%mz %p")
Monday July 24/1995 10:27 pm

0010 PRINT 'CS',DTE(0:"%Dl %Ml %D/%Y"),@(70),
0010:DTE(0:"%hz:%mz %p")
0020 INPUT "Enter Date (MM/DD/YY):",X$:"00/00/00"
0030 LET M=NUM(X$(1,2))
0040 LET D=NUM(X$(3,2))
0050 LET Y=NUM(X$(5,2))
0060 LET N=JUL(Y,M,D,ERR=0100)
0070 PRINT "That is a ",DTE(N:"%Dl") ! Day value from N, in text, long form.
0080 STOP
0100 PRINT "Invalid date"; GOTO 0010
-:run
Saturday March 27/1999 03:32 pm
Enter Date (MM/DD/YY):03/31/99
That is a Wednesday

The DTE() function will support a valid DAY formatted string value; e.g.,

DAY_FORMAT "MM/DD/AA"
PRINT DTE("01/01/A0":"%Y %Ml %D")
2000 January 1
PRINT DTE("01/01/A0":"%Dz/%Mz/%Y")
01/01/2000

See Also DAY_FORMAT Directive, p.64,
DAY System Variable, p.557
JUL() Return Julian Date, p.463,
DEF systab= Directives, p.74
'BY'= System Parameter, p.658

Char1 Source Format Default
 DD Day of month 1-31
 MM Month in year 1-12
 YY Year 00-99
YYYY Year 1970-9999

3. System Functions ENV()

ProvideX Language Reference V8.30 Back 424

ENV() Function ENV () Get Environ men t ValuesGet Environment Values
Formats 1. Using Numeric ID: ENV(env_id[,ERR=stmtref])

2. Using String ID: ENV(env_name$[,ERR=stmtref])

Where:

Returns Value of an environment variable

Description Use the ENV() function to obtain the value of an environment variable (specified
numerically or in a string) from the externally defined environment table.
Environment variables are typically external to ProvideX and are used by the
operating system and other utilities for defining the user's environment.

Format 1: Using Numeric ID
ENV(env_id[,ERR=stmtref])

If env_id exceeds the size of the Environment Table, ProvideX returns Error #41:
Invalid integer encountered (range error or non-integer).
Otherwise, ENV() returns the current value of the given environment variable.

The following program displays all the environment variables:

0010 LET I=1
0020 LET X$=ENV(I,ERR=0050)
0030 PRINT X$
0040 LET I=I+1; GOTO 0020
0050 STOP
-:run
TEMP=C:\WINDOWS\TEMP
PROMPT=pg
winbootdir=C:\WINDOWS
COMSPEC=C:\WINDOWS\COMMAND.COM
CLASSPATH=.;c:\COREL\OFFICE7\SHARED\BARISTA;c:\COREL\OFFICE7\SHARED\TRUEDOC
LD_LIBRARY_PATH=c:\COREL\OFFICE7\SHARED\TRUEDOC\BIN
PATH=C:\WINDOWS;C:\WINDOWS\COMMAND;C:\COREL\OFFICE7\SHARED\TRUEDOC
\BIN;C:\SOFTWARE\WP60;C:\OTHER\BAT;C:\SOFTWARE\WINSIM\CA_APPSW

CMDLINE=WIN
windir=C:\WINDOWS
BLASTER=A220 I5 D1 H5 P330 T6

env-id Numeric value of the environment variable to be returned.

env_name$ Character string containing the environment variable to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions ENV()

ProvideX Language Reference V8.30 Back 425

Format 2: Using String ID
ENV(env_name$[,ERR=stmtref])

If env_name$ does not match an environment variable, the ENV() function returns a
null ("") string. Otherwise, the function returns the current value of the given
environment variable.

The following program tests and displays the environment variable TERM:

0010 T_TYP$=ENV("TERM")
0020 IF T_TYP$="" THEN PRINT "No terminal defined";
0020: STOP
0030 PRINT "You are using a "+T_TYP$+" terminal"

3. System Functions EPT()

ProvideX Language Reference V8.30 Back 426

EPT() Function EPT() Return Exponent ValueReturn Exponent Value
Format EPT(num[,ERR=stmtref])

Where:

Returns Numeric exponent (power of ten).

Description The EPT() function returns the power of 10 for the numeric expression provided.

Examples ->EPT(10) ! Same as EPT(0.1*10^2) - yields 2
->EPT(5) ! Same as EPT(0.5*10^1) - yields 1
->EPT(.02) ! Same as EPT(0.2*10^-1) - yields -1

0610 LET B=27*9
0620 PRINT EPT(B), EPT(9*2)
-:run
 3 2

num Numeric expression whose exponent is to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions ERR()

ProvideX Language Reference V8.30 Back 427

ERR() Function ERR() Test Er ror ValueTest Error Value
Format 1. Return ERR Position: ERR(compare1,compare2,...[,ERR=stmtref])

2. Return Extended Error Information: ERR(keyword$ | *)

Where:

Returns Integer, relative position if match found, 0 zero if no match found.

Description The ERR() function can be used to determine the value of the internal ERR variable
or receive additional information about the last un-trapped error.

Format 1: Return ERR Position
ERR(compare_1,compare_2,...compare_n[,ERR=stmtref])

Use this format to compare the value of the internal ERR variable with a list of
possible external error values. If a match is found, the function returns an integer
reporting the relative position of the value which matches the value in the external
ERR system variable. The function returns 0 zero if no match is found.

Example:

0040 ON ERR(1,11,2) GOTO 1000,1010,1110,1020

Possible results:

* Asterisk. Lists the names of the returned values.

compare1,
compare2, ...

Comma-separated list of numeric values for comparison with the
value of the internal ERR variable.

keyword$ Currently supported return values:
"ERR" Error condition
"RET" OS error
"OSERR" OS error message; i.e., MSG(-1)
"PROGRAM" Pathname of program with error
"STNO" Statement number
"OBJ" Object number
"METHOD" Method name invoked
"LFA" Last file accessed
"LFO" Last file opened
"LASTPATH" Last pathname referenced
"LASTKEY" Record key value, only valid for Error 11's.

stmtref Program line number or label to transfer control to.

ERR=1 Control transfers to line 1010
ERR=11 Control transfers to line 1110
ERR=2 Control transfers to line 1020
ERR=0 No match. Control transfers to line 1000.

3. System Functions ERR()

ProvideX Language Reference V8.30 Back 428

Format 2: Return Extended Error Information
ERR(keyword$)

This format provides additional information for diagnosing untrapped errors. The
information returned by the ERR() function is not affected by errors that are
programmatically trapped using a SETERR or any of the ERR=/DOM=/BSY=
options.

Example:

0010 ! Display ERR(" ") return values
0020 error_handler pgn+";ErrorHandler"
0030 print 4/0
0040 stop
0050 !
0100 ! ^100
0110 ErrorHandler:
0120 print "Un-trapped error",err,":"
0130 x$=ERR("*")
0140 !
0200 ! ^100
0210 x=pos(","=x$); if x=0 then exit err
0220 print pad(x$(1,x-1),12),"= ",
0230 print ERR(x$(1,x-1))
0240 x$=x$(x+1); goto 0200

See Also ERR System Variable, p.560.
Error Codes and Messages, p.828
User’s Guide, Chapter 3

3. System Functions EVN()

ProvideX Language Reference V8.30 Back 429

EVN() Function EVN() Evaluate Num er ic ExpressionEvaluate Numeric Expression
Format EVN(var$[,val][,ERR=stmtref])

Where:

Returns Processed numeric value.

Description The EVN() function evaluates and returns the numeric value of a numeric variable
or computed expression. Use this function to process a stored or computed
expression and obtain its value.

See Also EVS() Evaluate String Expression, p.430
VIN() and VIS() Obtain Value of Variable, p.549

Examples In this example, EVN("GL_"+X$) builds the variable name based on user input and
returns the value stored in the variable.

00010 GL_YTD=10000,GL_MTD=3000,GL_CUR=10
00020 input "Which field (YTD,MTD,CUR):",X$
00030 print evn("GL_"+X$):"$###,##0.00-"
00040 stop

For the example above, if the user's input is CUR for X$, the variable name will be
GL_CUR. If the value stored in GL_CUR in the current record is, for example,
9999.63, ProvideX prints that value (using the format mask) as $9,999.63.

In this example, EVN(V$) will print the numeric value stored in V$ for the current
record of logical file number RPT_FN.

0090 K$=KEY(RPT_FN); IF K$(1,12)<>RPT_ID RETURN
0100 READ (RPT_FN)L,C,V$
0110 PRINT (RPT_FN) @(C,L),EVN(V$)
0120 GOTO 0090

stmtref Program line number or label to transfer control to.

val Default value to be returned if the evaluation fails at run-time (with any
error except a syntactical error). If supplied, the error will be ignored and
the value will be returned instead. For instance, PRINT EVN("40/0",0)
would return val=0 rather than generating Error #40: Divide
check or numeric overflow.

var$ String expression containing numeric variable name. Maximum string
size 8kb. Receives the returned evaluated contents of the variable. You can
build the variable name using string expressions, as in the example below.

3. System Functions EVS()

ProvideX Language Reference V8.30 Back 430

EVS() Function EVS() Evaluate String ExpressionEvaluate String Expression
Format EVS(var$[,val$][,ERR=stmtref])

Where:

Returns Evaluated contents of string variable.

Description The EVS() function evaluates and returns the value (evaluated contents) of a string
variable.

See Also EVN() Evaluate Numeric Expression, p.429
VIN() and VIS() Obtain Value of Variable, p.549.

Examples In this example, EVS() builds the string variable's field name ("CST_"+X$+"$")
based on the user's input and returns the value stored in it.

00010 CST_NAME$=who,CST_ADDR$="8920 Woodbine Ave"
00020 CST_CITY$="Markham",CST_CONTACT$="Support"
00030 input "Which field (NAME,ADDR,CITY,CONTACT):",X$
00040 print evs("CST_"+X$+"$")
00050 stop

For instance, if the user's input for X$ in the example above is NAME, the variable
name will be CST_ADDR$. The value in EVS(CST_ADDR$) for the current record
could be 8920 Woodbine Ave, which is what ProvideX would return and then print.

stmtref Program line number or label to transfer control to.

val$ Value to be returned if the evaluation fails at run-time (with any error
except a syntactical error). Optional. If you include a value, the error will
be ignored and the value will be returned instead; e.g.,
A=9999; PRINT EVS("str(a:""##0"")","<OverFlow>")
returns the value <Overflow> rather than generate
Error #43: Format mask invalid.

var$ String variable name. Receives the returned evaluated contents of the
variable. You can build the variable name using string expressions, as in
the example below.

3. System Functions EXP()

ProvideX Language Reference V8.30 Back 431

EXP() Function EXP() Raise t o Base TenRaise to Base Ten
Format EXP(num[,ERR=stmtref])

Where:

Returns Value of ten raised to the power of the numeric value

Description The EXP() function returns the value of 10 raised to the power of a given numeric
value (i.e., 10^num). Fractions are allowed. The numeric value returned is rounded
to the current PRECISION in effect. This is the inverse of the LOG() function.

Examples 0010 PRINT EXP(LOG(90)/3), ! Print cube root of 90
0020 PRINT EXP(3),EXP(2.1)
-> RUN
4.47 1000 125.89

num Power of 10 (ten) to be returned. Numeric expression.

stmtref Program line number or label to transfer control to.

3. System Functions FFN()

ProvideX Language Reference V8.30 Back 432

FFN() Function FFN() Find File NumberFind File Number
Format FFN(filename$[FOR OBJECT] [,ERR=stmtref])

Where:

Returns Integer, channel/file number for open file (-1 if not open).

Description This function checks all open files for any reference to the filename$ specified. The
function returns the file number as an integer if the file is open. If the file is not
currently open on any channel, FFN() returns a value of -1. The filename specified
in FFN() must match the name used to OPEN the file; e.g.,

open(1)"cstfile
print "channel is: ",ffn("C:/Program Files/Sage

Software/ProvideX/NOMADS/cstfile") ! Incorrect
channel is: -1
print "channel is: ",ffn("cstfile") ! Correct
channel is: 1

Examples Read a record from the CUSTDB file. If the file is not open, then open it on a Global
file number.

0100 LET X=FFN("CUSTDB")
0110 IF X=-1 THEN LET X=GFN; OPEN (X)"CUSTDB"
0120 READ (X,KEY=CST_ID$,ERR=9000)IOL=%CST_IOL$

FFN() is case-sensitive (as is necessary in UNIX). To perform a case-insensitive
search for the filename, set either 'FL' (lower case) or 'FU' (upper case) parameters.

0100 OPEN (5)"CSTfile" ! With neither 'FL' nor 'FU' set
-:PRINT "channel is: ",FFN("CSTFILE")
channel is: -1
-:SET_PARAM 'FL'
-:PRINT "channel is: ",FFN("CSTFILE")
channel is: 5
-:PRINT "channel is: ",FFN("cstFILE")
channel is: 5

filename$ Name of the file to locate. String expression (case sensitive on
UNIX/Linux systems.)

FOR OBJECT Keyword to return file handles owned by an object. Inside an object the first
reference to the file owned by the object is returned otherwise it will be -1.

stmtref Program line number or label to transfer control to.

3. System Functions FFN()

ProvideX Language Reference V8.30 Back 433

Forward slashes may be used in place of backslashes.

open(1)"C:\Program Files\Sage Software\ProvideX\NOMADS\cstfile"
print "channel is: ",ffn("C:/Program Files/Sage

Software/ProvideX/NOMADS/cstfile")
channel is: 1

A leading ./ or .\ is ignored by the FFN() function.
open(1)"./cstfile
print "channel is: ",ffn("cstfile")
channel is: 1

3. System Functions FIB()

ProvideX Language Reference V8.30 Back 434

FIB() Function FIB() Return File Informat ion BlockReturn File Information Block
Format FIB(chan[,ERR=stmtref])

Where:

Returns String, file information block description.

Description The FIB() function returns a character string containing a file information block
description for an existing open file. This information may be passed to a FILE
directive to subsequently recreate the file. Refer to the File Information Functions
Overview and the ProvideX Standard Format for FIB(0) and FID(0) for further
details. Unlike FID() , the FIB() function is not affected by emulation mode settings.

Examples 0010 INPUT "Enter filename:",F$
0020 OPEN (1)F$
0030 IF MID(FIB(1),10,1) <> 02 THEN PRINT "Not a Keyed file"

See Also FID() Return File Information Descriptor, p.438,
FIN() Return File Information, p.441,
FILE Directive, p.130
'FF' File format, p.666
'PO' Path Original, p.680

File Information Functions Overview

The FIB(), FID() and FIN() functions return file information, descriptors and blocks.

FID() returns file characteristics or descriptors such as the type of file, size, keys (if
applicable) and the absolute location (pathname) of the file on the disk system. FIB()
always returns the information in ProvideX Standard Format (described in the
following section).

ProvideX returns file identifiers for a file through either the FID() or FIB() function.
Normally these two functions will both provide the same information, but to simplify
conversion to ProvideX from various Business Basics, ProvideX returns one of 5 different
formats for the FID() function, based on the setting of the 'FF' system parameter.

There is one exception to the above. For a device, the FID() function always returns
only the device name. For example, FID(0) will yield the terminal identifier.

chan Channel/logical file number of the file about which you want information.

stmtref Program line number or label to transfer control to.

Note: When 'FF' is set to 0 or 3 and the 'PO' system parameter is switched on, the FID()
and FIB() functions return the original path used when the file was opened. 'FF'.

3. System Functions FIB()

ProvideX Language Reference V8.30 Back 435

You can define the value returned by FID(0) externally using the Environment
variable PVXFID0 or internally using the SETFID directive. FIN() returns file
information about the data structure (describing the physical aspects of a file such as
maximum record, number of records, key size, record size).

ProvideX Standard Format for FIB(0) and FID(0)

The following charts describe the FID(0)/FIB(0) ProvideX standard format for 'FF'=0.

Bytes Description (Total length = 212 bytes)

1,3 Current record count (if available)

4,6 Characters 1-6 of filename (will include the path, if used)

10,1 00 - Indexed
01 - Serial
02 - Keyed
03 - Open via ISZ= (binary)
04 - Program
05 - Attached printer
07 - Isam
$0A$ - Pipe
$0D$ - Directory
$0E$ - TCP/IP
$0F$ - Device or Windows printer

11,1 External key size

12,3 Maximum number of records

15,2 Record size

17,1 Keyed file flag (01 if variable length records)

18,1 Keyed file inventory threshold %

19,1 File type:
"*" Device ">" I/O redirection
"2" EFF file type indicator "A" Attached printer
"B" Opened via ISZ= "b" DB2 file
"C" C-ISAM "D" Directory
"d" BBx Directory "E" DDE Connection
"F" PDF File "I" Indexed
"K" Keyed/Direct/Sort "l" DLL file
"M" Dynamic *MEMORY* File "m" BBx M-Keyed File
"N" TCP/IP Connection "o" OCI Data file
"O" ODBC Data file "P" Program
"p" Program Library Pseudo File (internal use only)
"S" Serial "T" WindX Connected Device/File
"V" Variable Data File "W" Windows Printer
"Y" *MEMORY* file with alternate keys.

20,1 External file handle

21,1 Current attribute byte

3. System Functions FIB()

ProvideX Language Reference V8.30 Back 436

ProvideX Standard FIB(0) / FID(0)'FF'=0 for Keyed Files

22,1 Current foreground colour

23,1 Current background colour

24,1 Reserved for future use

25,60 External file pathname

Bytes Description FIB(0) / FID(0)
85,384 4 or 8-byte extended entries (for extended key attributes). The

maximum number of key segments can range between 48 and 96
depending on the number of 4 and 8 byte entries.
(1,1) Key number in four low order bits; e.g.,

KEYNUM=DEC(AND(KDAT$(1,1),$0F$))
Four high order bits contain offset information used in
conjunction with byte (3,1). FF indicates final entry.
FE indicates it is byte (5,1) of an extended entry

Note: When working with an EFF file, the key number will be reset
to zero after the 16th key. For example (a file with 35 keys) byte
(1,1) will go from 0 to 15 then for key 17 byte (1,1) will be zero
again. It will climb to 15 then for the 33rd key byte (1,1) will be
zero again. Byte (1,1) for the 35th key will be 2.

(2,1) Field # in record (FF=KEY)
(3,1) Offset in field (in conjunction high order four bits of byte

(1,1)), maximum 3839; e.g., KEYOFFSET=16*DEC(00
+AND($F0$,KDAT$(1,1)))+DEC($00$+KDAT$(3,1))

(4,1) Length of key (descending if bit 80 is on)
Extended entry:
(5,1) FE indicates extended entry, otherwise it is byte (1,1) of

next entry.

Bytes Description (Total length = 212 bytes)

3. System Functions FIB()

ProvideX Language Reference V8.30 Back 437

ProvideX Standard FIB(0) / FID(0)'FF'=0 for Terminal Devices:

(6,2) Segment attributes (cumulative):
0001 Unique key
0002 Convert segment to upper case
0004 Convert segment to lower case
0008 Convert using translate table
0010 Swap byte order
0020 Primary key allows duplicates
0040 Don't add key if the segment is null
0100 Don't add key if all segments are null
0200 Binary auto-increment key
0400 Ignore data after 00
0800 Zero-filled auto-increment
1000 Space-filled auto-increment

(8,1) Null character for NULL keys ((6,2)=0040 or0100)

Bytes Description FIB(0) / FID(0)

85,1 Current column

86,1 Current line

87,1 Maximum column

88,1 Maximum line

89,110 Window information (10 * 11 byte entries for top 10 windows):
(1,1) Window number
(2,2) Absolute column (2 Byte)
(4,2) Absolute line (2 Bytes)
(6,1) Number of columns wide
(7,1) Number of lines high
(8,1) Column 0 of scroll region
(9,1) Line 0 of scroll region
(10,1) # columns for scroll region
(11,1) # lines for scroll region

213,12 Actual device type

Bytes Description FIB(0) / FID(0)

3. System Functions FID()

ProvideX Language Reference V8.30 Back 438

FID() Function FID () Return File Informat ion Descript orReturn File Information Descriptor
Format FID(chan[,ERR=stmtref])

Where:

Returns String, file information descriptor.

Description The FID() function returns a character string containing the file information
descriptor for an existing open file. If the file is a device (printer, terminal, etc.), the
filename used to open the file will be returned. If the file is a disk file, a file
description string is returned. You can make subsequent use of this file description
by passing it to a FILE directive to recreate the file. For further information, refer to
the File Information Functions Overview, p.434 and the ProvideX Standard
Format for FIB(0) and FID(0), p.435.

If you are running ProvideX in an emulation mode, the format of the information
returned will be changed to reflect the system being emulated.

Determining FID in ProvideX under UNIX
By default, ProvideX assigns a unique FID value for each terminal based on the
/etc/initab entry for the terminal. Unfortunately, when you use dynamic
terminal allocation (e.g., Telnet), each time a user signs off and then signs on, he /
she will have a different FID value. There are workarounds, but no one solution
works in all instances. If, for security purposes, you use the user_ID rather than
terminal_ID, then you can set the file information descriptor in the users profile
by inserting the following lines:

PVXFID0=desired_FID_val
export PVXFID0

As an alternative, you can assign the file information descriptor once in ProvideX, by
issuing a SETFID directive to establish a new FID(0) value. If you do not want to use
user_IDs but you are using Telnet and PCs, see if there is a host-initiated file
transfer you could use to get a file containing the FID value off the PC.

Using WindX, you could open a file on the PC and read it to determine a FID value; e.g.,

0010 OPEN (1) "[wdx]C:\PVXFID"
0020 READ RECORD (1) F$
0030 CLOSE (1)
0040 SETFID F$

chan Channel or logical file number of the file to return information about.

stmtref Program line number or label to transfer control to.

Note: When 'FF' is set to 0 or 3 and the ’PO’ system parameter is switched on, the FID()
and FIB() functions return the original path used when the file was opened.
Also: The FID() and FIN() format layouts will be changed whenever there is a change to
the 'FF' system parameter.

3. System Functions FID()

ProvideX Language Reference V8.30 Back 439

Finally, you could see if the terminal emulator allows you to define values for function
keys and has an escape sequence to send the values. Some terminals send a "HEREIS"
string on receipt of an ENQ (hex 05), but this varies from terminal to terminal.

FIB(1) / FID(1)'FF'=1

FIB(2) / FID(2)'FF'=2

Bytes Description (Total length=22 bytes)

1,3 000000

4,6 Characters 1-6 of filename

10,1 File type indicator:
00 - Indexed
01 - Serial - WindX connected file (any type)
02 - Keyed or EFF
03 - Open via ISZ= (binary)
04 - Program
$0D$ - Directory
$0F$ - Device

11,1 External key size

12,3 Maximum number of records

15,2 Record size

17,4 Reserved for future use

21,2 Characters 7-8 of filename

Bytes Description (Total length=16 bytes)

1,6 Characters 1-6 of filename

7,1 File type indicator:
00 - Indexed
01 - Serial - WindX connected file (any type)
02 - Keyed
03 - Open via ISZ= (binary)
04 - Program
$0D$ - Directory
$0F$ - Device

8,1 External key size

9,2 Maximum number of records (bytes reversed)

11,2 Record size (bytes reversed)

13,4 Not used

3. System Functions FID()

ProvideX Language Reference V8.30 Back 440

FIB(3) / FID(3)'FF'=3

FIB(4) / FID(4)'FF'=4

FID(4) is the same as FID(3) but all serial files return a file type indicator of 03 for
binary. This format is only intended to facilitate program migration to ProvideX.

See Also FIB() Return File Information Block, p.434,
FIN() Return File Information, p.441,
FILE Directive, p.130,
'FF' File format, p.666
'PO' Path Original, p.680

Bytes Description (Total length=9+ bytes)

1,1 File type indicator:
00 = Indexed
01 = Sequential - WindX connected file (any type)
02 = Keyed
03 = Opened via ISZ= (Binary)
04 = Program
05 = Directory
06 = BBx Mkeyed (no External Key)
07 = C-Isam
$0A$ = UNIX Pipe
$0E$ = TCP/IP-Network
$0F$ = Device/Attached Printer

2,1 External key size

3,4 Maximum number of records

7,2 Record size (bytes reversed)

9,... Pathname; e.g.,

0100 SET_PARAM 'FF'=3
0110 OPEN (30)"SESAME"
0120 LET A$=FID(30)
0130 PRINT A$(9)
->run
C:\OTHER\TESTS\SESAME

1,... Device name; e.g.,

0200 SET_PARAM 'FF'=3
0210 OPEN (31)PRINTER$
0220 B$=FID(31); PRINT B$
->run
LPT1
 [Details for files, above (1,1 to 9,...) inapplicable]

3. System Functions FIN()

ProvideX Language Reference V8.30 Back 441

FIN() Function FIN () Retur n File Infor mationReturn File Information
Formats 1. Return File Information: FIN(chan[,ERR=stmtref])

2. Return Detailed Information: FIN(chan,field$[,ERR=stmtref])
Where:

Returns String, physical information about open file.

Description The FIN() function returns a character string containing details about an existing
open file. The information returned is not the same as that in the FIB() function.
While some of the information in the FIN() function is common to information in the
FIB() function, the FIN() function includes more detailed information about the
physical file (e.g., file size in bytes, date and time of last update, etc.).

Format 1: Return File Information
FIN(chan[,ERR=stmtref])

In the example below, the FIN() function is used to find out the number of characters
in IN_FILE$ (the variable contains the name of a serial file).

0140 LET IN_FILE=HFN; OPEN (IN_FILE)IN_FILE$
0150 LET F$=FIN(IN_FILE)
0160 CLOSE (IN_FILE)
0170 LET CHARS=DEC(F$(1,4))
0180 !

Format 2: Return Detailed Information
FIN(chan,field$[,ERR=stmtref])

Use this format to have the FIN() function return details. For example,
FIN(10,"DEVHANDLE") returns the value of the Windows API Device handle for a
communications port. The following keywords, as well as 'OPTION' keywords, are
valid for use with the FIN():

BUFFERED - Returns 1 for output buffered, 0 for not buffered.
CURKNO - Returns the current KNO value
DEVHANDLE - Windows API device handle for communications port
DRIVER - ProvideX device driver name
EXTRACT - Extract status of file (1 if Extract pending)
FILE_CREATE - Returns file creation command for any ProvideX-based file.

chan Channel or logical file number of the file to return information about.
stmtref Program line number or label to transfer control to.
field$ String expressions (case insensitive). For valid keywords, refer to the

description of Format 2 below.

Note: The FID() and FIN() format layouts will be changed whenever there is a change to
the 'FF' system parameter.

3. System Functions FIN()

ProvideX Language Reference V8.30 Back 442

FILELENGTH - Size of physical file.
FILENAME - Original filename used in OPEN.
HANDLE - Operating system file handle.
HDC - For *WINDEV* channel, returns handle as returned by the Windows API call
OpenPrinter(). Otherwise, returns handle to the device context for *WINPRT* channel.
IPADDR TCP/IP - Address.
IO_PROGRAM - Program filename of imbedded I/O.
KEY_DEFINITION - Human readable key definition.
KEY_NAMES - List of Named Keys for an open channel.
KEY_OPTIONS - Returns the OPT= value.
KEY_SIZE - External Key size of a Keyed file.
KSZ - Same as KEY_SIZE.
MAXKNO - Maximum file access key number allowable for the file.
MAXREC - Same of RECORDS_ALLOWED.
NAME - Same as PATHNAME.
NUMREC - Number of records used.

PATHNAME - Full pathname of file.
RECORD_SIZE - Maximum record size.
RECORDS_ALLOWED - Maximum # of records.
RECORDS_USED - Same as NUMREC.
RSZ - Same as RECORD_SIZE
SEPARATOR - Field separator character or “*Dynamic*”.
SSL_CIPHER - SSL connection cipher used information as per the OPENSSL specs.
SOURCELIST - Provides list of available printer source trays (tray number:name).
TRUE_TTY - UNIX/Linux only. Returns FacetTerm TTY
UTC_CTime - Creation/changed time, UTC in seconds since Jan 1,1970
UTC_MTime - Last modified time, UTC in seconds since Jan 1,1970.
UTC_ATime - Last accessed time, UTC in seconds since Jan 1,1970.

X509_ISSUER - Who issued SSL certificate.
X509_NOT_AFTER - Latest date the certificate is valid for.
X509_NOT_BEFORE - Earliest date certificate is valid for.
X509_KEYTYPE - What type of key is in certificate.
X509_SUBJECT - Who certificate is issued to.

Keywords for the 'OPTION' Mnemonic
As mentioned earlier, keywords used in the 'OPTION' mnemonic can also be used by
the FIN() function; e.g, COLOURnnn, FONT, ICON, etc. For the complete list of
available 'OPTION' keywords, refer to the 'OPTION' Mnemonic, p.624.

Note: The record count returned by NUMREC / RECORDS_USED is based on the last
file I/O operation performed by the current task. To obtain up-to-date values, force an
I/O operation against the file prior to requesting this information, or use FIB() instead.

Note: UTC_CTime, UTC_MTime, and UTC_ATime (Universal Coordinated Time)
values returned are OS dependant. Exact definitions of these items may only be
determined by checking the OS/file system documentation including the
characteristics of the stat function.

Note: All the X509_ keywords return information pertaining to a remote SSL server
certificate (if a client requests it) or client certificate (if the server requests it). When on
a server, the information pertains to the last/current socket connected. X509_ requests
can also be prefixed with MY_ to return the local station's certificate information (e.g.,
MY_X509_KEYTYPE).

3. System Functions FIN()

ProvideX Language Reference V8.30 Back 443

For UNIX FacetTerm Use Only

The FIN() function reports the actual TTY on which the UNIX FacetTerm session
was initiated. If the environment variable FACETTYPE is set / ON in a current
FacetTerm session, recognition is automatic. FIN(0,"TRUE_TTY") will return the
TRUE /dev/tty terminal or device.

The value returned on a system without FacetTerm will be the same as the value
returned by PTH(0). For more information, see PTH() Return Pathname, p.506.

FIN() For Disk Resident Files

FIN() For Disk Resident Keyed Files Only.

Bytes Description for Disk Resident Files (Total length=68 bytes) FIN()
1,4 Number of bytes in the file
5,4 Date/Time of last modification (Seconds since Jan. 1, 1970)
9,4 Date/Time of last access
13,4 Date/Time of file creation/change
17,2 Physical device number
19,4 Inode number (UNIX/Linux only)
23,2 UserID of file owner (UNIX/Linux only)
25,2 GroupID of file owner (UNIX/Linux only)
27,2 Status flag. Bitmapped values for OPEN clauses:

0001 - READ Ok
0002 - WRITE Ok
0004 - EXECUTE Ok (Windows only flag value)
0008 - Is a directory
0010 - LOCK'ed
0020 - OPEN INPUT
0040 - OPEN LOAD
Bitmapped value for PURGE clause:
0080 - File has been purged.

60,4 Maximum record count
64,4 Current record index

Note: File times returned by the FIN() function on UNIX/Linux systems are reported
based on the current time zone, rather than GMT. This keeps the file time reporting
consistent with Windows versions of ProvideX.

Bytes Description for Disk Resident Keyed Files Only FIN()
77,4 Number of records on file
85,1 Current access key number
86,128 Key definition data. See FIB() and FID() for Keyed Files, bytes 85, 384

or use utilities to return key information (e.g., *UFI and **KEY.INF)

3. System Functions FIN()

ProvideX Language Reference V8.30 Back 444

FIN() For Device Files only

See Also FIB() Return File Information Block, p.434,
FID() Return File Information Descriptor, p.438,
'OPTION' Mnemonic, p.624
FILE Directive, p.130,
'FF'= System Parameter, p.666
'PO' System Parameter, p.680

Bytes For Device Files Only. (TCP Files are Reported as Devices.) FIN()
1,1 Current column
2,1 Current line number
3,1 Number of columns
4,1 Maximum number of lines.
5,1 Column offset to start of scroll region
6,1 Line offset to start of scroll region
7,1 Current width of scroll region
8,1 Current height of scroll region
9,1 Reserved (always 00)
10,1 Current window number
11,1 Reserved (always 00)
12,1 Current device attribute bits
13,1 Current foreground colour
14,1 Current background colour
15,1 Reserved (always 00)
16,1 Default attributes
17,1 Default foreground colour
18,1 Default background colour
19,2 Current device mode
21,4 Current device status words 1 and 2
25,2 Auxiliary attributes
27,2 Device option flags
29,2 Operating system handle (Windows only)
31,1 Standard character width
32,1 Standard character height
33,... Pathname to device (00-terminated)
33+n... Device type (00-terminated)

3. System Functions FPT()

ProvideX Language Reference V8.30 Back 445

FPT() Function FPT() Ret urn Fractional Par tReturn Fractional Part
Format FPT(num[,ERR=stmtref])

Where:

Returns Fractional portion of numeric.

Description The FPT() function returns the fractional portion of the given numeric value. The
value returned is always rounded to the PRECISION currently in effect.

Examples 0020 PRECISION 3 Set precision
0030 ...
0100 LET A=FPT(1.345) yields A = .345
0110 LET B=FPT(A/10) yields B = .035

0040 BEGIN Set precision to 2
0050 LET A=FPT(5/3) yields A = .67

num Numeric expression whose fractional portion will be returned.

stmtref Program line number or label to transfer control to.

3. System Functions GAP()

ProvideX Language Reference V8.30 Back 446

GAP() Function GAP() Retu rn Odd Par it y St ringReturn Odd Parity String
Format GAP(string$[,ERR=stmtref])

Where:

Returns Odd parity value of string

Description The GAP() function converts and returns the character string expression in Odd
parity. This function is typically used when dealing with communication lines. It is
not normally used in operating systems since the standard communications drivers
handle the generation of parity.

The number of one-bits in each byte of the character string determines the parity of
data. Odd parity data always has an odd number of one-bits in each byte of data.

See Also GEP() Return Even Parity String, p.449

Examples 0110 PRINT "HTA(""This is a test"") =",HTA("This is a test")
0120 PRINT "HTA(GAP(""This is a test""))=",HTA(GAP("This is a test"))
-:run
HTA("This is a test") =5468697320697320612074657374
HTA(GAP("This is a test"))=5468E97320E973206120F4E573F4

string$ Character string to convert to Odd parity.

stmtref Program line number or label to transfer control to.

3. System Functions GBL()

ProvideX Language Reference V8.30 Back 447

GBL() Function GBL() Reference G lobal String VariableReference Global String Variable
Formats 1. Get / Maintain Entries: GBL(string_name$[,contents$][,ERR=stmtref])

2. Delete / List Single Value: GBL({DELETE | LIST}string_name$[,ERR=stmtref])

3. Delete / List All up to Value: GBL({DELETE | LIST} TO string_name$[,ERR=stmtref])

4. Delete / List Table: GBL({DELETE | LIST} *[,ERR=stmtref])

Where:

Returns Values in internal table of strings.

Description The GBL() function returns and maintains the values in an internal table of string
definitions.

Format 1: Get / Maintain Entries
GBL(string_name$[,contents$][,ERR=stmtref])

Use this format to set or obtain the current value of the global string variable whose
name you specify. If you include a contents value (optional) it will be placed into the
global string variable.

Format 2: Delete / List Single Value
GBL({DELETE | LIST}string_name$[,ERR=stmtref])

Use the GBL(DELETE ...) format to delete an individual global string from the table.
Use the GBL(LIST ...) format to have the function return an individual string.

* Asterisk. Indicates all global string table entries.

contents$ Value to assign to the global string. Optional. String expression.

stmtref Program line number or label to transfer control to.

string_name$ Name of the global string in the internal table. String expression.

Note: This function is primarily provided for compatibility with other languages and
has been made virtually obsolete by global variables – a much more efficient way to
handle common data elements (string, numeric, arrays, etc.).

3. System Functions GBL()

ProvideX Language Reference V8.30 Back 448

Format 3: Delete / List All up to Value
GBL({DELETE | LIST} TO string_name$[,ERR=stmtref])

Use the GBL(DELETE TO ...) format to delete items up TO an individual global string
from the table. Use the GBL(LIST TO ...) format to have the function return a list of
global string names up TO an individual item (00 separated).

Format 4: Delete or List Table
GBL({DELETE | LIST} *[,ERR=stmtref])

Use the GBL(DELETE *) format to remove all entries from the table. The GBL(LIST *)
format returns the names of all strings in the table (00 separated).

3. System Functions GEP()

ProvideX Language Reference V8.30 Back 449

GEP() Function GEP() Ret urn Even Par it y St ringReturn Even Parity String
Format GEP(string$[,ERR=stmtref])

Where:

Returns Even parity value of string.

Description The GEP() function converts and returns the character string expression in Even
parity. This function is typically used when dealing with communication lines. It's
not normally used by the operating system since the standard communications
drivers handle the generation of parity.

The number of one-bits in each byte of the character string determines the parity of
data. Even parity data always has an even number of one-bits in each byte of data.

See Also GAP() Return Odd Parity String, p.446

Examples 0110 PRINT "HTA(""This is a test"") =",HTA("This is a test")
0120 PRINT "HTA(GEP(""This is a test""))=",HTA(GEP("This is a test"))
-:run
HTA("This is a test") =5468697320697320612074657374
HTA(GEP("This is a test"))=D4E869F3A069F3A0E1A07465F374

string$ Character string to convert to Even parity.

stmtref Program line number or label to transfer control to.

3. System Functions HSA()

ProvideX Language Reference V8.30 Back 450

HSA() Function HSA() Highest Sector AvailableHighest Sector Available
Format HSA(drive_num[,ERR=stmtref])

Where:

Returns Always 0 zero.

Description ProvideX includes the HSA() function for compatibility with Business Basic
languages where it returns the highest sector number available on the disk drive
specified. Since this function is not applicable in ProvideX, it always returns 0 zero.

drive_num Numeric value representing the disc drive number.

stmtref Program line number or label to transfer control to.

Note: Included for compatibility with other languages.

3. System Functions HSH()

ProvideX Language Reference V8.30 Back 451

HSH() Function HSH() Generate Modif ied ValueGenerate Modified Value
Format 1. Hash Value: HSH(string$[,Hkey$][,Htype [,KeyHashedWith]][,ERR=stmtref])

2. Encrypted Value: HSH(PASSWORD string$ WITH cipher$[,options][,ERR=stmtref])

3.Decrypted Value: HSH(EXTRACT string$ WITH cipher$[,options][,ERR=stmtref])

Where:

Returns Modified string value for the given data.

Description Depending on the format used, the HSH() function can return a hash value or a
encrypted/decrypted value for a given string.

Format 1: Return Hash Value
HSH(string$[,Hkey$][,Htype [,KeyHashedWith]][,ERR=stmtref])

This format returns a hash value for a given string. The hash value returned in a two-byte
string can be used to check the integrity of a character string. The initial value can be
used to calculate the hash value of an entire string by taking its component parts.

Hash Types
An optional numeric value (Htype) can be applied to represent the type of hash to
return for the data. Supported hash types are defined by the associated Htype values
listed below.

cipher$ Encryption/decryption method. See Recognized Methods, p.453.
EXTRACT Keyword indicating decryption.
options Supported encryption/decryption options:

KEY=string$ Key value to encrypt / decrypt the data with
SIZ=num Optional value to specify/override total length of key
value. If greater than length, key value will be padded with trailing
null characters.
TBL=value$ Optional initialization value used by some ciphers

PASSWORD Keyword indicating encryption.
string$ String expression whose value is to be returned.
Hkey$ String expression representing key to use during the hashing

operation. See Hash Types, p.451.
Htype Optional numeric value representing the type of hash to return for

the data. See Hash Types, p.451.
KeyHashedWith Optional numeric value (for Htype 7) used to specify which Htype

the Hkey$ is based on. See Hash Types, p.451.
stmtref Program line number or label to transfer control to.

3. System Functions HSH()

ProvideX Language Reference V8.30 Back 452

0 ProvideX 2-byte hash (default if not specified)
1 MD5
2 MD4
3 MD2
4 SHA1
5 MDC2
6 RIPEMD
7 HMAC
An invalid value causes Error #41 Invalid integer encountered. 0 is the
internal hash and is always available. If a hash type is not specified, 0 is assumed.

If Htype is from 1 to 7, OpenSSL libraries are required to perform the hash. Only
versions of ProvideX that support OpenSSL and have OpenSSL installed properly
will be able to access these hashes. The hash type must also exist within the
OpenSSL modules for the extended hash types to be available. Not all builds of
OpenSSL contain all possible hashes. If a specific hash type is not available, an
Error #99: Feature not supported is reported.

If Htype is 7 (HMAC), a key value (Hkey$) must be supplied for the hashing operation.
This must be 2 characters in length or an Error #46: Length of string
invalid is generated. Hkey$ is optional for when Htype is 0 and it is ignored for Htype
1 through 6.

If Htype is 7 (HMAC), an numeric value (KeyHashedWith) can be used to specify which
Htype the Hkey$ is based on (values 0 to 6). This only applies to Htype 7. The HMAC
hash is a special case. Data that has been hashed with a Htype such as MD5 will return
an MD5 hash key. When the original data and the MD5 hash key are hashed together as
an HMAC, the new HMAC hash is called a Message Authentication Code. An invalid
value results in an Error #41: Invalid integer encountered.

Examples
To get a ProvideX hash of a string:

PRINT hta(hsh("An internal ProvideX Hash"))
83C9

To get a ProvideX hash of a string based on a key:

PRINT hta(hsh("An internal ProvideX Hash based on a Key","K1",0))
FCC2

To get an MD5 hash:

PRINT hta(hsh("A string to be MD5 hashed",1))
C9755C05F3EF1704114446A04F4072DF

To get or check a Message for Authentication based on HMAC-SHA1:

Data$="This is a string of data"
SHA1Hash$ = HSH(Data$,4)
MessageAuthenticationKey$ = HSH(Data$, SHA1Hash$,7,4)
IF KeyReceived$<>MessageAuthenticationKey$
 THEN MSGBOX "Message has been tampered with"

3. System Functions HSH()

ProvideX Language Reference V8.30 Back 453

Formats 2 and 3: Return Encrypted or Decrypted Value
HSH(PASSWORD|EXTRACT string$ WITH cypher$[,fileopt][,ERR=stmtref])

This format returns a string expression to be encrypted or decrypted based on a
encryption/decryption method (cypher$ value). If string$ is an * astrisk and cypher$
is not supplied, then a comma-separated list of available encryption/decryption
methods is returned.

Recognized Methods
Encryption/decryption methods (cypher$ values) are supported by ProvideX;
however, the OpenSSL libraries used may not have been created with all the
available algorithms. If the OpenSSL libraries do not have the requested function,
the result will be an Error #99: Feature not supported. In addition, it is up
to the software developer to understand how to use any particular algorithm.

Where:

DES Data Encryption Standard
DESx Variant of DES
Rc4 Rivest Cipher 4
Idea International Data Encryption Algorithm
Rc2 Rivest Cipher 2
Bf Blowfish
Cast5 Alogorithm designed using the CAST design procedure. AKA Cast-128
Rc5 Rivest Cipher 5
Cbc Cipher Block Chaining mode
Ecb Electronic Code Book mode
Ofb Output Feedback mode
Cfb Cipher Feedback mode
ede Encrypt-Decrypt-Encrypt mode
Ede3 Variation of EDE

Bf-cbc
Bf-cfb
Bf-ecb
Bf-ofb
cast5-cbc
cast5-cfb
cast5-ecb
cast5-ofb
DES-cbc

DES-cfb
DES-ecb
DES-ede3-cbc
DES-ede3-cfb
DES-ede3-ecb
DES-ede3-ofb
DES-ede-cbc
DES-ede-cfb
DES-ede-ecb

DES-ede-ofb
DES-ofb
DESx-cbc
Idea-cbc
Idea-cfb
Idea-ecb
Idea-ofb
rc2-cbc
rc2-cfb

rc2-ecb
rc2-ofb
rc4
rc5_ofb
rc5-cbc
rc5-cfb
rc5-ecb

3. System Functions HTA()

ProvideX Language Reference V8.30 Back 454

HTA() Function HTA() Get Hex Value of St ringGet Hex Value of String
Format HTA(string$[,ERR=stmtref])

Where:

Returns Hex value of your string.

Description The HTA() function returns the hexadecimal value of a given character string. The
string returned by the HTA() function is always twice the length of the original
string and consists solely of the (hex) characters 0-9 and A-F.

Examples 0020 LET A$=HTA("CAT") ! yields 434154
0030 LET A$=HTA("01") ! yields 3031
0040 LET A$=HTA(BIN(10,2)) ! yields 000A

string$ String expression to convert to hexadecimal format.

stmtref Program line number or label to transfer control to.

3. System Functions HWN()

ProvideX Language Reference V8.30 Back 455

HWN() Function HW N() H ig hest U nused Window NumberHighest Unused Window Number
Format HWN(chan[,ERR=stmtref])

Where:

Returns Highest unused window number

Description The HWN() function returns an integer, reporting the highest unused window
number for a given file. If all window numbers are in use, this function will return
-1. If the file is not open or not a terminal, ProvideX returns Error #13: File
access mode invalid.

You can use the window number returned by the function in a subsequent
'WINDOW' mnemonic to create a new window. If no window number is passed to
the 'WINDOW' mnemonic, it will utilize the lowest unused window number.

The maximum number of windows allowed on a terminal device is 250.

chan Channel or logical file number of the terminal device whose highest unused
window number is to be reported (usually device (0) or the console)

stmtref Program line number or label to transfer control to.

Note: The HWN() function is affected by your setting for the 'B0' System Parameter,
p.656.

3. System Functions I3E()

ProvideX Language Reference V8.30 Back 456

I3E() Function I3E() Convert to /f rom IEEE For matConvert to/from IEEE Format
Formats 1. Convert From Internal Value to Floating Point: I3E(num[,ERR=stmtref])

2. Convert From Floating Point to Internal Value: I3E(string$[,ERR=stmtref])

Where:

Returns Numeric data, IEEE converted to/from ProvideX internal values.

Description The I3E() function converts data to/from IEEE floating point format and ProvideX
internal values. The primary purpose of this function is to allow for the conversion
of data between ProvideX and other applications.

Format 1: Convert From Internal Value to Floating Point
I3E(num[,ERR=stmtref])

If the function is passed a numeric expression, it will return an 8-byte string
containing the IEEE floating point value of the number.

Format 2: Convert From Floating Point to Internal Value
I3E(string$[,ERR=stmtref])

If the function is passed an 8-byte string, the string will be converted to an internal
ProvideX numeric value.

Example 0010 ! Program to convert values to square roots
0020 OPEN (1,ISZ=8) "FLTDTA"
0030 I=0
0040 LOOP: READ RECORD (1,IND=I,ERR=DONE) F$
0050 F$=I3E(SQR(I3E(F$)))
0060 WRITE RECORD (1,IND=I) F$
0070 LET I=I+1; GOTO LOOP
0090 DONE: CLOSE(1)
0100 END

num Numeric value to convert to 8-byte IEEE format (scientific notation).

string$ 8-byte string expression to convert from IEEE format to a numeric value.

stmtref Program line number or label to transfer control to.

3. System Functions IND()

ProvideX Language Reference V8.30 Back 457

IND() Function IND() Return Next Record Ind exReturn Next Record Index
Format IND(chan[,fileopt])

Where:

Returns Record index (next or specified record).

Description The IND() function returns the record index of either the next record in the file
specified or, on a Direct or Keyed file using the KEY= option, the record index for the
record identified by the key.

For Direct/ Keyed or Sort files without the KEY= option, the value returned is the
record index for the record with the next higher key value.

For variable length Direct/Keyed files, the value returned is an internal pointer to
the record.

For more information, see File Handling in the ProvideX User's Guide.

Example 0010 OPEN (13) "CUSTNO"
0020 LET I=IND(13,END=1000)
0030 READ (13,IND=I) R$
0040 PRINT "Rec#: ",I," Data: ", R$
0050 GOTO 0020
1000 PRINT "End-of-file"
1010 END

chan Channel or logical file number of the file to reference.

fileopt Supported file options (see also, File Options, p.810):
ERR=stmtref Error transfer
END=stmtref End-Of-File transfer
KEY=string$ Record key
KNO=num | name$ File access key number (num) or name (name$)
RNO=num Record number

stmtref Program line number or label to transfer control to.

3. System Functions INT()

ProvideX Language Reference V8.30 Back 458

INT() Function INT() Ret urn Integer Por tionReturn Integer Portion
Format INT(num[,ERR=stmtref])

Where:

Returns Integer portion of numeric value.

Description The INT() function returns the integer portion of the value specified. No rounding is
performed on the value. The fractional part of the value is truncated.

Examples A=INT(3.23) ! yields A=3
A=INT(-5.6) ! yields A=-5
A=INT(.9999) ! yields A=0

num Numeric expression whose integer portion is to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions IOL()

ProvideX Language Reference V8.30 Back 459

IOL() Function IOL() Get IOList SpecificationGet IOList Specification
Formats 1. In Composite String: IOL(composite$[,ERR=stmtref])

2. In Open File: IOL(chan[,ERR=stmtref])

Where:

Returns Object value of an IOList or composite string variable.

Description The IOL() function returns the object code value of an IOList for either an open file or a
composite string variable. If the specified file or string variable does not have an associated
IOLIST, ProvideX returns Error #81: Invalid IOLIST specification.

Examples 0100 DIM CUST$:IOL=0110
0110 IOLIST NAME$,ADR1$,ADR2$,SMAN$
0120 PRINT LST(IOL(CUST$))
-:run
IOLIST NAME$,ADR1$,ADR2$,SMAN$

0100 OPEN (1,IOL=*)"CUSTDB" ! Open with internal IOL
0110 READ DATA FROM "" TO IOL=IOL(1) ! Clears the IOList

composite$ Composite string variable whose IOLIST is to be retrieved. String
expression.

chan Channel or logical file number whose default IOLIST is to be returned.

stmtref Program line number or label to transfer control to.

Syntax Returns

IOL(chan:*) Returns the IOList for the file's embedded data dictionary

IOL(chan:^) Returns the alternate IOList

IOL(chan:KEY) Returns the IOList for the file's external key, if any.

Note: To convert the object code into a format you can display, pass it to the LST()
function.

3. System Functions IOR()

ProvideX Language Reference V8.30 Back 460

IOR() Function IOR() OR Compar isonLogical OR
Format IOR(value1[$],value2[$][,ERR=stmtref])

Where:

Returns Result of logical 'OR' comparison of two expressions/variables.

Description The IOR() function performs a bit-wise logical 'OR' comparison of two string or
numeric expressions/variables, and generates a value as a result. The length of the
two string expressions must be equal or ProvideX returns an Error #46: Length
of string invalid.

Therefore

IOR(41,42) yields Hex 43 01000011
IOR(41,25) yields Hex 65 01100101
IOR($5A$,DD) yields Hex DF 11011111

See Also XOR() Exclusive OR Comparison, p.554
AND() Logical AND, p.394

Example 0040 READ (1,END=1000)F$
0050 R$=IOR(F$(1,2),8080) ! Turn on high bit
0060 ...

stmtref Program line number or label to transfer control to.

value1[$]
value2[$]

Compared values. String or numeric expressions/variables. If strings,
value1$ must be the same length as value2$

Binary Result

0 IOR 0 0

1 IOR 0 1

0 IOR 1 1

1 IOR 1 1

3. System Functions JST()

ProvideX Language Reference V8.30 Back 461

JST() Function JST() J ust if y St ringJustify String
Format JST(string$,len[,jstcode[$]][,char$][,ERR=stmtref])

Where:

Returns Value used in OPT= option.

Description The JST() function converts a given character string (string$) to the length (len)
specified. It makes the string the desired length either by truncating the string$ or by
appending a defined pad character. The default is to pad with spaces.

If the length you specify is less than zero, ProvideX returns an Error #41:
Invalid integer encountered (range error or non-integer).

See Also PAD() Pad/Truncate String, p.496

Examples The following code sample uses asterisks to justify a numeric value to a length of 30
characters:

00180 LET chq_amt=1.98,cust_name$="ACME INC."
00190 LET chq_amt$="*****"+JST(STR(chq_amt),30,"*")
00200 PRINT 'CS',@(0,5),"Customer name :",JST(cust_name$,20),"| ",
00210 PRINT @(0,6),chq_amt$
-:run
Customer name :ACME INC. |
*****1.98**************************

char$ Optional string. Its first character is used to pad string$. If you omit
this, the default is to pad with blanks. String expression.

len Desired length of string. Numeric expression.

jstcode[$] Optional numeric or string parameter defining how to justify the
string:
0 or R Right justify.
1 or L Left justify - default.
2 or C Centre in string
If omitted, the string is left justified.

stmtref Program line number or label to transfer control to.

string$ String expression to be processed.

3. System Functions JST()

ProvideX Language Reference V8.30 Back 462

This example illustrates the use of alphnumeric versus numeric pad types in the JST()
function:

0100 ! ^100 - PAD and JST functions
0110 Orig$="Test String",Char$=".",PadLen=20
0120 print 'LF',"Original String: "+@(24)+'BR'+Orig$+'ER'+'LF'
0130 Type=0,Type$="L"; gosub JustifyIt; print
0140 Type=1,Type$="R"; gosub JustifyIt; print
0150 Type=2,Type$="C"; gosub JustifyIt
0160 stop
0170 !
0200 ! ^100
0210 JustifyIt:
0220 print "PAD(Orig$,"+str(PadLen)+","+quo+Type$+quo+","+quo+Char$+quo,
0230 print ") = "+@(24)+'BR'+pad(Orig$,PadLen,Type$,Char$)+'ER'
0240 print "JST(Orig$,"+str(PadLen)+","+quo+Type$+quo+","+quo+Char$+quo,
0250 print ") = "+@(24)+'BR'+jst(Orig$,PadLen,Type$,Char$)+'ER'
0260 return

3. System Functions JUL()

ProvideX Language Reference V8.30 Back 463

JUL() Function J UL() Retur n Julian DateReturn Julian Date
Formats 1. Julian from Numeric: JUL(year,month,day[,ERR=stmtref])

2. Julian from Day Format: JUL(string$[,ERR=stmtref])

Where:

Returns Julian date (converted from year, month, day).

Description The JUL() function is used to convert a date from year, month, day to a Julian date.
The Julian date is an integer: the number of days since the system base-date. By
default, in ProvideX this is January 1, 1970. Use the 'BY' system parameter to change
the base date.

Historically the true Julian calendar starts sometime around 4713 BC., but because of
errors in early calendars, dates prior to 1200 are not reliable. If you want the JUL()
function to return dates based roughly on the Julian calendar, set the 'BY' system
parameter to 0 zero.

See Also DAY_FORMAT Directive, p.64
DAY System Variable, p.557
DTE() Convert Date, p.422
'BY'= System Parameter, p.658.

Examples The following example converts a given date to Julian format and calculates the
difference from the current Julian date:

0010 INPUT "Enter Date (MM/DD/YY):",X$:"00/00/00"
0020 LET M=NUM(X$(1,2))
0030 LET D=NUM(X$(3,2))
0040 LET Y=NUM(X$(5,2))
0050 LET N=JUL(Y,M,D,ERR=0100)
0060 PRINT "That is ",N-JUL(0,0,0)," days from now"
0070 STOP
0100 PRINT "Invalid date"; GOTO 0010

year Numeric expression of the year. If your value is less than 100, the
current century is added to the value.

month Numeric expression of the month.

day Numeric expression of the day of the month.

string$ String in the same format as the DAY variable. String expression.

stmtref Program line number or label to transfer control to.

Note: To get the current Julian date, use the format JUL(0,0,0).

3. System Functions JUL()

ProvideX Language Reference V8.30 Back 464

-:RUN
Enter Date (MM/DD/YY):03/31/99
That is 23 days from now
-:

In the following example, the JUL() function accepts a valid DAY string and returns
the corresponding Julian date:

X$="01/01/A0"
DAY_FORMAT "MM/DD/AA"
PRINT JUL(X$)
 10957
PRINT DTE(10957:"%Y %Ml %D")
2000 January 1

JUL() can be used to determine if a given date is either Saturday or Sunday. Since
the JUL() function returns a day number, JUL (...) | 7 would provide a week day
number in the range 0-6. Depending on what is configured as the base year
(standard PVX is 1970, compatibility mode is 4714 BC) the day number changes; e.g.,

If 'BY'=1970,

 Sun=3, Mon=4, Tue=5, Wed=6, Thu=0, Fri=1, Sat=2

The weekend can be tested as follows:

 if ((jul(y,m,d)+3)|7)>=5 then <WEEKEND>

If 'BY'=0,

 Sun=6, Mon=0, Tue=1, Wed=2, Thu=3, Fri=4, Sat=5

The weekend can be tested as follows:

 if (jul(y,m,d)|7)>=5 then <WEEKEND>

3. System Functions KEC()

ProvideX Language Reference V8.30 Back 465

KEC() Function KEC() Return Key of Cur rent RecordReturn Key of Current Record
Format KEC(chan[,fileopt])

Where:

Returns Current key or current logical position in file

Description The KEC() function returns the current record's key. The result is based on:

• the current file access key or,

• the access key specified using the KNO= option.

The current logical position is the last key value specified on a READ or EXTRACT
regardless of whether a record was found.

Typically, the KEC() function is used after you read a record, to determine the key of
the record you just read (i.e., the key of the current record or current position in the
file). For more information, see File Handling in the ProvideX User's Guide.

Example 0010 OPEN (13) "CUSTNO"
0020 READ (13,KNO=0) R$
0030 LET K$=KEC(13), K1$=KEC(13,KNO=1)
0040 PRINT "Key: ",K$," Alt: ", K1$, " Data: ", R$
0050 GOTO 0020
1000 PRINT "End-of-file"
1010 END

chan Channel or logical file number of your given file.

fileopt Supported file options (see also, File Options, p.810):
ERR=stmtref Error transfer.
KNO=num | name$ File access key number (num) or name (name$).

stmtref Program line number or label to transfer control to.

3. System Functions KEF()

ProvideX Language Reference V8.30 Back 466

KEF() Function KEF() Ret urn First Key of FileReturn First Key of File
Format KEF(chan[,fileopt])

Where:

Returns Key of first record in file.

Description The KEF() function returns the key of the first record in the file specified. The result
is based on:

• the current file access key or,

• the access key specified using the KNO= option.

The KEF() function can also be used in TCP (Transmission Control Protocol) to
identify local sockets. For more information, see File Handling in the ProvideX User's
Guide.

Example 0010 OPEN (1) "CUSTNO"
......
0100 F$=KEF(1),L$=KEL(1)
0110 PRINT "Customers range from ",F$,"->",L$
......
1010 END

chan Channel or logical file number of the file to reference.

fileopt Supported file options (see also, File Options, p.810):
END=stmtref End-of-File transfer
ERR=stmtref Error transfer
KNO=num | name$ File access key number (num) or name (name$)

stmtref Program line number or label to transfer control to.

3. System Functions KEL()

ProvideX Language Reference V8.30 Back 467

KEL() Function KEL() Return Last Key of FileReturn Last Key of File
Format KEL(chan[,fileopt])

Where:

Returns Key of last record in file.

Description The KEL() function returns the key of the last record in the file specified. The result
is based on:

• the current file access key or,

• the access key specified using the KNO= option.

ProvideX supports the KEL() function for ODBC files. For more information, see File
Handling in the ProvideX User's Guide

Examples 0010 OPEN (1) "CUSTNO"
......
0100 F$=KEF(1),L$=KEL(1)
0110 PRINT "Customers range from ",F$,"->",L$
......
1010 END

chan Channel or logical file number of the file to reference.

fileopt Supported file options (see also, File Options, p.810):
END=stmtref End-of-File transfer
ERR=stmtref Error transfer
KNO=num | name$ File access key number (num) or name (name$).

stmtref Program line number or label to transfer control to.

3. System Functions KEN()

ProvideX Language Reference V8.30 Back 468

KEN() Function KEN() Ret urn Key Aft er NextReturn Key After Next
Format KEN(chan[,fileopt])

Where:

Returns Key of the record that follows the next record in the file.

Description The KEN() function returns the key of the record which directly follows the next
record in the file specified. The result is based on:

• the current file access key or,

• the access key specified using the KNO= option.

For ODBC files, the KEN() function supports some debugging tools:
KEN (nn) Returns last generated SQL statement passed to the ODBC driver
KEN (nn, IND=1)Returns cursor name for database
KEN (nn, IND=2)Returns ODBC handles.

For more information, see File Handling in the ProvideX User's Guide

Example 0010 OPEN (13)"INVDET"
0020 K$=KEY(13,END=1000)
0030 REM Last record is total line - different format
0040 KN$=KEN(13,END=0080); IF KN$(1,6)<>K$(1,6) GOTO 0080
0050 READ (13)IOL=8010 ! Get record
0060 GOSUB 7000 ! Process invoice line
0070 GOTO 0020
0080 READ (13)IOL=8010 ! Get total line
0090 GOSUB 7500; GOTO 0020
1000 END

To return the current ODBC SQL statement being passed to the ODBC driver:

OPEN (1) "[odb]Database;customer;key=custid"
READ (1,KEY="MIKE")
PRINT KEN(1)
 SELECT * FROM customer WHERE custid = 'MIKE'

chan Channel or logical file number of your given file.

fileopt Supported file options (see also, File Options, p.810):
END=stmtref End-of-File transfer
ERR=stmtref Error transfer
KNO=num | name$ File access key number (num) or name (name$).

stmtref Program line number or label to transfer control to.

3. System Functions KEP()

ProvideX Language Reference V8.30 Back 469

KEP() Function KEP() Ret urn Prior Record's KeyReturn Prior Record's Key
Format KEP(chan[,fileopt])

Where:

Returns Key of the prior record in file

Description The KEP() function returns the key of the record prior to the record in the file
specified. The result is based on:

• the current file access key or,

• the access key specified using the KNO= option.

If the current record is at the start of the file, there is no prior record. ProvideX
reports Error #2: END-OF-FILE on read or File full on write unless
you include an ERR= or END= option.

ProvideX supports the KEP () function for ODBC files. For more information, see
File Handling in the ProvideX User's Guide.

Example 0010 OPEN (13)"CUSTNO"
0020 READ (13,KEY="zzz",DOM=30) ! Go to End of file
0030 LET K$=KEP(13,END=1000)
0040 READ (13,KEY=K$)R$
0050 PRINT "Key: ",K$," Data: ",R$
0060 GOTO 0030
1000 PRINT "Back to the start"
1010 END

chan Channel or logical file number of your given file.

fileopt Supported file options (see also, File Options, p.810):
END=stmtref End-of-File transfer
ERR=stmtref Error transfer
KNO=num | name$ File access key number (num) or name (name$).

stmtref Program line number or label to transfer control to.

3. System Functions KEY()

ProvideX Language Reference V8.30 Back 470

KEY() Function KEY() Ret urn Key of Next RecordReturn Key of Next Record
Format KEY(chan[,fileopt])

Where:

Returns Key of next record in file

Description The KEY() function returns the key of either the next record in the file specified or,
via the IND= or RNO= options, the key of the record at the index/record number
specified. The result is based on:

• the current file access key or,

• the access key specified using the KNO= option.

For more information, see File Handling in the ProvideX User's Guide.

Example 0010 OPEN (13)"CUSTNO"
0020 LET K$=KEY(13,END=1000)
0030 READ (13,KEY=K$)R$
0040 PRINT "Key: ",K$," Data: ",R$
0050 GOTO 0020
1000 PRINT "End-of-file"
1010 END

chan Channel or logical file number of the file to reference.

fileopt Supported file options (see also, File Options, p.810):
END=stmtref End-of-File transfer
ERR=stmtref Error transfer
KNO=num | name$ File access key number (num) or name (name$)
IND=num Record index
RNO=num Record number.

stmtref Program line number or label to transfer control to.

3. System Functions KGN()

ProvideX Language Reference V8.30 Back 471

KGN() Function KGN() Gener at e Record KeyGenerate Record Key
Format KGN([ext_key$],data$,key_def$,key_num[,ERR=stmtref])

Where:

Returns Key of record in file, given the record's contents.

Description The KGN() function returns a string comprising the key of the record provided. This
function can be used to determine the value of an alternate (or primary) key of a
record, given the record's contents (and external key, if present).

When comparing keys with descending segments, an application can specify the key
number as a negative value. In this case, the descending segments will be inverted so
that a logical compare will function properly.

Example 0010 OPEN (13)"Cstfile"
0020 IF PRM('BX')=0 THEN X$=MID(FIB(13),85) ELSE X$=MID(FIN(13),86,385)
0030 K$=KEY(13,END=0070)
0040 READ RECORD (13,KEY=K$)R$
0050 PRINT "Key: ",K$," Alt: ",KGN(K$,R$,X$,1)
0060 GOTO 0030
0070 PRINT "End-of-file"
0080 END

ext_key$ Value of the external key. Optional. String expression.

data$ Contents of the data record. String expression.

key_def$ Key definition structure. String expression. This can be extracted using the
FIB() function at position 85 (in native ProvideX mode) or using the FIN()
function at position 86 for a length of 385 (in BBx emulation mode.)

key_num Key number (primary or an alternate key) to extract. Numeric expression.

stmtref Program line number or label to transfer control to.

3. System Functions LCS()

ProvideX Language Reference V8.30 Back 472

LCS() Function LCS() Ret urn Lower case St ringReturn Lowercase String
Format LCS(string$[,ERR=stmtref])

Where:

Returns Lowercase counterpart of string

Description The LCS() function returns the lower case counterpart of the original string (with all
upper case alphabetic characters replaced by their corresponding lower case characters).

See Also UCS() Return Upper Case String, p.546
DEF systab= Directives, p.74.

Example 0010 INPUT "Enter name: ",NAME$
0020 LET NAME$(2)=LCS(NAME$(2))
0030 LET NAME$(1,1)=UCS(NAME$(1,1))
0040 PRINT "Name is",@(10),": ",NAME$
-:RUN
Enter name: SMITH
Name is : Smith

string$ String expression whose lower case ASCII counterpart is to be returned.

stmtref Program line number or label to transfer control to.

Note: If you use an asterisk * instead of a string (i.e., LCS(*)) the function returns the
256 byte Lowercase Conversion Table.

3. System Functions LEN()

ProvideX Language Reference V8.30 Back 473

LEN() Function LEN() Return St ring LengthReturn String Length
Format LEN(string$[,ERR=stmtref])

Where:

Returns Integer, length of given string, 0 zero if null string.

Description The LEN() function returns an integer reporting the length of the given string. If the
given string is a null string ("") then the function returns a length of 0 zero.

Examples A=LEN("HELLO") ! yields 5
A=LEN("") ! yields 0
A=LEN("A"+"BC") ! yields 3
A=LEN(DAY) ! yields 8 (DAY variable is in format MM/DD/YY)

string$ String expression whose length is to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions LNO()

ProvideX Language Reference V8.30 Back 474

LNO() Function LNO() Retur n Line NumberReturn Line Number
Format LNO(num[,ERR=stmtref])

Where:

Returns Integer, line number of the line specified.

Description The LNO() function returns the line number of the line specified in its argument. This
can be used in an error handler to check where an error has occured; e.g.,

IF TCB(5)>LNO(Client_upd) THEN ...

This can also help to resolve problems where line numbers are hard-coded in a
program and then the RENUMBER directive is used to change them.

Examples LNO(1000) ! returns 1000
LNO(Label1) ! returns the line number where Label1 is.

num Numeric value or variable representing the line number.

stmtref Program line number or label to transfer control to.

3. System Functions LOG()

ProvideX Language Reference V8.30 Back 475

LOG() Function LOG() Retur n Base 10 Logar ithmReturn Base 10 Logarithm
Format LOG(num[,ERR=stmtref])

Where:

Returns Numeric, base ten logarithm.

Description The LOG() function returns the numeric base ten logarithm of a given number,
rounded to the current PRECISION setting. This is the inverse of the EXP() function.

ProvideX returns Error #40: Divide check or numeric overflow if the
numeric value is negative.

Examples 0010 PRINT EXP(LOG(90)/3) ! Print cube root of 90

num Numeric expression whose base ten logarithm is to be returned.

stmtref Program line number or label to transfer control to.

3. System Functions LRC()

ProvideX Language Reference V8.30 Back 476

LRC() Function LRC() Longitudinal-Redundancy CheckLongitudinal-Redundancy Check
Format LRC(string$[,ERR=stmtref])

Where:

Returns One-byte string, longitudinal checksum.

Description The LRC() function returns the longitudinal redundancy checksum of a character
string. The longitudinal redundancy check of a character string is a one byte string
resulting from a logical XOR() comparison of all the characters in the string.

Examples A$=HTA(LRC($0102$)) ! yields hex 03
A$=HTA(LRC($0305$)) ! yields hex 06

string$ Character string whose longitudinal redundancy checksum is to be
calculated.

stmtref Program line number or label to transfer control to.

Note: The LRC() function is used primarily in conjunction with synchronous
communications.

3. System Functions LST()

ProvideX Language Reference V8.30 Back 477

LST() Function LST() Retur n Lis t Form of St atementReturn List Form of Statement
Formats LST([EDIT][*]internal$[,ERR=stmtref])

Where:

Returns List format from compiled statement.

Description The LST() function converts a ProvideX statement from internal form to normal
source format. You must ensure that the string processed by the LST() function is a
statement in valid internal form. If it is not valid, ProvideX returns either Error
#30: Statement too complex -- cannot compile or Error #49: <*>
Internal program format error <*>.

Use the EDIT keyword to return a formatted statement and the asterisk * to display
colourized syntax (the 'CS' parameter must be on); e.g.,

X$=LST(EDIT *PGM(10)).

See Also '*H' Mnemonic, p.613
'CS' System Parameter, p.660

Examples 0030 INPUT "Enter statement to display:",A
0035 IF A=0 THEN GOTO 2000
0040 LET X$=PGM(A,ERR=1000)
0050 PRINT LST(X$)
0060 GOTO 0030
1000 PRINT "Cannot find statement"
1010 GOTO 0030
2000 PRINT "DONE"; STOP
-:run
Enter statement to display:50
0050 PRINT LST(X$)
Enter statement to display:
DONE

* Asterisk. Returns the listing in colourized syntax.

EDIT Keyword indicating that listing is to be returned with indented format.

internal$ Character string containing the internal (compiled) form of a ProvideX
statement. String expression; e.g., X$=LST(PGM(10)).

stmtref Program line number or label to transfer control to.

Note: There is a *CMD command line utility called COLOUR (or COLOR) that can be used
to display or alter the current settings. Typing COLOUR or COLOR at a ProvideX prompt
will display online help for this utility.

3. System Functions MAX()

ProvideX Language Reference V8.30 Back 478

MAX() Function MAX () Return Maximum ValueReturn Maximum Value
Format MAX (compare1,compare2,...[,ERR=stmtref])

Where:

Returns Numeric, largest value, given list of numerics.

Description The MAX() function evaluates and returns the maximum (largest) value of the
numeric values or expressions specified. There is no limit to the number of values or
expressions that can be passed to the MAX() function.

See Also MIN() Return Minimum Value, p.481

Examples In this example, MAX() evaluates an expression (12*3.7=44.4), a literal (44.8)
and a variable (evaluated, A=43.2):

0050 LET A=13.21*3.27
0060 LET B=MAX(12*3.7,44.8,A)
0070 PRINT B
->run
44.8

compare1,
compare2, ...

Comma-separated list of numeric values and/or expressions to be
compared.

stmtref Program line number or label to transfer control to.

Note: You can also use the ProvideX MAX() function to obtain statistical information
on ODBC data fields.

3. System Functions MEM()

ProvideX Language Reference V8.30 Back 479

MEM() Function MEM() Ret urn Memor y ValueReturn Memory Value
Formats 1. Get Address of String: MEM(var$[,ERR=stmtref])

2. Read Memory, 2 Bytes: MEM(address[,ERR=stmtref])

3. Read Memory, 'n' Bytes: MEM(address,bytes[,ERR=stmtref])

4. Change Memory: MEM(address,val$[,ERR=stmtref])

Where:

Returns Memory location and information.

Description The MEM() function provides direct access to memory location through the use of
pointers. ProvideX performs address validation and returns Error #41: Invalid
integer encountered (range error or non-integer) for an invalid
memory location.

Format 1 returns the address of your string variable.

Format 2 returns the contents of a word (16 bits) of memory. The value returned is a
binary value (integer in two's complement format).

Format 3 returns a string consisting of the data at the address specified for the
specified number of bytes.

Format 4 copies your character string value to the address given.

var$ Name of string variable whose address you wish to obtain.

address Memory address being referenced. Numeric expression.

bytes Number of bytes to return. Numeric expression.

val$ Value you wish to write. String expression.

stmtref Program line number or label to transfer control to.

Note: This function is mainly for use with external functions; i.e., using the functions
DLL() Call Windows DLL, p.418.

3. System Functions MID()

ProvideX Language Reference V8.30 Back 480

MID() Function MID() Retu rn Subst ringReturn Substring
Format MID(string$,offset[,len][,ERR=stmtref])

Where:

Returns Extracted portion of string (similar to substring).

Description Use the MID() function to extract a portion of a string. Using this function is similar
to using a substring, except that it can be used directly with the return value of a
function, variable or expression; e.g.,

->IF MID(MSE,22,1)>00 AND MID(MSE,22,1)<FF THEN %WDX$="[WDX]"

In addition, if the offset is negative, ProvideX uses it as an offset from the end of the
string. For example, MID(X$,-1) is the last character of X$. If the length is negative,
then ProvideX uses it as the number of characters preceding the offset. That is,
MID("ABCD",-1,-1) returns C (the first character preceding the last character) and
MID("abcde",-2,-4) yields abc.

By default, if this function is passed an invalid offset, it returns a null string. If
passed an invalid length, then it returns the rest of the string.

Example F_KSZ=DEC(00+MID(FID(0),11,1))

len Length of the substring.

offset Starting position of the substring. Numeric expression, integer. If the
integer is negative, the offset is taken from the end of the string.

stmtref Program line number or label to transfer control to.

string$ String expression whose hash value is to be returned.

3. System Functions MIN()

ProvideX Language Reference V8.30 Back 481

MIN() Function MIN() Ret urn Minimum ValueReturn Minimum Value
Format MIN(compare_1,compare_2, ... [,ERR=stmtref])

Where:

Returns Numeric, smallest value, given list of numerics.

Description The MIN() function returns the minimum (smallest) value of the numeric values or
expressions specified. There is no limit to the number of values or expressions that
can be passed to the MIN() function.

See Also MAX() Return Maximum Value, p.478

Example In this example, the MIN() function evaluates an expression (13/2.96=4.39), a
literal (4.5) and a variable (evaluated, A=5.69):

0010 A=12.345/2.71
0020 B=MIN(13/2.96,4.5,A); PRINT B
-:run
 4.39

compare1,
compare2, ...

Comma-separated list of numeric values and/or expressions to be
compared.

stmtref Program line number or label to transfer control to.

Note: You can also use the MIN() function to obtain statistical information on ODBC
data fields.

3. System Functions MNM()

ProvideX Language Reference V8.30 Back 482

MNM() Function MNM() Retur n Mnemonic ValueReturn Mnemonic Value
Format MNM(mnemonic$[,chan][,ERR=stmtref])

Where:

Returns String, command sequence for mnemonic.

Description The MNM() function returns the defined command sequence for the specified
mnemonic on the file given. The command sequence is typically the exact
transmission string to handle the mnemonic for the file.

The mnemonic must have been predefined using the MNEMONIC directive. The
MNM() function returns a null string if the mnemonic has not been defined.

See Also MNEMONIC Directive, p.210
Chapter 5. Mnemonics, p.577.

Example See if the terminal supports condensed print. If so, create window:

IF MNM('CP')=""
 THEN PRINT 'WINDOW' (0,0,80,25),'CS',
 ELSE PRINT 'WINDOW' (0,0,132,30),'CP','CS',

chan Channel or logical file number of the given file. If omitted, the default
is file 0.

mnemonic$ Name of defined mnemonic to look up, or the string value of the
mnemonic. String expression.

stmtref Program line number or label to transfer control to.

3. System Functions MOD()

ProvideX Language Reference V8.30 Back 483

MOD() Function MOD() Ret urn Mod ulu sReturn Modulus
Formats MOD(num,base[,ERR=stmtref])

Where:

Returns Numeric, modulus / remainder.

Description The MOD() function returns the modulus / remainder from a division of the first
expression by the second.

Examples A=MOD(10,3) ! yields A=1
A=MOD(10,5) ! yields A=0
A=MOD(9,3.5) ! yields A=2

The following conditions deal with leap year dates:

1040 IF MOD(Y,4)=0 THEN LET N.MAX=366,M.TBL$(3,2)="29" ELSE LET N.MAX=365,
1040:M.TBL$(3,2)="28"

Use of the pipe "|" is the equivalent of the syntax in line 1040 above:

1040 IF Y|4=0 THEN LET N.MAX=366,M.TBL$(3,2)="29" ELSE LET N.MAX=365,
1040:M.TBL$(3,2)="28"

base Modulus base value. Numeric expression.

num Value for which to calculate the modulus. Numeric expression.

stmtref Program line number or label to transfer control to.

Note: You can also use the pipe | operator to return a modulus value. The syntax is
as follows: num|base,ERR=stmtref.

3. System Functions MSG()

ProvideX Language Reference V8.30 Back 484

MSG() Function MSG() Ret urn Message TextReturn Message Text
Formats 1. By Message Number: MSG(err_msg,[,ERR=stmtref])

2. By Message Key: MSG(msg_key$,[param1, param2, ...][,ERR=stmtref])

3. Message Library Setting: MSG(*)

Where:

Returns Text associated with given message number or key.

Description The MSG() function returns the text of the message whose number or key is
specified. Use this function to obtain more information about errors generated in
ProvideX by a program and to return information from your own message libraries.

Use the DEF MSG directive to temporarily override the MSG() function.

See Also DEF MSG Directive, p.70
MESSAGE_LIB Directive, p.208
ERR System Variable, p.560.
Error Codes and Messages, p.828

Examples The following examples illustrate the different uses for the MSG() function.

Example 1:

0010 OPEN (1,ERR=1000)"PRINTR"
0020 OPEN (2,ERR=1000)"CUSTOM"
0030 READ (2,KEY="",ERR=1000)R$
0040 ...
1000 PRINT "Could not open PRINTR",'LF',MSG(RET)
1010 STOP

* MSG(*) returns the current MESSAGE_LIB settings. If more than
one MESSAGE_LIB is open, the function returns all the open
filenames in search order, each separated by the default field
separator, SEP(e.g., $8A$).

err_msg Number of the error message to return. Numeric expression. If
err_msg is a positive integer, it returns the associated message, as
described under Error Codes and Messages, p.828. If err_msg is
-1, it returns extended or external error information.

msg_key$ Message key to the Message Library file. String expression.

param1,
param2, ...

Optional parameters. You can use a list of values to replace the
parameters stored in the message.

stmtref Program line number or label to transfer control to.

3. System Functions MSG()

ProvideX Language Reference V8.30 Back 485

Example 2:

KEYED "MESSAGE.LIB",20,0,-256
OPEN (1)"MESSAGE.LIB"
WRITE RECORD (1,KEY="NOCUST")"Sorry but Customer %1 is not valid"
CLOSE (1)
MESSAGE_LIB "MESSAGE.LIB"
PRINT MSG("NOCUST","0001")
Sorry but Customer 0001 is not valid

Example 3:

0010 ! Returns the current message library name, if any is in effect
0020 PRINT MSG(*)

Example 4:

Use this function to obtain the ProvideX error message associated with an error
number:

-:?msg(14)
Error #14: Invalid I/O request for file state

3. System Functions MSK()

ProvideX Language Reference V8.30 Back 486

MSK() Function MSK() Scan St ring for MaskScan String for Mask
Format MSK(string$,mask$[,ERR=stmtref])

Where:

Returns Integer reporting starting offset.

Description Use the MSK() function to scan a string looking for a specific pattern of characters.
The value returned is an integer reporting the starting offset of the longest string
matching the given mask or pattern. The pattern defines the mask as a regular
expression or series of characters, some of which have a special meaning. The
following table lists those characters and their meanings. Combinations are allowed.

mask$ String containing the pattern / mask definition. If this value is null,
then the previously used pattern is reused. String expression.

stmtref Program line number or label to transfer control to.

string$ String to search. Maximum string size 8kb.

Mask Character. Format in Pattern$ Search

^ Caret
At start of regular
expression.

To find a match with the start of the
string being searched.

$ Dollar Sign$
At end of regular
expression.

To find a match with the end of the
string being searched.

. Period To find a match with any character

(string)

String of characters
(or other codes)
enclosed in
parentheses.

To define a sub-expression to match.

[string] String enclosed in
square brackets

To find a match with any character in
that string.

[^string]

Square bracketing
combined with a
caret ^ as the first
character of the
string.

To find a match with any character
except the characters in the string; e.g.,
[xyz] matches x, y, or z, while
[^xyz] matches a, b, c, but not
x, y, or z.

– Dash
2 characters
separated by – dash.

To specify a range.

[str–ing]
Combination of dash
within string in
square brackets.

To form expressions: e.g., [a-bd-z] to
search for a match with any lower case
letter except c.

3. System Functions MSK()

ProvideX Language Reference V8.30 Back 487

The MSK() function returns the starting offset in the search string$ (where it
matches the pattern specified). The MSL system variable and TCB(16) return the
length of the string found.

See Also MSL System Variable, p.567
TCB() Return Task Information, p.534
'TL' System Parameter, p.690,
'OM' System Parameter, p.678.
Operators, p.821

Example ->PRINT MSK("my name is Foxxy","[A-Z][a-z]*"),MSL
12 5

Here, MSK() reports the starting offset. (F, the 12th character, is the first uppercase
character.) MSL() reports the length of the string. (Foxxy is 5 characters long.)

* Asterisk
At the end of a
character (or
sub-expression).

To search for zero or more occurrences of
the character (or sub-expression);e.g., in
fo*, the * operates on the o; it
matches f, fo, foo etc.. but doesn't
match fa. The expression f(at)*
matches f, fat, fatat, fatatat, etc.

+ Plus Sign
At the end of a
character (or
sub-expression).

To find a match with 1 or more
occurrences of that character (or
sub-expression); e.g., fa+ matches
fa, faa, faaa, etc. but not f.

? Question Mark
At the end of a
character (or
sub-expression).

To indicate that it is optional. For
example, colou?r matches color or
colour and sea(horse)? matches
sea or seahorse.

| Vertical Bar
Separating two
characters (or
sub-expressions).

To find a match for either of the two
characters (or sub-expressions); e.g.,
c(at)|(ow) matches cat or cow and
at|(nd) matches at or and.

\ Backslash
Preceding a mask
character.

To indicate that the character that
follows is to be taken literally; e.g., to
search for multiple asterisks use **.

Mask Character. Format in Pattern$ Search

Note: When the 'TL' (Thoroughbred LIKE) system parameter is OFF, the LIKE operator
uses the same pattern matching that MSK() does. With the 'OM' (Old Mask) System
Parameter ON, MSK() behaviour is compatible with the UNIX GREP command.

3. System Functions MXC() / MXL()

ProvideX Language Reference V8.30 Back 488

MXC() / MXL() Functions MXC() and MXL() Return Maximum Co lu mn/LineReturn Maximum Column/Line
Formats 1. Return Maximum Columns: MXC(chan[,ERR=stmtref])

2. Return Maximum Lines: MXL(chan[,ERR=stmtref])

Where:

Returns Integer, zero-based, maximum columns/lines allowed for file/device.

Description The MXC() function returns an integer reporting the zero-based maximum number
of columns allowed for a file or device. MXL() returns an integer reporting the
zero-based maximum number of lines allowed for your given file or device. Use
these functions as a quick means to determine the size of the current display window
on a screen.

The functions MXC() and MXL() return the maximum available column and line
values for the channel based on the current default settings for paper size, printable
area, offset, margin, font and pitch.

Examples On a terminal where MXC(0)=79 and MXL(0)=24 with LEN(X$)=15:

0100 X$="THIS IS A TITLE"
0110 PRINT @(MXC(0)-LEN(X$)+1,0),X$! Right-justified on line 1
0200 PRINT @(0,MXL(0)),"F1-Help F4-Quit", ! Left-justified on bottom line

The next example returns the maximum column and line values for a given printer
(ASIS is the last printer opened on channel 30). The values are zero-based; i.e., the
MXC() value returned is 79 for 0-79 = 80 columns:

OPEN INPUT (30)"*WINPRT*;ASIS"
C=MXC(30)+1 ! For this printer MXC(30) returns 79, C=80 (0-79)
L=MXL(30)+1 ! For this printer MXL(30) returns 55, L=56 (0-55)
CLOSE (30)

chan Channel or logical file number of the file to reference, typically 0 (zero,
for the current display window). Use an integer for a device channel (e.g., a
printer). Numeric expression.

stmtref Program line number or label to transfer control to.

3. System Functions NEW()

ProvideX Language Reference V8.30 Back 489

NEW() Function NEW () Create new ObjectCreate New Object
Formats 1. Create Object: NEW(class$[,param1[$], param2[$],...][,ERR=stmtref])

2. Clone Object: NEW(obj_id[,ERR=stmtref])

Where:

Returns Object Identifier.

Description The NEW() function is used in Object Oriented Programming to create a new object
based on a specified class name or an existing object (obj_id). If the class name
already exists, then its definition is used. If it has not been defined previously, the
system attempts to load the program class.pvc and execute/define the DEF CLASS
within it (the DEF CLASS clause must be at the start of the program). If the system is
unable to properly determine the class definition, an Error #90:"Unable to
locate Object class definition" is generated.

In the example below, if the class definition for Customer does not already exist in
memory, then the system attempts to load the program Customer.pvc:

Cst = NEW ("Customer")

If this is successful, the NEW() function returns the object identifier assigned to the
object. The label ON_CREATE is called to initialize the object (if ON_CREATE logic exists
in the class definition). Optional parameters can also be used with the NEW() function
to be passed on to the ON_CREATE entry point; e.g.,

C = NEW("Customer", File_number)
In Customer.pvx:
0010 ON_CREATE: ENTER File_no

See Also DEF CLASS Directive, p.65
REF() Function, p.512
Data Integration, User’s Guide

class$ Name of class for creating new object. String expression.

param1[$], ... Optional parameters to be entered in the object’s ON_CREATE logic.

obj_id Object identifier of an existing Object. The cloning process creates a
duplicate with all properties copied. However, it does not run the
On_Create for the new clone nor provide access to files from the
original

stmtref Program line number or label to transfer control to.

Note: Use REF() to increment the reference count.

3. System Functions NOT()

ProvideX Language Reference V8.30 Back 490

NOT() Function NOT() Inver t Str ing Bits/Logical C onditionInvert String Bits/Logical Condition
Formats 1. Invert String: NOT(data$[,ERR=stmtref])

2. Invert Logical Condition: NOT(num[,ERR=stmtref])

Where:

Returns Inverted value, string or numeric.

Description This function returns the inverted value of a string or numeric (i.e., with all ON bits
turned OFF and vice versa).

Format 1: Invert String

NOT(data$[,ERR=stmtref])
The NOT() function inverts the value of the bits in the character string specified. The
string returned by the NOT() function will be the same length as the given data
string. All OFF bits in the string will be returned ON, while all ON bits will be
returned OFF. The string expression can be a literal like "abc" or $8A$, a variable
such as A$, or an expression using operators, such as A$="1234"; e.g.,

A$=NOT($0010$) yields A$=$FFEF$
A$=NOT($FF00FF$) yields A$=$00FF00$
A$=NOT($5A5A$) yields A$=$A5A5$

Format 2: Invert Logical Condition

NOT(num[,ERR=stmtref])
Use this format to invert a logical condition. If the result of the condition is 0 (false),
this function returns 1 (true). Otherwise this function returns 0 (false); e.g.,

IF NOT(CST_ID$=CMPR_ID$)
 THEN GOSUB NO_MATCH

data$ Data whose bits are to be inverted. String expression.

num Value for inverting a logical condition. Numeric expression.

stmtref Program line number or label to transfer control to.

3. System Functions NUL()

ProvideX Language Reference V8.30 Back 491

NUL() Function NU L() Ret urn Test for NullReturn Test for Null
Formats NUL(string$[,ERR=stmtref])

Where:

Returns Numeric true/false code, 1 or 0.

Description The NUL() function returns a numeric status code. The value returned is 1 (true) if
the string expression is null or contains nothing but spaces. If the string contains
data other than spaces, then this function returns 0 (false).

Example In this example, the NUL() conditions force the user back to the prompts to put data
in mandatory fields:

0010 BEGIN
0020 INPUT EDIT "Enter your Name: ",N$
0030 IF NUL(N$) THEN PRINT "Your name is required. ",; GOTO 0020
0040 INPUT EDIT "Address: ",A$
0050 IF NOT(NUL(A$)) THEN GOTO 1000 ELSE GOTO 0040
1000 PRINT "DONE"; STOP
-:RUN
Enter your Name:
Your name is required. Enter your Name: IDA WANNA
Address:
Address:
Address: 123 ANY ST.
DONE
-:?nul(a$),nul(n$)
0 0

string$ String expression to be tested for null value.

stmtref Program line number or label to transfer control to.

3. System Functions NUM()

ProvideX Language Reference V8.30 Back 492

NUM() Function NU M() Convert St ring to ValueConvert String to Value
Formats NUM(string$[,ERR=stmtref])

Where:

Returns Numeric value from string.

Description The NUM() function returns the numeric value of a numeric expression in a string
(e.g., 19990317 from "19990317"). The string is evaluated and converted to a
numeric value.

If your given string does not contain a valid numeric value, ProvideX returns an
Error #26: Variable type invalid. Your string expression can include any
number of the following valid characters: 0-9, a space, a comma, an equals sign, or a
dollar sign. You can also include one decimal point along with one sign character
(either '-' or '+').

NUM() always ignores the decimal point and thousands separator settings in the
'DP' and 'TH' system parameters.

Examples A=NUM("1.34") ! Yields 1.34
A=NUM("-1,005.") ! Yields -1005
A=NUM("A",ERR=50) ! On error, transfers to 0050 and sets ERR=26

string$ Character string whose value is to be converted to a numeric value.
Numeric in string expression (e.g., "19990317").

stmtref Program line number or label to transfer control to.

3. System Functions OBJ()

ProvideX Language Reference V8.30 Back 493

OBJ() Function OBJ() Retur n Object Infor mationReturn Object Information
Formats OBJ(ctl_id,ERR=stmtref)

Where:

Returns String, 64 characters, information about custom control object.

Description The OBJ() function returns a string containing information about a given custom
control object (i.e., BUTTON, LIST_BOX, etc.). If the control doesn't exist, ProvideX
returns an Error #65: Window element does not exist or already
exists. The example below shows what is returned for existing LIST_BOX 10.
The string returned by the OBJ() function contains 64 characters:

0020 LIST_BOX 10,@(10,10,60,10),FMT="L8 B2 L20 C10 N15 C3"
->?hta(obj(10))
00040000000A000A003C000A0000000000000978004E00CE01E40092004F009501E2009000000000
00.

ctl_id Control ID number that is assigned to each control when created. Numeric
expression. If 0 zero, information about the current window is returned

stmtref Program line number or label to transfer control to.

Characters Information Returned by OBJ()

1,2 Object Type:
0001 Push Button
0002 Check Box
0003 Tri_State Check Box
0004 Standard List Box
0005 Variable List Box
0006 Drop Box
0007 Variable Drop Box
0008 Multi-Line Edit Box
0009 Radio Buttons
$000A$ External VBX
$000B$ List View
$000C$ Tree View
$000D$ Grid
0010 Vertical Scroll Bar
0020 Horizontal Scroll Bar

3. System Functions OBJ()

ProvideX Language Reference V8.30 Back 494

3,2 State:
0000 Additive bit state: nothing listed below is happening
0001 Drop box open
0002 Control changed: issue CTL on closure
0004 Control has focus
0008 Control is dropped
0010 Insert mode for typing
0020 Temporary font in effect
0040 Ignore format
0080 Temporarily non-paint
0100 Notification pending "signal" button
0200 Focus changed due to signal
0400 Hide until input
0800 Button is down
1000 Focus interrupt is deferred
2000 Input must have implied decimal point
8000 Disabled object

For example, to detect enabled / disabled NOMADS control:
X$=OBJ(OBJECT_NAME.CTL)

IF AND(X$(3,2),$8000$)=$8000$ THEN PRINT "Object is disabled"

5,2 Column

7,2 Line

9,2 Width

11,2 Height

13,4 Visual screen attributes at time of creation

17,4 Operating system handle

21,2 Left Pixel }… Includes Border

23,2 Top Pixel }… Includes Border

25,2 Right Pixel }… Includes Border

27,2 Bottom Pixel }… Includes Border

29,2 Left Viewable Column

31,2 Top Viewable Row

33,2 Viewable # of Columns

35,2 Viewable # of Rows

Characters Information Returned by OBJ()

3. System Functions OPT()

ProvideX Language Reference V8.30 Back 495

OPT() Function OPT() Retur n File OPEN Opt ion sReturn File Open Options
Format OPT(chan[,ERR=stmtref])

Where:

Returns Value used in OPT= option.

Description The OPT() function returns the value used in the OPT= option of the OPEN directive
for the given file. If the file referred to in the OPT() function is not open, ProvideX
returns an Error #13: File access mode invalid. If you omitted the OPT=
option for an open file, the OPT() function returns a null string.

Use this function primarily with device drivers to deal with such processes as
generating banners and multiple copies.

See Also OPEN Directive, p.232.

Example 00040 ! Report OPT() value for open COM port:
00050 LET settings$="9600,n,8,1,x"
00060 LET port$="COM2"
00070 OPEN (1,ISZ=1,OPT=settings$)port$
00080 PRINT OPT(1)
00090 END
-:run
9600,n,8,1,x

chan Channel or logical file number of the file to reference.

stmtref Program line number or label to transfer control to.

3. System Functions PAD()

ProvideX Language Reference V8.30 Back 496

PAD() Function PA D() Pad/Tr uncat e St ringPad/Truncate String
Format PAD(string$,len[,pad_code][,char$][,ERR=stmtref])

Where:

Returns Value used in OPT= option.

Description The PAD() function converts a given character string (string$) to the length (len)
specified. It makes the string the desired length either by truncating the string$ or by
appending the defined pad character. The default is to pad with spaces.

If the length you specify is less than zero, ProvideX returns an Error #41:
Invalid integer encountered (range error or non-integer).

See Also JST() Justify String, p.461

Examples The following code uses asterisks to pad a numeric value to a length of 30 characters:

00180 LET chq_amt=1.98,cust_name$="ACME INC."
00190 LET chq_amt$="*****"+PAD(STR(chq_amt),30,"*")
00200 PRINT 'CS',@(0,5),"Customer name :",PAD(cust_name$,20),"| ",
00210 PRINT @(0,6),chq_amt$
-:run
Customer name :ACME INC. |
*****1.98**************************

This code sample illustrates the use of alphnumeric versus numeric pad types in the
PAD() function:

0100 ! ^100 - PAD function
0110 Orig$="Test String",Char$=".",PadLen=20
0120 print 'LF',"Original String: "+@(24)+'BR'+Orig$+'ER'+'LF'
0130 Type=0,Type$="L"; gosub PadIt; print
0140 Type=1,Type$="R"; gosub PadIt; print

char$ Optional string. Its first character is used to pad string$. If you omit
this, the default is to pad with blanks. String expression.

len Desired length of string. Numeric expression.

pad_code[$] Optional parameter defining how to pad the string, either numeric
or string:
0 or L Pad on Left (right justify)
1 or R Pad on Right (left justify) - default
2 or C Centre in string
If omitted, the string is padded to the right.

stmtref Program line number or label to transfer control to.

string$ String expression to be processed.

3. System Functions PAD()

ProvideX Language Reference V8.30 Back 497

0150 Type=2,Type$="C"; gosub PadIt
0160 stop
0170 !
0180 PadIt:
0190 print

"PAD(Orig$,"+str(PadLen)+","+pad(str(Type),3,2)+","+quo+Char$+quo,
0200 print ") = "+@(24)+'BR'+pad(Orig$,PadLen,Type,Char$)+'ER'
0210 print "PAD(Orig$,"+str(PadLen)+","+quo+Type$+quo+","+quo+Char$+quo,
0220 print ") = "+@(24)+'BR'+pad(Orig$,PadLen,Type$,Char$)+'ER'
0230 return

3. System Functions PCK()

ProvideX Language Reference V8.30 Back 498

PCK() Function PCK() Pack Numeric DataPack Numeric Data
Format PCK(num[,size[,ERR=stmtref]])

Where:

Returns String expression whose value represents a packed number.

Description PCK() is used to pack a numeric value into a string expression. It is the counterpart
of the UPK() function.

The packing algorithm used takes a numeric value and splits it into a series of two
digit values where each of the two digit values represents a number between 0 and
99. These numbers are then added to 32 to create the series of single-byte printable
characters that comprise the packed string. To unpack the value each byte of the
string has 32 subtracted from it and the resultant values become a series of 2-digit
values in the final result.

Should the value of any two-digit pair (when added to 32) equal or exceed the
standard file separator ($8A$), the value will be incremented by one when the
output string is created. When unpacking the string, any byte exceeding the field
separator will be reduced by one prior to subtracting 32.

See Also UPK() Unpack Numeric Data, p.548,
CMP() Compress Data, p.404

num Numeric value to be packed.

size Integer from 1 to 8 specifying the number of characters in the resultant
string. If the value is too large for the size of the packed result, excess
digits on the left are discarded. If no size is included, then the default is 8.

stmtref Program line number or label to transfer control to.

Note: This function is not necessarily compatible with all Business Basics

3. System Functions PFX()

ProvideX Language Reference V8.30 Back 499

PFX() Function PFX () Return Pr ef ix ValueReturn Prefix Value
Formats 1. Return Specific Prefix: PFX(num)[,ERR=stmtref])

2. Return Prefix for PGN: PFX(PGN[,ERR=stmtref])

Where:

Returns String, current value of given PREFIX.

Description The PFX() function returns the current value of your given prefix number. If no
prefix has been defined, the function will return a null string. If your specific prefix
has been disabled, ProvideX returns an Error #14: Invalid I/O request
for file state. (Use an ERR= option to transfer control on the error.)

You can obtain the PREFIX FILE value by using PFX(-1). The PFX system variable
contains the current PREFIX(0) value.

See Also PREFIX Directive, p.249,
PFX System Variable, p.568

Example 4000 REM
4010 LET I=-1
4020 LET X$=PFX(I,ERR=4040)
4030 PRINT "PREFIX("+STR(I)+")=",X$
4040 IF I<=8 THEN LET I=I+1; GOTO 4020
4050 PRINT "PREFIX PGN=",PFX(PGN);STOP
->GOTO 4000
->RUN
PREFIX(-1)=
PREFIX(0)=\OTHER\===\ \OTHER\CUST\CASHRCPT\ \OTHER\CUST\MSC\ \OTHER\CUST\SALES\
PREFIX(2)=\MANUALS\===\ \PVX\TESTS\
PREFIX(3)=
PREFIX(4)=
PREFIX(5)=
PREFIX(6)=
PREFIX(7)=
PREFIX(8)=
PREFIX(9)=
PREFIX PGN=\OTHER\PGMS\===\ \OTHER\PGMS\PVX\ \OTHER\PGMS\CUST\

num PREFIX number to use. Numeric expression.

stmtref Program line number or label to transfer control to.

3. System Functions PGM()

ProvideX Language Reference V8.30 Back 500

PGM() Function PGM() Ret urn Progr am LineReturn Program Line
Formats PGM(lineno[,prog_level][,ERR=stmtref])

Where:

Returns String, compiled format of statement.

Description The PGM() function returns a string containing the internal (compiled) format of a
given program statement number. If the line number is -1, the main (level 1)
program name is returned; -2 returns the current program name and -3 returns the
complete name of the program as specified on the CALL/LOAD/PERFORM or RUN.

If the statement number does not exist, and an ERR= option is specified, ProvideX
returns Error #21: Statement number is invalid and transfers control to
stmtref. If the statement number does not exist, and the ERR= option is omitted,
ProvideX returns the next higher statement.

Examples The following examples illustrate different uses for the PGM() function.

Example 1:
1030 SWAPTST:
2:
2:A$=PGM(-1)
2:B$=PGM(-2)
2:PRINT A$," | ",B$
C:\Program Files\Sage Software\ProvideX\PGM\PVX_MAINPR | C:\Program

Files\Sage Software\ProvideX\PGM\PVX_SUBPR

Example 2:
0010 ! testpgm.-3
0020 CALL PGN+";label1;additional info"
0030 STOP
0040 LABEL1:
0050 PRINT "pgm(-3)='",PGM(-3),"'"
0060 EXIT
pgm(-3)='C:\Program Files\Sage

Software\ProvideX\testpgm.-3;label1;additional info'

lineno Statement line number. Numeric expression. Use an integer from 1 to
64999. -1, -2, or -3 returns program names instead; see description below.

prog_level Optional numeric value indicating which program level to return.

stmtref Program line number or label to transfer control to.

3. System Functions PGM()

ProvideX Language Reference V8.30 Back 501

Example 3:
0380 REM
0390 INPUT "Enter statement to display OR <F4> to Stop: ",A
0400 IF CTL<>4 THEN LET X$=PGM(A,ERR=0440) ELSE GOTO 0430
0410 PRINT LST(X$)
0420 GOTO 0390
0430 PRINT "DONE"; STOP
0440 PRINT "Error Transfer Works"; STOP
64999 PRINT "Cannot find statement"; END
-:run
Enter statement to display OR <F4> to Stop: 400
0400 IF CTL<>4 THEN LET X$=PGM(A,ERR=0440) ELSE GOTO 0430
Enter statement to display OR <F4> to Stop: 7000
64999 PRINT "Cannot find statement"; END
Enter statement to display OR <F4> to Stop: <F4> (not printable)
DONE
-:run
Enter statement to display OR <F4> to Stop: 65999
Error Transfer Works

3. System Functions POS()

ProvideX Language Reference V8.30 Back 502

POS() Function POS() Scan St ringScan String
Format POS(pattern$ {= ...}string$[,step[,instance]][,ERR=stmtref])

Where:

Returns Integer, starting position where relationship is satisfied (0 if none)

Description The POS() function scans the string$ to determine where a portion of it will satisfy
the relationship with the pattern string. The function returns an integer reporting the
starting position in string$ where the relationship is satisfied, or 0 zero if no position
satisfies the relationship.

Use the step value to set the logical increment for the next position to be checked.
The default is to move one (1) position at a time. If the value of the increment is
negative, then the string is scanned from back to front.

Indicate the instance or occurrence for which you want to obtain the POS() value. If
this value is omitted, the default is 1 (the first instance found). If the value is 0, the
POS() function returns the total number of matches found.

Examples The following examples illustrate the different uses for the POS() function.

Example 1:
Given A$="The quick brown fox":
POS("q"=A$) ! yields 5
POS("z"=A$) ! yields 0

Example 2:
Given A$="The quick brown fox":
POS("q"=A$) ! yields 5
POS("z"=A$) ! yields 0
POS("o"=A$) ! yields 13
POS("o"=A$,-1) ! yields 18 - Scan from end (fox)
POS("o"=A$,1,2) ! yields 18 - Second occurrence (fox)
POS("o"=A$,2) ! yields 13 - Checks every 2nd position
POS("r"<A$) ! yields 6 - "u" is first char. > "r"

{= ...} Relationship operator. Define the relationship for the string comparison:
: colon searches for any of the pattern characters in string$
^ caret searches for first instance of character in string$, not in pattern$
= equals sign searches for exact match

 < > greater/less than symbols, etc.

instance Numeric expression tells ProvideX which occurrence(s) to report when
the pattern is found in the string.

pattern String value or expression to scan for.

step Increment value of the intervals. Optional. Numeric expression.

stmtref Program line number or label to transfer control to.

string$ Character string or variable containing value to be converted to binary.

3. System Functions PRC()

ProvideX Language Reference V8.30 Back 503

PRC() Function PRC() Round Number to PrecisionRound Number to Precision
Format PRC(num[,precision][,ERR=stmtref])

Where:

Returns Numeric value, rounded to a set precision.

Description The PRC() function returns a given numeric value (num) rounded to the set
precision. If a precision parameter is supplied, the PRC() function rounds the value
based on the new precision. If precision is not supplied, then the value is rounded to
the current PRECISION in effect. .

If you use an invalid value (e.g., >18), ProvideX returns Error #41: Invalid
integer encountered (range error or non-integer).

See Also PRECISION Directive, p.248,
ROUND Directive, p.293
FLOATING POINT Directive, p.133

Example 0010 LET A=PRC(1.3456); PRINT A,
0020 LET A=PRC(1.3456,0); PRINT @(15),A,
0030 LET A=PRC(1.3456,3); PRINT @(25),A,
0040 LET A=PRC(1.3456,2); PRINT @(40),A,
-:run

The results will vary, depending on current precision and rounding:

1.35 1 1.346 1.35-: ! PRECISION 2, ROUND OFF
1.35 1 1.35 1.35-: ! PRECISION 2, ROUND ON
.13456E+01 .1E+01 .1346E+01 .135E+01-: ! PRECISION -1

num Value to be rounded. Numeric expression.

precision Precision to which to round. Optional. Numeric expression. Integer from 0
to 18. If omitted, rounding is done to the current precision in effect.

stmtref Program line number or label to transfer control to.

Note: There is one exception to the above. A ROUND ON directive will truncate longer
values to the current PRECISION in effect.

3. System Functions PRM()

ProvideX Language Reference V8.30 Back 504

PRM() Function PRM() Ret urn Parameter ValueReturn Parameter Value
Format PRM(param[,ERR=stmtref])

Where:

Returns Current value of system parameter, or status code if switch.

Description The PRM() function returns the current value of the specified system parameter
unless the parameter is a switch. The following numeric status codes are returned for
a switch:

 0 if the switch is off,
 1 if the switch is on,
-1 if the specified parameter does not exist.

See Also SET_PARAM Directive, p.306

Examples This temporarily changes the 'BY' parameter to obtain a new date:

0100 PRINT "Valentine days.."
0110 LET SV_BY=PRM('BY')
0120 FOR Y=1999 TO 2009
0130 SET_PARAM 'BY'=Y
0140 PRINT DTE(31+14-1:"%Dl %Ml %D/%Y")
0150 NEXT Y
0160 SET_PARAM 'BY'=SV_BY
-:run
Valentine days..
Sunday February 14/1999
Monday February 14/2000
Wednesday February 14/2001
Thursday February 14/2002
Friday February 14/2003
Saturday February 14/2004
Monday February 14/2005
Tuesday February 14/2006
Wednesday February 14/2007
Thursday February 14/2008
Saturday February 14/2009

param Two-character valid system parameter code, enclosed in single quotes.
See the section on accepted system parameters. String expression.

stmtref Program line number or label to transfer control to.

3. System Functions PRM()

ProvideX Language Reference V8.30 Back 505

PRM() returns a specific parameter's current setting (or the Boolean value for a
switch):

->?prm('ah')
0
->set_param 'ah'
->?prm('ah')
1

The parameter’s status is returned even when it's hidden from the PRM variable's
contents listing:

->?prm('!i') ! hidden unless ON
0

3. System Functions PTH()

ProvideX Language Reference V8.30 Back 506

PTH() Function PTH() Ret urn PathnameReturn Pathname
Format PTH(chan[,ERR=stmtref])

Where:

Returns Pathname of open file.

Description The PTH() function returns the operating system path of the file specified. (The
value returned is an ASCII string reporting the full pathname, including directories
and the filename.) If the file is a device (e.g., a printer), the device name is returned.

Example With "C:\Documents and Settings\Default User\Application
Data\ar" as current directory:

0010 OPEN (26)"PRODFL"
0020 PRINT "Just opened file: ",PTH(26)
0030
RUN
Just opened file: C:\Documents and Settings\Default

User\Application Data\ar\PRODFL

PTH() returns the device name when the file is a device:

-:OPEN (30)PRINTER$
-:?PTH(30)
LPT1

chan Channel or logical file number of file whose pathname is to be returned.

stmtref Program line number or label to transfer control to.

Note: The file must be open for the PTH() function to operate.

3. System Functions PUB()

ProvideX Language Reference V8.30 Back 507

PUB() Function PU B() List Pub lic Progr am sList Public Programs
Format PUB(index[,ERR=stmtref])

Where:

Returns String, addressed program information.

Description The PUB() function returns a string reporting the names, starting addresses and sizes of
all programs for which the ADDR directive is active. The information is returned as a
character string containing the name and description of each program addressed.

The index indicates the relative program number in the ADDR table. ProvideX
updates the table to account for your subsequent ADDR and DROP directives and
changes index numbers accordingly (They're not static.) ProvideX returns Error
#41: Invalid integer encountered (range error or non-integer) if
no entry in the ADDR table exists for your given index.

The table below lists the contents of the string returned by the PUB() function:

See Also ADDR Directive, p.30,
DROP Directive, p.95.

Examples 0010 LET A$=PUB(1)
0020 PRINT A$(17) ! C:=$433A$, starts at position 17 (see below)
0030 PRINT HTA(A$)
-: run
C:\MANUALS\PVX\TEST
03BD0000000080C51000000000000000433A5C4D414E55414C535C5056585C54455354

index Index in the ADDR table for the entry to be returned. Numeric expression.

stmtref Program line number or label to transfer control to.

Byte Contents

1 to 2 Program size in bytes

3 01

4 to 16 Reserved for ProvideX use

17 + Full Pathname to program

3. System Functions RCD()

ProvideX Language Reference V8.30 Back 508

RCD() Function R CD() Retu rn Next RecordReturn Next Record
Format RCD(chan[,fileopt])

Where:

Returns Contents of next or given record.

Description The RCD() function returns the contents of either the next record in the given file or
of the record identified in a KEY=, RNO=, or IND= option. ProvideX effectively
issues a READ RECORD directive when it encounters this function and returns the
contents of the given record.

See Also READ RECORD Directive, p.275

Example 0010 OPEN (13)ARG(-1) ! pvx.ini
0020 PRINT RCD(13,END=40)
0030 GOTO 0020
0040 STOP
-:run
[WindowFrame]
TypeSizeLoc=1,648,485,84,340

chan Channel or logical file number of file to reference.

fileopt Supported file options (see also, File Options, p.810):
DOM=stmtref Missing record transfer
END=stmtref End-Of-File transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key value
KNO=num | name$ File access key number (num) or name (name$)
RNO=num Record number

3. System Functions RDX()

ProvideX Language Reference V8.30 Back 509

RDX() Function RDX() C onver t ASCII to Radix-40Convert ASCII to Radix-40
Format RDX(ascii$[,ERR=stmtref])

Where:

Returns RADIX-40 equivalent of given ASCII string.

Description The RDX() function is used to convert data from normal ASCII to Radix-40.
Conversion to Radix-40 compresses three characters (any of 0-9, A-Z, ., -, $, or space)
into two bytes of data (16 bits).

To convert data back to ASCII, use the inverse function, TRX().

See Also TRX() Convert Radix-40 to ASCII, p.542

Example 0010 LET A$=LST(PGM(65000)); PRINT "string: ",QUO,A$,QUO
0020 PRINT HTA(A$)
0030 PRINT HTA(RDX(A$))
-:run
string: "65000 END "
363530303020454E4420
2CB106686E600000

ascii$ Character string containing ASCII data. String expression.

stmtref Program line number or label to transfer control to.

3. System Functions REC()

ProvideX Language Reference V8.30 Back 510

REC() Function REC() Expand IOList SpecificationExpand IOList Specification
Formats 1. Expand IOList from Object Code: REC(iol_obj$[,REC=name$][,ERR=stmtref])

2. Expand from IOList: REC(IOL=iolref[,REC=name$][,SEP=char$][,ERR=stmtref])

3. Return Default Value: REC(FILE chan[,ERR=stmtref])

Where:

Returns String, name/contents of IOList.

Description The REC() function returns the name or contents of an IOList and can be used to
define a record prefix.

Format 1: Expand IOList from Object Code
REC(iol_obj$[,REC=name$][,ERR=stmtref])

With this format, the string returned by the REC() function is expanded from a
string expression consisting of the object code of an IOList.

Format 2: Expand from IOList
REC(IOL=iolref[,REC=name$][SEP=char$][,ERR=stmtref])

The string returned by the REC() function in this format is expanded from a variable
list (IOL=iolref).

In both the above formats, you can add a REC= clause to assign a record name as a
prefix to all the variables in the list (similar to a prefix for a composite string
variable). That is, the variable you identify in your string variable defines a prefix for
the variable names in your IOList. Both formats also allow you to have other

char$ Hex or ASCII string value. Character to use as separator to parse the
data; e.g., SEP=".". Dynamic SEP=* separators are not supported. If
the REC() function statement also contains a REC= clause, the REC=
clause must precede the SEP=clause.

chan File (channel) from which the REC=value will be returned.

iol_obj$ String expression that contains the object code of an IOList.

iolref Either a string variable containing the object code of an IOList or a
statement reference to an IOList (statement number/label).

name$ Optional record name/prefix for all of the variables in the IOList.
(REC=VIS(string$) can also be used)

stmtref Program line number or label to transfer control to.

3. System Functions REC()

ProvideX Language Reference V8.30 Back 511

functions and directives return values based on a variable name for the record, e.g.,
LEN (X$) and PRINT X$.

You can also use a SEP=char$. Note that if you include both this and a REC= clause,
the REC= clause must precede the SEP= clause.

Example:

In the following example, ProvideX would place the input data in CUST.NAME$,
CUST.ADR1$ and CUST.ADR2$ using the IOList at line 0110 as a template (even
though there is no matching prefix in the IOList). That is, you can use the same
IOList as a template for different REC= prefix specifications.

0100 PRINT X$
0110 IOLIST NAME$,ADR1$,ADR2$
0120 INPUT EDIT "Name",@(9),": ",CUST.NAME$
0130 INPUT EDIT "Address 1: ",CUST.ADR1$
0140 INPUT EDIT @(8),"2: ",CUST.ADR2$
0150 LET X$=REC(IOL=0110,REC=CUST$)
0160 IF LEN(X$)>100 THEN PRINT "TOO-LONG"; GOTO 0120
0170 PRINT X$
-:run
BRETT'S BODYSHOP
123 SOME ST.
ANYTOWN SK S0M 0V0

The values are also displayed with the prompts below. The user edits to change
them:

Name : YVONNE'S BODYSHOP
Address 1: 123 SOME RD.
 2: NEWTOWN SK S0M 0V0
YVONNE'S BODYSHOP
123 SOME RD.
NEWTOWN SK S0M 0V0

Format 3: Return Default Value
REC(FILE chan[,ERR=stmtref])

Use this format to obtain the name of the REC= default value for your given file.

3. System Functions REF()

ProvideX Language Reference V8.30 Back 512

REF() Function REF() Cont rol Reference C ountControl Reference Count
Formats REF({ADD|DROP|READ} obj_id)

Where:

Returns Current reference count value (0 if the object is deleted).

Description The REF () function is used in Object Oriented Programming to control access to an
object by incrementing or decrementing the reference count. The DROP OBJECT
directive can also be used to destroy an object.

The system sets the reference count for any newly created object to 1 (one). If you plan to use
an object more than once, use REF (ADD obj_id) to increment the reference count.

When finished with an object, use REF (DROP obj_id) to decrement the reference
count. When the reference count becomes zero, the object is deleted.

Only objects whose reference count is 1 can be deleted. Once an object is destroyed,
its identifier may be re-assigned to another object. You should no longer use the
object identifier in your application, as it may reference a totally different object (if
the identifier is re-assigned).

All objects are destroyed when the application issues a START directive or if the END
directive is entered at command mode.

REF (READ obj_id) returns the current reference count value. All calls to REF()
return the current reference count (or 0, if deleted).

See Also DEF CLASS Directive, p.65
LOAD CLASS Directive, p.195
DROP CLASS Directive, p.102
RENAME CLASS Directive, p.283
STATIC Directive, p.329
DROP OBJECT Directive, p.104
NEW() Create new Object, p.489
Data Integration, User’s Guide

ADD Keyword indicating an increment of the reference count for obj_id.

DROP Keyword indicating a decrement of the reference count for obj_id.

obj_id Object Identifier

READ Keyword indicating no change to the reference count for obj_id.

3. System Functions RND()

ProvideX Language Reference V8.30 Back 513

RND() Function RND() Ret urn Random NumberReturn Random Number
Format RND(seed[,ERR=stmtref])

Where:

Returns Random numbers based on given value.

Description The RND() function returns random numbers based on the seed given. The
following table describes the value returned based on the seed value:

When seed is 0 or greater, each call to the RND() function will yield a different random
number. Executing the RANDOMIZE directive and using the RND() function with a
negative value will produce similar results; e.g.,

For further randomization, use RND(-TME) as a method to re-initialize the seed value.

See Also RANDOMIZE Directive, p.270
RND System Variable, p.571

Example 0010 REM
0020 FOR I=1 TO 10
0030 PRINT RND(9),
0040 NEXT
0050 PRINT 'LF',RND(0)
0060 PRINT RND(-1)
0070 PRINT " DONE"; END
-:run
 1 1 7 0 7 7 4 4 5 7
 0.05947216
 0.11337858
DONE

seed Numeric expression must be (or result in) an integer. The value of this
number is used to determine the result of the function.

stmtref Program line number or label to transfer control to.

> 0 If seed is greater than 0 zero, the random number returned will be in the
range of zero to one less than the given number (to a maximum of 32768).

= 0 If seed equals 0 zero, the random number returned will be between 0 and 1,
with PRECISION=8.

< 0 If seed is less than 0 zero, RND() initializes the seed for generating the next
sequence of random numbers, similar to use of the RANDOMIZE directive.

?RND(-10) = RANDOMIZE 10
 ?RND(0) = RANDOMIZE 10

?RND

Note: ProvideX returns an error when seed is greater than 2147483647 or is not a valid
integer.

3. System Functions RNO()

ProvideX Language Reference V8.30 Back 514

RNO() Function RNO() Ret urn Next Record NumberReturn Next Record Number
Format RNO(chan[,fileopt])

Where:

Returns Integer, position of next/given record.

Description The RNO() function reports the position in the file specified of either the next record, or
the record identified in the KEY= or IND= options. The RNO() value is the absolute
ordinal position of the record in the file. The first record in a file returns a value of 1
(one), the second RNO() value is 2, and so on. In a Keyed file, the record number
depends on the key chosen and its value relative to all other records in the same file.

Example 0010 OPEN (13)"PVX_KEYD"
0020 INPUT "Which record? ",@(15),K$,
0030 IF K$="" THEN CLOSE (13); PRINT "DONE"; STOP
0040 READ (13,KEY=K$,ERR=0100)
0050 PRINT " Key ",K$," is Rec# ",RNO(13,END=0130)
0060 GOTO 0020
0100 REM 100
0110 PRINT " is invalid",@(40),"...Please try again"
0120 GOTO 0020
0130 PRINT @(22),"...Sorry...END-OF-FILE"
0140 END
-:end
-:run
Which record? ABCDEF is invalid ...Please try again
Which record? 123456 Key 123456 is Rec# 2
Which record? 123460 Key 123460 is Rec# 6
Which record? 123458 Key 123458 is Rec# 4
Which record? DONE ! User hit <Enter>
-:run
Which record? 123461 ...Sorry...END-OF-FILE

chan Channel or logical file number of the file to reference.

fileopt Supported file options (see also, File Options, p.810):
END=stmtref END-OF-FILE transfer
ERR=stmtref Error transfer
IND=num Record index
KEY=string$ Record key
KNO=num | name$ File access key number (num) or name (name$)

Note: ProvideX supports the RNO() function for ODBC files. See File Handling in the
ProvideX User's Guide.

3. System Functions SEP()

ProvideX Language Reference V8.30 Back 515

SEP() Function SEP() Ret urn Field Separat orReturn Field Separator
Format SEP(chan)

Where:

Returns Either the SEP value (single character string) for an OPEN file on given channel or ""
(null).

Description The SEP() function returns either a single character string, SEP (the field separator
value in hex) for a given file OPEN on a given channel, or "" (null).

The value returned is the value you set in the SEP= option when creating a Keyed or
Indexed file (a single character string which can be anything from 00 to FF).

The function returns "" (null) for a dynamic field separated file (a Keyed or Indexed
file created using a SEP=* option). With this type of file, ProvideX stores each field
in the record with a one-byte prefix identifying the type and length of data that
immediately follows.

Example ->open (14)"pvx_dir"
->?hta(sep(14))
8A

chan Channel or logical file number of an OPEN file.

3. System Functions SGN()

ProvideX Language Reference V8.30 Back 516

SGN() Function SGN() Ret urn Sign of ValueReturn Sign of Value
Format SGN(num[,ERR=stmtref])

Where:

Returns Status code, 0 zero, 1 or -1.

Description The SGN() function returns a numeric status code for the sign of a value:

Example ?SGN(23.492) ! yields 1
?SGN(4-4) ! yields 0
?SGN(4-7.34) ! yields -1

num Value whose sign is to be returned. Numeric expression.

stmtref Program line number or label to transfer control to.

 1 If num is greater than zero.

0 If num equals 0 zero.

-1 If num is less than zero.

3. System Functions SIN()

ProvideX Language Reference V8.30 Back 517

SIN() Function SIN() Sin e FunctionSine Function
Format SIN(num[,ERR=stmtref])

Where:

Returns Numeric, range -1 to 1.

Description The SIN() function returns the sine of the numeric expression specified. It will return
a numeric value between -1 and 1, rounded to the current PRECISION in effect. Its
inverse function is ASN().

Example 00010 PRINT 'CS'
00020 X=0,Y=80
00030 LASTX=0,LASTY=80
00040 FOR I=-15 TO 1 STEP .5
00050 X=X+25
00060 Y=50*SIN(I)+80
00070 PRINT 'LINE'(LASTX,LASTY,X,Y)
00080 LASTX=X
00090 LASTY=Y
00100 NEXT

num Value whose sine is to be returned. Numeric expression.

stmtref Program line number or label to transfer control to.

3. System Functions SQR()

ProvideX Language Reference V8.30 Back 518

SQR() Function SQR() Sq uar e RootSquare Root
Format SQR(num[,ERR=stmtref])

Where:

Returns Numeric, square root of given value.

Description The SQR() function returns the square root of the number provided, rounded to
current PRECISION. If you use an invalid value (e.g., a negative value such as
SQR(-2.345)), ProvideX returns an Error #40: Divide check or numeric
overflow.

Example 0010 INPUT "Length of one side: ",A
0020 IF A<=0 THEN GOTO 0010
0030 INPUT "Length of other : ",B
0040 IF B<=0 THEN GOTO 0030
0050 PRINT "Hypotenuse is : ",SQR(A*A+B*B,ERR=*NEXT)
0060 PRINT "DONE"; STOP
-:run
Length of one side: 2.3
Length of other : 1.65
Hypotenuse is : 2.83

num Value whose square root is to be returned. It must be a positive
number. Numeric expression.

stmtref Program line number or label to transfer control to.

3. System Functions SRT()

ProvideX Language Reference V8.30 Back 519

SRT() Function SRT() Sort St ringSort String
Formats 1. Sort Equal Length Elements: SRT(string$,fixed_len[,ERR=stmtref])

2. Sort Delimited Elements: SRT(string$[,dlm_char$][,ERR=stmtref])

Where:

Returns Sorted character string.

Description The SRT() function returns a sorted character string. The string elements are
internally sorted into ascending sequence. The order of duplicate elements is
undefined.

Format 1: Sort Equal Length Elements
SRT(string$,fixed_len[,ERR=stmtref])

If each element in the string is the same fixed length, use this format to sort the
string.

Examples:

0100 REM To sort in ascending order:
0110 A$="0231405242670291234403242"
0120 PRINT SRT(A$,5)
->RUN
0231403242052421234467029
0200 REM To sort in descending order:
0220 PRINT NOT(SRT(NOT(A$),5))
->RUN
6702912344052420324202314

dlm_char$ Delimiter for each string element. If you omit this, the default
delimiter is the SEP character(e.g., $8A$).

fixed_len Numeric expression. Length of each element in the string (all the same
fixed length).

stmtref Program line number or label to transfer control to.

string$ String to be sorted.

Note: To sort a string into descending order, use the NOT() function to invert the bits
in the string prior to and after sorting. (See NOT() Invert String Bits/Logical
Condition, p.490.)

3. System Functions SRT()

ProvideX Language Reference V8.30 Back 520

Format 2: Sort Delimited Elements
SRT(string$[,dlm_char$][,ERR=stmtref])

If each element in the string has a delimiter or SEP character, use this format to sort
the string. ProvideX considers the first character of dlm_char$ to be your delimiter.
(The default is the current SEP value.)

Example:

0300 REM To sort with delimited strings:
0310 A$="THE BROWN FOX JUMPED OVER THE DOG " ! Blank as delimiter, ends string
0320 PRINT SRT(A$," ")
->RUN
BROWN DOG FOX JUMPED OVER THE THE

3. System Functions SSZ()

ProvideX Language Reference V8.30 Back 521

SSZ() Function SSZ() Retu rn Sect or SizeReturn Sector Size
Format SSZ(drive[,ERR=stmtref])

Where:

Returns Always 256.

Description The SSZ() function has been provided for compatibility with Business Basic
systems. In ProvideX, it always returns 256.

drive Disk drive whose sector size is to be returned (ignored). Numeric
expression.

stmtref Program line number or label to transfer control to.

Note: This function is included for compatibility with other languages.

3. System Functions STK()

ProvideX Language Reference V8.30 Back 522

STK() Function STK() Prog ram Call St ackProgram Call Stack
Format STK(level[,ERR=stmtref])

Where:

Returns String, program line number (characters 1 to 5) plus full pathname.

Description The STK() function returns a character string reporting the program line number (5
digits) and program (full pathname) being executed at the program level specified.

Use a negative value to specify a level that is relative to the current level. ProvideX
returns an Error #41: Invalid integer encountered (range error or
non-integer) if your given level does not exist.

Example The current directory is "/usr/test". In program "PROG1":

0100 CALL "STACKER"

In program "/usr/test/STACKER"

0010 PRINT "Level 1=",STK(1)
0020 PRINT "Level 2=",STK(2)
0030 PRINT "Level -1=",STK(-1)

When run:

Level 1=00100/usr/test/PROG1
Level 2=00020/usr/test/STACKER
Level -1=00100/usr/test/PROG1

The next example prints all the programs in the stack:

0010 I=1-PRM('B0')
PRINT STK(I,ERR=*NEXT); I=I+1; GOTO 20

level Program CALL stack level. Numeric expression.

string$ String expression to be processed.

Note: You can use PRM('B0') to circumvent a potential problem should the base
level be level 0, rather than 1.

3. System Functions STP()

ProvideX Language Reference V8.30 Back 523

STP() Function STP() Strip Leading/Tr ailing Char acter sStrip Leading/Trailing Characters
Formats 1. Strip Character from a String: STP(string$,[stp_code[$]][,[*]stp_char$][,ERR=stmtref])

2. Remove Mnemonic from a String: STP(MNEMONIC string$[,ERR=stmtref])

Where:

Returns Stripped character string.

Description The STP() function returns a character string generated by stripping specified
instances of a character, or a mnemonic, from a string expression.

Format 1: Strip Character from a String
STP(string$,stp_code[$][,[*]stp_char$][,ERR=stmtref])

This format strips the character stp_char$ (spaces if omitted) from a string expression.
Depending on the stp_code value, the data can be stripped from the beginning of the
string$, the end of the string$, or from both the beginning and end. STP() can also be
used to strip all occurrences of stp_char$ within the string.

Format 2: Remove Mnemonic from a String
STP(MNEMONIC string$[,ERR=stmtref])

This format removes all mnemonics contained within the string$.

 * Asterisk indicates a list of characters to strip. For example,
STP(X$,1,*" ,:") strips any trailing spaces, commas, or colons from
X$. A null string results in an Error #46: Length of string
invalid.

stp_char$ Characters to be stripped from string. If omitted, blanks are stripped; e.g.,
STP(PTR$,3,$1B$) ! strips out all escape characters
STP("Hello there",3,"e") ! strips out every lower-case "e"

stp_code[$] Strip code, either numeric or string:
0 or L Strip Left (leading characters)
1 or R Strip Right (trailing characters) - default.
2 or B Strip Both Left and Right, and leave center (C)
3 or A Strip All occurrences.

stmtref Program line number or label to transfer control to.
string$ String expression to be processed.

Given A$ = " This is a test " STP() Returns
STP(A$,0) "This is a test "

STP(A$,1) " This is a test"

STP(A$,2) "This is a test"

STP("000Test00",2,"0") "Test"

STP(A$,3) "Thisisatest"

3. System Functions STP()

ProvideX Language Reference V8.30 Back 524

Example The following code sample illustrates stripping of left, right, both, all as well as the
use of "*" to indicate a list of characters:

0100 ! ^100 - STP function
0110 Orig$="...Test...String...",Char$="."
0120 print 'LF',"Original String: "+@(21)+'BR'+Orig$+'ER'+'LF'
0130 Strip=0,Strip$="L"; gosub StripIt; print
0140 Strip=1,Strip$="R"; gosub StripIt; print
0150 Strip=2,Strip$="B"; gosub StripIt; print
0160 Strip=3,Strip$="A"; gosub StripIt
0170 !
0200 ! ^100 - Strip multiple characters
0210 Orig$="xxx Test.zzz String yyy"
0220 print 'LF',"Original String: "+@(25)+'BR'+Orig$+'ER'
0230 !
0240 Char$="xyz.",Strip=3,Strip$="A"
0250 print "STP(Orig$,"+quo+Strip$+quo+",*"+quo+Char$+quo+") = ",
0260 print 'BR'+stp(Orig$,Strip$,*Char$)+'ER'
0270 stop
0280 !
0300 ! ^100
0310 StripIt:
0320 print "STP(Orig$,"+pad(str(Strip),3,2)+","+quo+Char$+quo+") = ",
0330 print @(21)+'BR'+stp(Orig$,Strip,Char$)+'ER'
0340 print "STP(Orig$,"+quo+Strip$+quo+","+quo+Char$+quo+") = ",
0350 print @(21)+'BR'+stp(Orig$,Strip$,Char$)+'ER'
0360 return

3. System Functions STR()

ProvideX Language Reference V8.30 Back 525

STR() Function STR() C onver t Numer ic to St ringConvert Numeric to String
Formats 1. Convert Numeric String to ASCII: STR(num[:mask$][,err_val$][,ERR=stmtref])

2. Convert ASCII String to Mask: STR(string$:mask$[,err_val$][,ERR=stmtref])

Where:

Returns String, converted and validated.

Description The STR() function converts and validates strings. Add a format mask to specify the
size and format of the resultant character string. When a format mask is included,
STR() returns a string value converted from numeric using the default decimal point
and thousands separator set by 'DP' and 'TH'. If the format mask is omitted, 'DP' and
'TH' settings are ignored.

See Also 'FI' System Parameter, p.666,
'DP'= System Parameter, p.662,
'TH'= System Parameter, p.690,
Data Format Masks , p.813.

Format 1: Convert Numeric String to ASCII

STR(num[:mask$][,err_val$][,ERR=stmtref])

Use this format to convert a numeric value to an ASCII character string; e.g.,
A$=STR(5*6) ! (yields A$="30")
A$=STR(5*6:"000") ! (yields A$="030")
A$=STR(.01:"0.00") ! (yields A$="0.01")
A$=STR(99:"0.00","****") ! (yields A$="****")

err_val$ Error value to return should the conversion fail. String expression. If you
omit err_val$ and the conversion fails, ProvideX either reports Error #43:
Format mask invalid or returns the value unformatted, depending on
your setting for 'FI'.

mask$ Format mask to be used in the conversion process. Max string size 8kb.
For a list of valid mask characters, refer to Data Format Masks , p.813.

num Numeric value to convert to a character string.

string$ String expression to be processed.

stmtref Program line number or label to transfer control to.

3. System Functions STR()

ProvideX Language Reference V8.30 Back 526

Format 2: Convert ASCII String to Mask

STR(string$:mask$[,err_val$][,ERR=stmtref])

Use this format to convert and validate a string value based on the format mask (which
dictates the size and content of the results) e.g.,
A$=STR("1234567":"000-0000") ! (yields A$="123-4567")
A$=STR("AB":"00","**") ! (yields A$="**")

Examples The following will print **OverFlow** if the value is too large for the mask:

x=1234567890.12
PRINT STR(x:"####,##0.00-","**OverFlow**") ! Yields **OverFlow**

If value is too large with pennies, we’ll try it without the pennies, or else print
OverFlow:

x=1234567890.12
PRINT STR(x:"####,##0.00-",str(x:"####,###,##0","**OverFlow**")) ! Yields
1234,567,890

3. System Functions SUB()

ProvideX Language Reference V8.30 Back 527

SUB() Function SUB() Su bstit ute TextSubstitute Text
Format SUB(string$,search$,replace$[,instance])[,ERR=stmtref])

Where:

Returns Converted string.

Description The SUB() function performs a substitution within a string. The search value can't
be null. (That generates an Error #46: Length of string invalid.) If no
substitutions occur, no error is generated.

Example 0100 PRINT 'CS'; LIST
0110 LET A$="Hello there",B$="e",Z$=SUB(A$,B$,"",0)
0120 PRINT Z$+" "+A$
0130 END
-: run
Hllo thr Hello there

instance Optional. Integer. Which occurrence to find:

0 All occurrences (assumed if not given).
>0 Specific occurrence, searching left to right within string$; i.e.,

1=first occurrence, 2=second occurrence ...
<0 Specific occurrence, searching from right to left; i.e., -1=first

occurrence from end of string$, -2=second occurrence from
end of string$...

search$ Value for which to search. String expression. Cannot be null.

replace$ Text to replace the original search text, if found. String expression. You
must include a replace value, but the value can be null; e.g.,
SUB(A$,B$,"",0,ERR=100).

stmtref Program line number or label to transfer control to.

string$ String expression containing the string in which to search-and-replace
and perform the substitution.

3. System Functions SWP()

ProvideX Language Reference V8.30 Back 528

SWP() Function SWP() Swap DataSwap Data
Format SWP(string$[,swp_code][,ERR=stmtref])

Where:

Returns Conversion of data, native machine format to/from ProvideX common format.

Description The SWP() function is designed to simplify the conversion of data between native
machine format and ProvideX common format. ProvideX processes data with the
most significant information to the left (i.e., you read the data from left to right)
where some computers store data with the most significant data at the right.

The SWP() function gives you a convenient way of rearranging the data so it can be
exchanged. If you do not supply a swap type, the function will rearrange the data
according to the native operating mode of the machine. For example, on INTEL
80x86 CPUs, a SWP() of "12345678" yields "87654321".

Unfortunately not all swapping algorithms are this easy. Some computers swap
every two characters, some every four characters and some every eight characters.
The following table describes the various types of swapping based on a value of
"12345678".

stmtref Program line number or label to transfer control to.

string$ String expression whose bytes are to be swapped.

swp_code Type of byte-swapping to be performed. Numeric expression. See the
chart below.

Type Value Type Value

0 12345678 4 56781234

1 21436587 5 65872143

2 34127856 6 78563412

3 43218765 7 87654321

Note: For compatibility mode, the swap type can be provided as a single byte
containing the binary value of the desired type; i.e., 01, 02, ...

3. System Functions SYS()

ProvideX Language Reference V8.30 Back 529

SYS() Function SYS() Invoke Operating Syst em CommandInvoke Operating System Command
Formats 1. Invoke Operating System Command: SYS(command$[,ERR=stmtref])

2. Signal Another Process (PVX UNIX/Linux Only): SYS(pid[,signal][,ERR=stmtref])

Where:

Returns Operating system code identifying command passed to it by the function.

Description The SYS() function passes a given string or numeric Process ID to the operating
system command processor for execution.

Format 1: Invoke Operating System Command
SYS(command$[,ERR=stmtref])

SYS() returns the operating system's code identifying the command. It returns zero
if the task is running and not zero (usually -1) if it is unsuccessful. The value in the
system variable RET can be checked for an error value if the function was
unsuccessful.

Example:

0010 PRINT 'CS',"Menu"
0020 PRINT " 1: List directory"
0030 PRINT " 2: Run WORD processor"
0040 PRINT " 3: Run SPREADSHEET"
0050 PRINT " X: Sign off"
0060 INPUT "Enter selection:",X$
0070 IF X$="1" THEN LET X$="ls"; GOTO 0500
0080 IF X$="2" THEN LET X$="wp"; GOTO 0500
0090 IF X$="3" THEN LET X$="123"; GOTO 0500
0100 IF X$="X" THEN QUIT
0110 PRINT 'RB',; GOTO 0060
0500 A=SYS(X$)
0510 IF A<>0 THEN PRINT "Command '"+X$+"' FAILED"
0520 GOTO 0020

command$ Command to be processed. Maximum string size 8kb.

pid UNIX Process ID value to check/notify. Numeric expression.

signal Optional signal value to send to the UNIX Process ID. Numeric
expression.

stmtref Program line number or label to transfer control to.

3. System Functions SYS()

ProvideX Language Reference V8.30 Back 530

Format 2: Signal Another Process (PVX UNIX/Linux Only)
SYS(pid[,signal][,ERR=stmtref])

You can send a signal from another ProvideX session or from the UNIX shell to
generate a CTL event using a SIGNAL 2 (a SIGBREAK that initiates a program's
SETESC branch) and you can also send signals from inside a ProvideX program. The
GID variable contains the binary value of the UNIX Process ID,
pid=dec(00+gid). Use this value with the SYS() function to create a signal to
another process:

X=SYS(pid,2)

where the first argument is the PID signal to send and the second is the signal
number. TCB(89) returns the numeric value of the current Process ID. Use this as a
replacement for DEC(00+GID) to retrieve the current PID value.

See Also INVOKE Execute Operating System Command, p.163
GID Operating System Process Identifier, p.562

3. System Functions TAN()

ProvideX Language Reference V8.30 Back 531

TAN() Function TAN() Return TangentReturn Tangent
Format TAN(num[,ERR=stmtref])

Where:

Returns Numeric, rounded, Tangent of given number.

Description The TAN() function returns the Tangent of a given numeric expression. The numeric
value returned will be rounded to the current PRECISION in effect. The inverse
function is ATN() Return Arc-Tangent, p.399.

Examples FLOATING POINT
-:PRINT TAN(1)
 .15574077246549E+01
-:PRINT TAN(-3.14159/2)
-.75369599539306E+06

num Numeric expression whose Tangent will be returned.

stmtref Program line number or label to transfer control to.

3. System Functions TBL()

ProvideX Language Reference V8.30 Back 532

TBL() Function TBL() Convert St ring Via TableConvert String Via Table
Formats 1. Translation Table in Program: TBL(string$,TBL=tbl_stmtref[,ERR=stmtref])

2. Translation Table in Variable: TBL(string$,tbl_var$[,ERR=stmtref])

3. Translate Using Position: TBL(position,expr_0[$],expr_1[$] ... ,expr_n[$][,ERR=stmtref])

4. Character to Character Conversion: TBL(var$,compare$,table$)

Where:

Returns Converts string to values in table.

Description The TBL() function converts a string (all characters or all numeric) to the
corresponding values set in a given translation table.

See Also Translation Tables in the ProvideX User's Guide

Format 1: Translation Table in Program
TBL(string$,TBL=tbl_stmtref[,ERR=stmtref])

Use this TBL() format if the translation table to convert the string$ is an embedded
table in your program. If you include a tbl_stmtref, it must refer to a program
statement containing a conversion table defined by a TABLE directive. This statement
reference is optional if the conversion table is embedded in the same statement as the
TBL()function. For more information, refer to the TABLE Directive, p.340.

compare$ String table to compare character by character with the value in
var$. String expression.

expr_0[$]…n List of expressions to be returned. Numeric or string expressions.
Restriction: The expressions must all be the same type (i.e., all
characters or all numerics).

position Determines which expression to use. Positional or numeric
expression, range 0 zero to n.

stmtref Program line number or label to transfer control to.
string$ String to be translated/replaced (must be all characters or all numeric).
table$ Table to use for conversion when a character in the compared value

matches the value in var$. String expression.
tbl_stmtref Optional, if your table is embedded in the same statement as the

TBL()function. If you refer to a program tbl_stmtref, it must contain
a conversion table.

tbl_var$ String variable. Contains conversion table to replace elements in the
string$. String expression.

var$ String variable. Contains a string to be translated or replaced.

3. System Functions TBL()

ProvideX Language Reference V8.30 Back 533

Format 2: Translation Table in Variable
TBL(string$,tbl_var$[,ERR=stmtref])

Use this format if the translation table to convert the string$ is in a variable.

Format 3: Translate Using Position
TBL(position,expr_0[$],expr_1[$] ... ,expr_n[$][,ERR=stmtref])

Use this format to obtain a value based on the numeric value of an expression. The
value the TBL() function returns depends on the value of position. If it's 0 zero, then
the value of expr_0 will be returned, if 1, then expr_1 will be returned, and so on.

Format 4: Character to Character Conversion
TBL(var$,compare$,table$)

Use this format to do a character-to-character conversion of a string. ProvideX
replaces each character in the string variable that matches a character in the first
comparison string expression with the corresponding character from the table. That
is, when a character in the string variable matches a character in compare$, then:

• compare$ character 1 is replaced by table$ character 1 in var$,
• compare$ character 2 is replaced by table$ character 2 in var$,
• compare$ character 3 is replaced by table$ character 3 in var$,
• and so on.

Examples Example 1:
T$="W"
P$=TBL(POS(T$="DWM"),"???","Daily","Weekly","Monthly")
?P$
Weekly

Example 2:
PRINT "Expires:",TBL(EXP_DT$="",EXP_DT$,"Never")

If EXP_DT$ is null, the logical expression EXP_DT$=" " yields 1. A null date will
print "Never". Otherwise, it yields 0 zero and the value of EXP_DT$ is printed. In
effect, this form of TBL() becomes: TBL(logical_expr, else_value,true_value).
Example 3:
let string$="ABCDEFG 123"
newstring$=tbl(string$,"ACF ","123_") ! newstring$ is "1B2DE3G_123"

Note: The values for expr_0[$], expr_1[$], …n[$] can be either string or numeric. The
only requirement is that they must be all the same: all string or all numeric.

3. System Functions TCB()

ProvideX Language Reference V8.30 Back 534

TCB() Function TCB() Retur n Task Infor mationReturn Task Information
Formats 1. Return Task Information: TCB(tcb_code[,ERR=stmtref])

2. Return Activation Information: TCB(pkg_index,info_reqd[,ERR=stmtref])

3. Return Platform/User Information: TCB(keyword [,arg] [,ERR=stmtref])

Where:

Description The TCB() function returns information for several different purposes. A single tcb_code
specified in the TCB() function returns a corresponding system control value – see
Format 1: Return Task Information. Two numeric codes (pkg_index,info_reqd) are
required for activation/licensing information – see Format 2: Return Activation
Information. Specific keywords are used to return specific information from the OS -
See Format 3: Return Platform/User Information.

Format 1: Return Task Information
TCB(tcb_code[,ERR=stmtref])

When TCB() is used with a single code (tcb_code), it returns task information in the
form of a numeric system control value. The codes and their values are listed below:

TCB() Return Values

arg Argument associated with keyword (if required).

info_reqd Any of the following values: 0 - actual package number, 1 - expiry date,
2- package activation flags.

pkg_index A number from 0 to the number of packages installed.

keyword Keyword requesting specific platform or user information.

stmtref Program line number or label to transfer control to.

tcb_code Numeric code indicating what type of information is to be returned.

0 Zero (0) - Reserved
1 Zero (0) - Reserved
2 Zero (0) - Reserved
3 Internal system error code.
4 Current statement number. (In a running program, not Command mode.)
5 The line number of the last error.
6 SETESC statement number.
7 SETERR statement number.
8 Top statement number in GOSUB stack.
9 Zero (0) - Reserved for future use.

3. System Functions TCB()

ProvideX Language Reference V8.30 Back 535

TCB() Return Values (continued)
10 Internal system error code.
11 Retry statement number.
12 Current level number.
13 Current level number – ProvideX includes current level in both TCB(12)

and TCB(13) for compatibility with other Business Basics.
14 Current precision (-1=Scientific Notation). For more information, refer to

the PRECISION Directive, p.248.
15 Current maximum memory size in bytes.
16 Length of string found in last MSK() function.
17 Current level of user functions.
18 Current iteration of range assignment.
19 Current iteration for enhanced FOR..NEXT loop.
20 Number of arguments in CALL.
21 Current activation flags.
22 Number of days left for current activation.
23 Maximum user count.
24 Number of users available.
25 Operating system version number.
27 Reports current session's user slot number and type of slot:

> 0 Dedicated non-shared user slot number being used.
< 0 Shared user slot number being used.
 0 Task is not being counted in the user slot table (background task).
(For further information, refer to the '1U' System Parameter, p.655.)

29 Reports the current build level of ProvideX.
30 Statement number of last error in called program.
31 Last object to lose focus.
32 Version level of activation.
33 System serial number.
34 System machine class.
35 System identification number.
36 ProvideX Library version code.
37 EFF support:

 0 EFF not supported
 1 EFF support for files up to 2GB
 2 EFF support for files over 2GB.

39 Highest used object identifier. (0 = no objects in system).
40 SETTRACE file number (if active).
41 Number of duplicate labels on last save.
42 Number of unknown state labels on last save.

3. System Functions TCB()

ProvideX Language Reference V8.30 Back 536

TCB() Return Values (continued)

43 Offset to the last detected error in the last statement compiled. Reports
the number of characters before the error occurred.

44 Number of seconds of offset to GMT (Greenwich Mean Time).

45 Daylight Savings indicator: 1 if Daylight Savings active, 0 if not.

50 Number of file reads.

51 Number of file writes.

52 Number of Keyed I/O forced buffer flushes.

53 Number of programs loaded from disk.

54 Number of programs loaded from program cache.

55 Program Swapouts.

56 Program Swapins.

57 Program reloads from disk.

60 Keyed file header busy retries (PVX for Windows).

61 Busy record count.

62 Number of unsuccessful file opens.
Note: For TCB(63) to TCB(66), below, the values in the system parameters
'VR' and 'VW' define the number of read/write retries before a data
read/write error will be generated. For more information, refer to the 'VR'=
System Parameter, p.693, and the 'VW'= System Parameter, p.693.

63 Number of READs verified.
64 Number of WRITEs verified.
65 Number of READ mis-compares.
66 Number of WRITE mis-compares.
67 On completion of KEYED LOAD command:

 > 0 the number of keys reloaded.
 - 1 Keyed load encountered different number of keys on different key chains.

68 Password retry count.
70 Number of logical OPEN directives executed.
71 Number of logical READ/EXTRACT/FIND directives executed.
72 Number of logical WRITE/REMOVE directives executed.
73 Number of dynamically added EFF file buffers.
74 Number of common buffers added dynamically for VLR/FLR files.
80 Last VBX status or error code. See the CUSTOM_VBX Directive, p.61 for a

list of codes and explanations.
81 Last Window LPARAM= value.

3. System Functions TCB()

ProvideX Language Reference V8.30 Back 537

TCB() Return Values (continued)
82 Windows OS version:

 0 if running under Windows 3.1.
 1 if running under Windows 95.
 2 if running under Windows Server.
 -1 if running 16-bit PVX.

83 Status of the debug window:
 01 - Command Window is active
 02 - Trace Window is active
 04 - Break Window is active
 08 - Watch Window is active

84 Exit status of any child process created with an INVOKE or a SYS() or
OPEN of a pipe. Valid for INVOKE or a SYS() if checked immediately
after. Valid for OPEN only if wait ('WP' system parameter) is on the close.

85 Process ID of the child process created from an INVOKE or SYS() or OPEN of
a pipe (< > |). This is valid until the next INVOKE, SYS() or OPEN of a pipe.

86 Serial number of WindX client.
87 UNIX/Linux Only. Returns PID of lock conflict. When a file I/O attempt

is made and fails due to a lock, TCB(87) returns the PID of the process
owning the lock. Use this process ID along with the output of a 'ps'
command to identify who has a record locked.

88 WindX version number or 0 zero if not running under a WindX session.
89 Numeric value of current PID. This allows for PID values which are

larger than the 16-bit values returned by GID, and will remain constant
for 32-bit, upcoming 64-bit (and beyond) operating systems. Replaces
the use of DEC(00+GID) to retrieve the current PID value.

91 Current Task/Thread Priority level. Three system parameters control the
priority of a task, primarily to balance the load in a client-server
environment. See 'Q_', 'Q^' and 'QF' Task Priorities, p.682.

92 Yields the TIM= value * 100 (100ths of a second) when doing embedded
I/O, or -1 if no TIM=.

93 Current value of logical "." variable. See WITH..END WITH Directive, p.382.

Note: TCB(94) to TCB(97) apply to UNIX/Linux only.

94 User ID Number the instance of ProvideX started with.
95 Group ID Number the instance of ProvideX started with.
96 Current User ID Number.
97 Current Group ID Number.
99 Program security flags.

100 High memory in use (Legacy DOS only).
101 Number of times variables were referenced.
102 Number of variables not found in the variable table.

3. System Functions TCB()

ProvideX Language Reference V8.30 Back 538

TCB() Return Values (continued)

103 Number of memory compares performed to locate variables.

104 Number of times the variable table was re-balanced.

110 Number of memory allocations made by ProvideX.

120 ID of the COM object that fired this event.

121 Number of COM events that have been dispatched to ProvideX.

122 Current depth of the event call stack.

123 Number of COM events that have been discarded by ProvideX due to
excessive outstanding event calls.

170 NT Service handle. 0 if not running as a service.

191 LibHaru Support: 1 if available, 0 if not.

195 ZLib Support: 1 if available, 0 if not.

196 DLL() UNIX/Linux support: 1 if enabled, 0 if not.

197 ODBC: 1 if enabled, 0 if not.

198 DB2 Support: 1 if enabled, 0 if not.

199 Built-in SSL: 1 if SSL supported, 0 if not.

200 OCI available: 1 if OCI is enabled, 0 if not.

201 OCI Connects

202 OCI Opens

203 OCI Shares

204 OCI Selects

205 OCI Inserts

206 OCI Updates

207 OCI Deletes

208 OCI Prepare Selects

209 OCI Prepared Select Used

210 OCI Prepare Insert

211 OCI Prepared Insert Used

212 OCI Prepare Failures

213 OCI Dictionary Reads

214 OCI User Commands

Note: The following return information used for sizing variables when building a C
structure, either a numeric size (in bytes not bits) or 0 if there is no such data type.

301 Size of a pointer (any kind of memory pointer)
302 Size of a Boolean

3. System Functions TCB()

ProvideX Language Reference V8.30 Back 539

TCB() Return Values (continued)

Format 2: Return Activation Information
TCB(pkg_index,info_reqd[,ERR=stmtref])

The following two codes are used in TCB() to report ProvideX licensing information
in numeric form (owner code, package ID, and date):

Example:
0010 FOR ID=0 TO 100
0020 PACKAGE=TCB(ID,0,ERR=*BREAK)
0030 EXPIRY=TCB(ID,1)
0040 FLAGS=TCB(ID,2)
0050 PRINT "PACKAGE#: ",TBL(PACKAGE=0,STR(PACKAGE),"PROVIDEX"),
0060 PRINT @(20),"EXPIRES: ",TBL(EXPIRY=0,STR(EXPIRY),"<NEVER>"),
0070 PRINT @(40),"ACT FLAGS: ","$"+HTA(BIN(FLAGS,4))+"$"
0080 NEXT ID

303 Size of a char or byte

304 Size of a short or short int
305 Size of an int
306 Size of long or long int
307 Size of a long double
308 Size of a long long
309 Size of a double
310 Size of a float
311 Size of a WORD (MS Windows only)
312 Size of a DWORD (MS Windows only)
313 Size of a HANDLE (MS Windows only)
314 Size of a WCHAR (MS Windows only)
315 Size of a LPARAM (MS Windows only)
316 Size of a WPARAM (MS Windows only)

pkg_index A value of 1 returns information for the first add-on package installed,
a 2 indicates the second, a 3 indicates the third, and so on (20 max). A 0
zero returns information for the base system.

info_reqd Indicates which information will be reported; i.e.,
0 Package ID (20005=Smart Lists, 20012=Report Writer, etc.). 0 zero

represents the base system. Refer to the website www.pvx.com for a
list of valid add-on package IDs.

1 Expiry Date in numeric form YYYYMMDD. 0 means no expiry date.
2 Activation Flags. 32-bit numeric - for internal use.
3 Users. Total number of users per package.
4 Slots. Number of available user slots.

3. System Functions TCB()

ProvideX Language Reference V8.30 Back 540

For more on the use of TCB() for reviewing activation status, see Troubleshooting in
the ProvideX Installation Guide.

Format 3: Return Platform/User Information
TCB(keyword [,arg] [,ERR=stmtref])

Various information can be retrieved from the OS by issuing specific keyword values
with the TCB() function.

The following keywords are used alone (without an argument) to return information
about the platform that ProvideX is compiled for or on:

These keywords are used together with a user ID arg to return information
associated with a specific user in a UNIX/LinuX environment:

The above keywords are only valid under UNIX and Linux and will currently return
null in a Windows environment.

Examples:

 PRINT TCB("OS_GetUserUID","johndoe")
500
 PRINT TCB("OS_GetUserGID","johndoe")
501
 PRINT TCB("OS_GetUserName","johndoe")
Johnathan Doe
 PRINT TCB("OS_GetUserHome","johndoe")
/home/johndoe
 PRINT TCB("OS_GetUserShell","johndoe")
/bin/bash

"compiled_bits" Either 32 or 64.

"compiled_cpu" The type of processor (x86/PowerPC etc.)

"compiled_architecture" CISC/RISC/EPIC (nature of the CPU)

"compiled_os" OS name

"compiled_osver" Operating System Version

"OS_GetUserUID" User ID.

"OS_GetUserGID" Group ID

"OS_GetUserName" User name.

"OS_GetUserHome" Home directory

"OS_GetUserShell" Shell directory.

3. System Functions TMR()

ProvideX Language Reference V8.30 Back 541

TMR() Function TMR() TimerTimer
Format TMR(tmr_code[,ERR=stmtref])

Where:

Returns Number of seconds or hours or, if reset, 0 zero.

Description The TMR() function can initialize the timer (to zero) and return the time difference in
seconds or hours since the last initialization. The TMR() function is used as follows:

Example 00010 print 'CS'
00015 a=tmr(0)
00020 button 10,@(1,1,20,2)="TMR System Function"
00030 while 1
00040 obtain x
00050 if ctl=10 then gosub ShowTime
00060 if ctl=4 then break
00070 wend
00080 end
00090 ShowTime:
00100 print @(1,20),"Number of seconds since last occurrence of TMR(0):",tmr(1)
00110 print @(1,21),"Number of hours since last occurrence of TMR(0):",tmr(2)
00120 a=tmr(0)
00130 return

tmr_code Value indicating what type of information to be returned. Numeric
expression, integer range 0 to 2. See the description below.

stmtref Program line number or label to transfer control to.

TMR(0) Returns the difference in seconds since the last TMR(0) and resets the
timer to 0.

TMR(1) Returns the difference in seconds since the last TMR(0).

TMR(2) Returns the difference in hours since the last TMR(0).

3. System Functions TRX()

ProvideX Language Reference V8.30 Back 542

TRX() Function TRX() C onver t Radix-40 to ASCIIConvert Radix-40 to ASCII
Format TRX(rdx_40$[,ERR=stmtref])

Where:

Returns ASCII equivalent of given Radix-40 data.

Description The TRX() function converts data from Radix-40 to normal ASCII. The input to this
function is generally the result of a call to the RDX () function, which performs the
inverse of converting ASCII to Radix-40. Radix-40 lets you compress three characters
into two bytes of data (16 bits).

The compression algorithm only supports the characters A-Z, 0-9, ., -, $ or space.
Lower case letters are converted to their uppercase equivalent. All other characters
are replaced with spaces.

See Also RDX() Convert ASCII to Radix-40, p.509.

Examples 0010 LET A$=LST(PGM(65000)); PRINT "string: ",QUO,A$,QUO
0020 LET B$=HTA(RDX(A$)); PRINT B$
0030 PRINT HTA(TRX(B$))
-:run
string: "65000 END "
2CB106686E600000
37304F394B4D36504A374F20374F41374E54365044365044

rdx_40$ Character string containing Radix-40 data.

stmtref Program line number or label to transfer control to.

3. System Functions TSK()

ProvideX Language Reference V8.30 Back 543

TSK() Function TSK() Retur ns Entr y f rom Task Lis tReturns Entry from Task List
Format TSK(num[,ERR=stmtref])

Where:

Returns String, value of task internal task table.

Description The TSK() function returns a string value from the internal task table. The returned
table entry is determined by the task number specified, num. An error is generated if
the entry has not been set up in the task table (using a SETDEV TSK() directive).

See Also SETDEV TSK() Directive, p.314.

Examples 0010 SETDEV TSK() "this is table entry 0"
0020 SETDEV TSK() "this is table entry 1"
0030 PRINT TSK(1)
->run
this is table entry 1

num Desired index entry in the internal task table. Numeric expression,
range 0 to n.

stmtref Program line number or label to transfer control to.

Note: An argument of -1 always returns "[Pvx" which is the internal header for files.

3. System Functions TXH()

ProvideX Language Reference V8.30 Back 544

TXH() Function TXH() Text HeightText Height
Format TXH(string$[,chan][,ctrlopt])

Where:

Returns Text height in graphical units (i.e., @X(col) and @Y(line) values).

Description The TXH() function returns text height in graphical units for the given string$. By
default, if no SIZ= is specified, this function returns the height of a single line of text
in either the font specified or the current font on the device specified by chan.

If you set a size, TXH() returns the height required to print your given text with no line
exceeding the size (with word wrap enabled). The SIZ= option thus can be used to
determine the height of the text.

If the font selected indicates that the ampersand character is used to denote underscored
characters, TXH() does not include & during its calculations.

If chan is omitted, ProvideX assumes it is dealing with the main window.

Example 0900 PRINT 'CS'
1000 LET R$="Hello World"
1001 LET W=TXW(R$) ! Get width of text
1002 IF W>@X(40) THEN LET W=@X(40) ! Force <= 40 columns
1010 LET H=TXH(R$,SIZ=W) ! Make it fit in width
1020 PRINT 'TEXT'(@X(20),@Y(5),@X(20)+W,@Y(5)+H,R$,"W")

chan Channel or logical file number of the device.
ctrlopt Control options. Supported options for TXH() include:

ERR=stmtref Error transfer
FNT="font",size[,attr]" Font name, size, properties
SIZ=num

string$ String expression.

Note: For use in graphics mode along with TXW() Text Width, p.545.

3. System Functions TXW()

ProvideX Language Reference V8.30 Back 545

TXW() Function TXW() Text W idthText Width
Format TXW(string$[,chan][,ctrlopt])

Where:

Returns Text width in graphical units (i.e., @X(col) and @Y(line) values).

Description The TXW() function returns text width in graphical units for the given string$. If
chan is omitted, ProvideX assumes it is dealing with the main window.

If the font selected indicates that the ampersand character is used to denote underscored
characters, TXW() does not include & during its calculations.

Example If you want to create a window based on the length of a message, use TXW() to determine
the size of the window/dialogue to create; e.g.,
0055 LET LINE1$="Line 1."
0056 LET LINE2$="Line 2.."
0057 LET LINE3$="This is Line 3..."
0100 LET W1=TXW(LINE1$,FNT="MS Sans Serif")
0110 LET W2=TXW(LINE2$,FNT="MS Sans Serif")
0120 LET W3=TXW(LINE3$,FNT="MS Sans Serif")
0130 LET W=MAX(W1,W2,W3)
0140 LET W=INT(W/16)+4 ! Allow for up to 4 extra white spaces
0150 PRINT 'DIALOGUE'(C,L,W,5,TITLE$),'SR','CS',
0160 PRINT 'FONT'("MS Sans Serif"),
0170 PRINT 'TEXT'(@X(2),@Y(1),LINE1$),
0180 PRINT 'TEXT'(@X(2),@Y(2),LINE2$),
0190 PRINT 'TEXT'(@X(2),@Y(3),LINE3$),
0200 MSGBOX "Press OK to continue."

chan Channel or logical file number of the device.
ctrlopt Supported options for TXW() include:

ERR=stmtref Error transfer
FNT="font,size[,attr]" Font name, size, properties
SIZ="wrapwidth" Word wrap to maximum width

string$ String expression.

Note: For use in graphics mode along with TXH() Text Height, p.544.

Note: The logical width is always 16 times the column number. In the 'TEXT'
mnemonic, if you omit end points, the system will calculate them.

3. System Functions UCS()

ProvideX Language Reference V8.30 Back 546

UCS() Function U CS() Retur n Upper Case St ringReturn Upper Case String
Format UCS(string$[,ERR=stmtref])

Where:

Returns Uppercase string equivalent of lower case string.

Description The UCS() function replaces all lower case ASCII characters in a given string with
their corresponding upper case values.

See Also LCS() Return Lowercase String, p.472
DEF systab= Directives, p.74

Example 0010 INPUT "Enter name: ",NAME$
0020 LET NAME$(2)=LCS(NAME$(2))
0030 LET NAME$(1,1)=UCS(NAME$(1,1))
0040 PRINT "Name is: ",NAME$
-:run
Enter name: rOBERT
Name is: Robert

stmtref Program line number or label to transfer control to.
string$ String expression whose upper case ASCII counterpart is to be returned.

Note: If an asterisk * is passed to the UCS() function instead of a string, the function
returns the 256-byte Uppercase Conversion Table.

3. System Functions UCP()

ProvideX Language Reference V8.30 Back 547

UCP() Function UC P() UnCompr ess DataUnCompress Data
Format UCP(string[,ERR=stmtref])

Where:

Returns Expanded data string.

Description The UCP() function expands a string that has been compressed using the CMP()
function. For a usage example, refer to the CMP() Function, p.404. TCB(195) will
return 1 if ZLib support is available.

Interfacing with Other ZLib-compliant Utilities
The data returned from the CMP() function includes a single header byte (value
between 01 and FF) to facilitate ZLib uncompression routines. The UCP()
requires this value to expand the data.

If data has been compressed using ZLib utilities that are outside of ProvideX, this
value will not be present; therefore, a 00 header must be inserted in its place. This
will cause the UCP() function to attempt to uncompress multiple times into varying
buffer sizes until the data can be uncompressed.

If the buffer size required for the uncompressed data is known, the header byte can
be calculated and used; i.e., if you know that the compressed data is less than a
maximum of 10,000 bytes long, and the actual length is 2,000, you can prefix the data
with 05 indicating that the output buffer should be set to 5 times the compressed
data size. Should a header value be given, but the data still doesn't fit, the system
will fall back into multiple uncompress attempts while increasing the output buffer
until it is successful.

See Also PCK() Function, p.498
CMP() Function, p.404

string Original data to expand (uncompress).

stmtref Program line number or label to transfer control to.

Note: Since the CMP() and UCP() compression routines are not supported on all
platforms, systems using these functions may not be fully portable.

3. System Functions UPK()

ProvideX Language Reference V8.30 Back 548

UPK() Function UPK() Unpack Numeric DataUnpack Numeric Data
Format UPK(string$[,ERR=stmtref])

Where:

Returns Numeric expression of whose value has been packed into a string.

Description UPK() is used to convert a packed string into its numeric value. It is the counterpart
of the PCK() function.

The packing algorithm used takes a numeric value and splits it into a series of two
digit values where each of the two digit values represents a number between 0 and
99. These numbers are then added to 32 to create the series of single-byte printable
characters that comprise the packed string. To unpack the value each byte of the
string has 32 subtracted from it and the resultant values become a series of 2-digit
values in the final result.

Should the value of any two-digit pair (when added to 32) equal or exceed the
standard file separator ($8A$), the value will be incremented by one when the
output string is created. When unpacking the string, any byte exceeding the field
separator will be reduced by one prior to subtracting 32.

See Also PCK() Pack Numeric Data, p.498
CMP() Compress Data, p.404

stmtref Program line number or label to transfer control to.

string$ String expression whose value represents a packed number.

Note: This function is not necessarily compatible with all Business Basics

3. System Functions VIN() / VIS()

ProvideX Language Reference V8.30 Back 549

VIN() / VIS() Functions V IN () and VIS() Obtain Value of VariableObtain Value of Variable
Formats 1. Get Numeric Value: VIN(string$[,ERR=stmtref])

2. Get Numeric From Composite: VIN(composite$,var_1$[[,subscr]]=expr[, ... n])

3. Get String Value: VIS(string$[,ERR=stmtref])

4. Get String From Composite: VIS(composite$,var_1$[[,subscr]]=expr[, ... n])

5. VIS() as Record Prefix: REC=VIS(string$[,ERR=stmtref])

Where:

Returns Contents (value) of variable(s), numeric or string.

Description The VIN() function returns the numeric value (contents) of a variable where the
name of the numeric variable is stored in a string variable. The VIS() function
returns the string value (contents) of a string variable whose name is stored in a
string variable.

Format 1: Get Numeric Value
VIN(string$[,ERR=stmtref])

The VIN() function returns the numeric contents of a numeric variable whose
variable name is stored in string$.

Format 2: Get Numeric From Composite
VIN(composite$,var_1$[[,subscr]]=expr[, ... n])

The VIN() function returns the value contained in each numeric variable you name
(where the variable is part of a composite string). You can choose to specify up to
three subscripts for the variable.

composite$ String variable which has been defined as a composite string.

string String expression containing the name of a variable to be used.

stmtref Program line number or label to transfer control to.

[,subscr] Optional subscript(s) of a variable in the composite string. String
expression. You can include from 1 to 3 optional numeric expressions
in square brackets, comma-separated, as subscripts for the variable.

var_1$
to var_2$

String expression containing the name of a variable in the composite
string.

Note: You can use the optional ERR=stmtref with each of the syntax formats
described. The inner set of brackets enclosing [,subscr] are part of the syntax.

3. System Functions VIN() / VIS()

ProvideX Language Reference V8.30 Back 550

Format 3: Get String Value
VIS(string$[,ERR=stmtref])

The VIS() function returns the contents of a string variable whose variable name is
stored in string$.

Format 4: Get String Value From Composite
VIS(composite$,var_1$[[,subscr]]=expr[, ... n])

The VIS() function returns the value contained in each string variable you name
(where the variable is part of a composite string). You can choose to specify up to
three subscripts for the variable.

Format 5: VIS() as Record Prefix
REC=VIS(string$[,ERR=stmtref])

Use this format to assign a REC= prefix value dynamically during READ, WRITE,
OPEN, and other directives. When REC=VIS() is used, ProvideX evaluates the string
value in VIS() and uses it as the name of the record prefix.

Example 00010 print 'CS'
00020 print "Name$,StreetNum,Street$,City$"
00030 Name$="Mike",StreetNum=8920,Street$="Woodbine Ave.",City$="Markham"
00040 input "Select field type (N=Numeric,S=String)",T$
00050 if T$="" then stop
00060 if ucs(T$)<>"S" and ucs(T$)<>"N" then goto 0030
00070 input "What field?",F$
00080 if F$="" then stop
00090 if ucs(T$)="S" then print F$,"=",vis(F$) else print F$,"=",vin(F$)
00100 goto 0030

3. System Functions XEQ()

ProvideX Language Reference V8.30 Back 551

XEQ() Function X EQ() In-line Subpro gram ExecuteIn-line Subprogram Execute
Format XEQ(subprog$,expression,arg1,arg2,…[,ERR=stmtref])

Where:

Returns Evaluated value in expression after executing in-line CALL.

Description The XEQ() function executes an in-line CALL directive. When ProvideX encounters
the XEQ() function, the subprogram named in the function will be called with any
arguments supplied. When the subprogram exits, the XEQ() function evaluates the
expression and returns it.

The primary advantage of XEQ() is in single-line Global functions. Consider the
following:

Was: 0010 CALL "GETDTE",DT,DATE$
0020 PRINT "Date:",DATE$

Now: 0010 PRINT "Date:",XEQ("GETDTE",_D$,DT,_D$)

Or, you could define a Global function in a startup program:

DEF FN%DTE$(_DT)=XEQ("GETDTE",_D$,_DT,_D$)

Then: 0010 PRINT "Date:",FN%DTE$(DT)

arg1,arg2... Comma-separated list of arguments to pass to the subprogram.

expression Expression will be evaluated after the call and used as the return
value for the function.

subprog$ Name of the subprogram to call. Maximum string size 8kb.

stmtref Program line number or label to transfer control to.

3. System Functions XFA()

ProvideX Language Reference V8.30 Back 552

XFA() Function XFA () Ext ended Field At tribut esExtended Field Attributes
Format XFA(varlist[,ERR=stmtref])

Where:

Returns Extended field-attribute information in string template.

Description The XFA() function returns extended field attribute information stored in a string
template:

Do not do this:

0120 DIM CST$:IOL=0130 REM does NOT create a valid string template for XFA()
0130 IOL=NAME$,ADDR$,CITY$,ZIP$ REM valid IOL for the composite string above
0140 REM But XFA(string above) generates Error #26: Variable type invalid
0150 REM

Apply this instead:

0170 REM XFA()is for use with other Business Basics' string template formats
0180 LET J$="B JONES",K$="23 SOME ST.",L$="MYCITY",M=78923
0190 DIM CST$:"NAME:C(20*),ADDR:C(30*),CITY:C(20*),ZIP:N(10*):type=cur"
0200 LET CST.NAME$=J$
0210 LET CST.CITY$=K$
0220 LET CST.ADDR$=L$
0230 LET CST.ZIP=M
0240 REM
0250 PRINT XFA(CST$,"")
0260 PRINT XFA(CST$,"NAME")
0270 PRINT XFA(CST$,"ZIP","type")
-:END
-:RUN

NAME
ADDR
CITY
ZIP

stmtref Program line number or label to transfer control to.

varlist List of variables in the string template.

Note: This function is included for compatibility with other languages.

Format Returns
XFA(var," ") A list of variables.

XFA(var,"fieldname") Description of the field.

XFA(var,"fieldname","userfield") User-defined portion of the field.

3. System Functions XFA()

ProvideX Language Reference V8.30 Back 553

_À

cur

-> HTA(XFA(CST$,"NAME"))
01C00A0001000100000014

The hex string of the XFA() function in the previous example reports the following
information about the string template field attributes.

Bytes Information Returned

1,1 Code 1-8 for field type

2,1 Flag bit

3,1 Field terminator

4,2 Size of repeating field or 0001 if not repeating

6,2 Field number, based on line feeds.

8,2 Field offset if prior field is variable length

10,2 Field length

12, User defined attributes

3. System Functions XOR()

ProvideX Language Reference V8.30 Back 554

XOR() Function X OR() Exclu sive OR Compar isonLogical Exclusive OR
Format XOR(value1[$],value2[$][,ERR=stmtref])

Where:

Returns Result of logical exclusive 'OR' comparison of two expressions/variables.

Description The XOR() function performs a bit-wise exclusive 'OR' comparison of two string or
numeric expressions/variables, and generates a value as a result. The length of the
two string expressions must be equal or ProvideX returns an Error #46: Length
of string invalid.

Sample Comparison Results:

XOR(41,42) yields Hex 03, 00000011
XOR(41,25) yields Hex 64, 01100100
XOR($5A$,DD) yields Hex 87, 10000111

See Also IOR() OR Comparison, p.460
AND() Logical AND, p.394

Examples 0040 READ (1,END=1000)F$
0050 R$=XOR(F$(1,2),2020) ! Convert to lower case
0060 ...

IF POS(00=XOR(UCS(X$),LCS(X$)))=0 THEN PRINT X$," is all alpha!"

stmtref Program line number or label to transfer control to.

value1[$]
value2[$]

Compared values. String or numeric expressions/variables. If strings,
value1$ must be the same length as value2$

Binary Result

0 XOR 0 0

1 XOR 0 1

0 XOR 1 1

1 XOR 1 0

ProvideX Language Reference V8.30 Back 555

Language Reference 4
System Variables

Over view

Overview B MK

This chapter provides an alphabetically arranged list of all the system variables in
ProvideX. Each definition includes the correct syntax (showing associated
parameters), values returned, a general description, examples, and sometimes a
cross reference to related documentation. The list begins on the following page.

BKG
CHN
CTL
DAY
DLM
DSZ
EOM
ERR
ERS
ESC
GFN

GID
HFN
HLP
HWD
LFA
LFO
LIP
LPG
LWD
MSE
MSL

NAR
NID
PFX
PGN
PRC
PRM
PSZ
QUO
RET
RND
SEP

SID
SSN
SYS
TIM
TME
TMS
TSM
UID
UNT
WHO

Note: All system variables have reserved three-character names. To avoid potential
conflicts with the reserved list (since ProvideX might include more three-character
variables in the reserved list in future) it is best not to use three-character variable
names in your applications.

4. System Variables BKG

ProvideX Language Reference V8.30 Back 556

BKG System Variable Lis t of Syst em VariablesBKG B ackground Pr ocess Statu sBackground Process Status
Numeric System Variable

Contents Integer, process status code.

Description The BKG variable contains the following numeric status codes:

Examples ->?BKG
 0

CHN System Variable CH N Channels OpenChannels Open
Numeric System Variable

Contents Numeric string, current open channels.

Description This system variable contains a listing of all currently open channels. The value
returned is a string of numeric two-byte values. The CHN variable indicates channel
values below 65000.

Examples To obtain the hex values, use the HTA() function.

->?HTA(CHN)
0000001E

In the above example, DEC(0000)=0 (i.e., the console) and DEC($001E$)=30
(the open file's channel).

->?(LEN(CHN)/2)-1

Yields the number of files opened.

0 Zero. Current program is directly connected to a terminal user
(background/ghost process).

1 Current program is not directly connected to a terminal user
(background/ghost process).

4. System Variables CTL

ProvideX Language Reference V8.30 Back 557

CTL System Variable CTL Control SignalControl Signal Code
Numeric System Variable

Contents Integer, control signal code.

Description The CTL system variable contains a numeric code (integer) that represents a signal of
user input from the keyboard or mouse. From the keyboard, this code represents
how the user ended the last INPUT statement; i.e.,

Positive CTL codes (in the range 0 to 32767) represent function keys as well as
user-defined control signals that are to be returned to the application. Negative CTL
codes are handled internally by ProvideX – see Negative CTL Definitions, p.817.

See Also DEFCTL Define/Redefine CTL Values, p.78
CTL() Return CTL Definition, p.410
SETCTL GOSUB on CTL Event, p.307
DEF sysvar= Define System Variables, p.76

DAY System Variable D AY Return Cu rrent Syst em DateReturn Current System Date
String System Variable

Contents String, current system date, formatted.

Description The DAY variable contains the current system date (e.g., 11/15/00), in a format
based on the date style set in the DAY_FORMAT directive (MM/DD/YY by default).
Changes in DAY_FORMAT are reflected in the value returned in the DAY variable.

See Also DAY_FORMAT Directive, p.64.

Examples 0100 PRINT DAY," ",
0110 DAY_FORMAT "DD/MM/YYYY"; PRINT DAY
-:run
11/15/99 15/11/2000

0 key (normal)
1 - 4 to keys
5 Input terminated due to SIZ= option
6 - 12 to keys

Enter
F1 F4

F6 F12

4. System Variables DLM

ProvideX Language Reference V8.30 Back 558

DLM System Variable DLM Retur n System Dir ector y DelimiterReturn System Directory Delimiter
String System Variable

Contents String, operating system's directory delimiter.

Description This system variable contains the operating system's directory delimiter (e.g., "/"...
for UNIX, "\"... for Windows). For example, on a Windows PC:

->?DLM
\

Examples The following is a tree view list box example.

0010 LIST_BOX 10,@(5,5,25,10),OPT="e|",
0010:FMT="{!diskette|!File|!File_open}",SEP=DLM
0020 LET F=1,D$="."
0030 NXTDIR:
0040 OPEN (F)D$
0050 NXTFILE:
0050:READ (F,END=ENDDIR)F$
0060 IF F$(1,1)="."
0060:THEN GOTO NXTFILE
0070 IF MID(F$,-1)<>DLM
0070:THEN LIST_BOX LOAD 10,0,PTH(F)+DLM+F$;
0070:GOTO NXTFILE
0080 LET D$=PTH(F)+DLM+F$
0090 F++
0100 GOTO NXTDIR
0110 ENDDIR:
0110:CLOSE (F)
0120 F--
0130 IF F>0
0130:THEN GOTO NXTFILE
0140 ESCAPE

Tip: Use SEP=DLM when reading directories (e.g., in list boxes) to have ProvideX
append the operating system delimiter to subdirectory names.

4. System Variables DSZ

ProvideX Language Reference V8.30 Back 559

DSZ System Variable D SZ Data Space Size A vailable to UserData Space Size Available to User
Numeric System Variable

Contents Integer, amount of data work space available to the user.

Description The DSZ variable contains a numeric value that indicates the size (in bytes) of the
available data work space for the user. You can set the size value either in the START
directive or as an argument in the ProvideX command (using -SZ).

Examples ->?DSZ
 291094

EOM System Variable EOM End of Message Char acter St ringEnd of Message Character String
String System Variable

Contents String, End-Of-Message character.

Description This system variable contains the End-Of-Message character string that ended the
user's last input from the terminal. The contents of this variable will vary based on
the type of terminal being used.

See Also DEF sysvar= Define System Variables, p.76

Examples The carriage return (not printable) is the EOM:

->?HTA(EOM)
0D

4. System Variables ERR

ProvideX Language Reference V8.30 Back 560

ERR System Variable ERR Last System-D etect ed Er ror ValueLast System-Detected Error Value
Numeric System Variable

Contents Integer, last system-detected error code.

Description The ERR variable contains a numeric value (integer) that indicates the last
system-detected error. It is reset by the BEGIN, CLEAR, END, RESET, STOP, and
START directives. See Error Codes and Messages, p.828, for a complete list of codes.

Examples In the following example, the "TEST" file is already open:

0100 OPEN (5)"TEST"
Error #14: Invalid I/O request for file state
->?ERR
 14

See Also ERR() Function, p.427
DEF sysvar= Define System Variables, p.76

ERS System Variable ERS Line Number of Last Err orLine Number of Last Error
Numeric System Variable

Contents Integer, line number that generated last error.

Description This ERS variable contains the line number that generated the last error detected in
the program.

Examples 0030?LET X$="" PRINT "Reset"
Error #20: Syntax error
1>RUN
0030?Let X$="" print "Rest"
Error #20: Syntax error
->?ERS
30
> EDIT 30

4. System Variables ESC

ProvideX Language Reference V8.30 Back 561

ESC System Variable ESC ASCII ESCape CharacterASCII ESCape Character
String System Variable

Contents String, ASCII escape character.

Description This system variable contains the ASCII escape character $1B$.

Examples ->?HTA(ESC)
1B
->

GFN System Variable GFN H ighest A vailable Global ChannelHighest Available Global Channel
Numeric System Variable

Contents Integer, highest available global channel.

Description The GFN variable contains a numeric value (integer) representing the highest
available (i.e., not open) global file channel. This value will be in the range: 64 to 127
(32768 to 65000 if the 'XF' system parameter is set).

Examples ->set_param 'xf'
->?gfn
 65000
->SET_PARAM -'XF'
->?GFN
 127

4. System Variables GID

ProvideX Language Reference V8.30 Back 562

GID System Variable GID Operating System Process Id ent ifierOperating System Process Identifier
String System Variable

Contents String, two-character OS process identifier.

Description This system variable can be used to obtain a two-character 16-bit binary operating
system group or Process ID (PID).

Examples Obtain the 16-bit UNIX Process ID by using:

->pid=dec(00+gid)
->?pid
 30633

For larger values (e.g., 32-bit), refer to TCB(89)under the TCB() Function, p.534.
TCB(89) returns the numeric value of the current PID. Use this as a replacement for
DEC(00+GID) to retrieve the current PID value.

See Also SYS() Function, p.529

HFN System Variable H FN Highest Available Local ChannelHighest Available Local Channel
Numeric System Variable

Contents Integer, highest local channel/file number not open.

Description The HFN variable contains a numeric value (integer) representing the highest
available local channel/file number. This value will be in the range: 0 to 63 (0 to
32767, if the 'XF' system parameter is set).

Examples ->?HFN
 63
->SET_PARAM -'XF'
->?HFN
 32767

4. System Variables HLP

ProvideX Language Reference V8.30 Back 563

HLP System Variable HLP Last Specified HLP= ValueLast Specified HLP= Value
String System Variable

Contents String, HLP= value from INPUT or OBTAIN directive.

Description This system variable contains the HLP= value specified in the last INPUT or OBTAIN
directive. If the HLP= option is omitted, this variable contains a null string.

HWD System Variable HWD St arting/H ome DirectoryStarting/Home Directory
String System Variable

Contents String, home directory name.

Description The HWD variable contains the name of the directory that was current at start up
(when ProvideX was initialized). This is considered the home directory.

Examples ->?HWD
C:\Program Files\Sage Software\ProvideX

LFA System Variable LFA Last File Num ber AccessedLast File Number Accessed
Numeric System Variable

Contents Integer, channel/file number of last device/file accessed.

Description This system variable indicates the channel of the last file or device accessed. The
value is 0 zero if the last device was the console/user's terminal.

Examples ->?LFA
 0

See Also DEF sysvar= Define System Variables, p.76

4. System Variables LFO

ProvideX Language Reference V8.30 Back 564

LFO System Variable LFO Last File Numb er OpenedLast File Number Opened
Numeric System Variable

Contents Integer, channel/file number of last file opened.

Description This system variable indicates the channel/file number of the last file opened.

Examples 0100 OPEN (HFN) "TESTFILE"
0110 CHANNEL=LFO

See Also DEF sysvar= Define System Variables, p.76

LIP System Variable LIP Input Lo cation: Colum n, LineInput Location: Column, Line
String System Variable

Contents Numeric string, screen line and column location of last input.

Description The LIP variable indicates the screen position (i.e., the column and line numbers at
the intersection) where the last user input occurred. This information is used by the
Help/Query subsystem.

Examples ->?LIP
0212

LPG System Variable LPG Lead Pro gram NameLead Program Name
String System Variable

Contents String, lead program name.

Description This system variable contains the name of the lead program; i.e., the program that
started the current ProvideX session or the last program specified in the START directive.

See Also ProvideX Installation Guide, Launching ProvideX

Examples ->?LPG
start.win

4. System Variables LWD

ProvideX Language Reference V8.30 Back 565

LWD System Variable LWD Cur rent Wor king DirectoryCurrent Working Directory
String System Variable

Contents String, pathname of current working directory

Description This system variable contains the full pathname of the current working directory.

Examples ->?LWD
C:\Program Files\Sage Software\ProvideX
->

MSE System Variable M SE Mou se StateMouse State
String System Variable

Contents String, current state of mouse.

Description This system variable contains a 32-byte string that describes the current state of the
mouse. The following table shows the positions of all mouse attributes represented
in the MSE string:

MSE String Description

(1,1) Current state:
FF Mouse inactive/unavailable.
00 Character-based environment, no mouse.
01 Left button down.
02 Right button down.
03 Both buttons down.

(2,1) Current mouse column in binary.

(3,1) Current mouse line in binary.

(4,2) Current mouse X (column) position in binary.

(6,2) Current mouse Y (line) position in binary.

(8,1) Absolute column #.

(9,1) Absolute row #.

(10,1) Standard character width.

(11,1) Standard character height.

(12,1) Width of Scroll box on standard scroll bar.

(13,1) Height of Scroll box on standard scrollbar.

(14,2) Mouse X (column) position relative to current window in binary.

4. System Variables MSE

ProvideX Language Reference V8.30 Back 566

Examples IF MID(MSE,22,1)>00 AND MID(MSE,22,1)<FF THEN %WDX$="[WDX]"

To get the maximum screen size in lines and columns:
0010 LET X$=MSE
0020 XCHAR=DEC(00+X$(10,1))
0030 YCHAR=DEC(00+X$(11,1))
0040 MAX_WIDE=INT(DEC(X$(27,2))/XCHAR)
0050 MAX_HIGH=INT(DEC(X$(29,2))/YCHAR)

(16,2) Mouse Y (line) position relative to current window in binary.

(18,2) Current control object with focus.

(20,2) Last control object with focus, relative to the current window.

(22,1) WindX/JavX revision level from 00 to FF (FF for no thin-client).

(23,2) CTL value for context-sensitive help.

(25,2) Last control object to lose focus, relative to the current window.

(27,2) Maximum X (column) coordinates of the screen.

(29,2) Maximum Y (line) coordinates of the screen.

(31,1) Returns current window state. Values correspond to 'SHOW'()
mnemonic, i.e., dec(mid(mse,31,1))=
 -1 for hidden
 0 for minimized
 1 for normal
 2 for maximized.

(32,1) Returns either W for WindX or J for JavX (00 for no thin client).

MSE String Description

4. System Variables MSL

ProvideX Language Reference V8.30 Back 567

MSL System Variable MSL Lengt h of Str in g Matching Last MSK Length of String Matching Last MSK
String System Variable

Contents Integer, length of string matching last MSK() function.

Description The MSL variable contains a numeric value (integer) that indicates the length of the
string that matched the last MSK() function. TCB(16) also reports the length of the
string.

See Also MSK() Function, p.486,
TCB() Function, p.534.

Example ->PRINT MSK("my name is Foxxy","[A-Z][a-z]*"),MSL
12 5

NAR System Variable NAR Number of Arg uments, St ar t ProvideXNumber of Arguments, Start ProvideX
Numeric System Variable

Contents Integer, number of arguments in ProvideX start up.

Description This system variable contains a numeric value (integer) representing the number of
arguments in the ProvideX command that launches ProvideX (e.g., in using a batch
file or from a command statement).

See Also ARG() Function, p.395,
ProvideX Installation Guide, Launching ProvideX

Example --> PVX -SZ=20 -ARG TOM JONES
->?NAR
2

NID System Variable NID Networ k or Networ k Node IDNetwork or Network Node ID
String System Variable

Contents String, network identifier.

Description The NID variable contains the network identifier. Under UNIX, this variable contains
the network node name.

4. System Variables PFX

ProvideX Language Reference V8.30 Back 568

PFX System Variable PFX Curr ent Prefix Set tingCurrent Prefix Setting
String System Variable

Contents String, current pathname prefix for PREFIX (0).

Description This system variable indicates the current settings of the PREFIX directive (for
PREFIX entry 0).

See Also PREFIX Directive, p.249.

Example ->?PFX
\PGMS\===\ \PGMS\====\ \PGMS\CUST\CASHRCPT\ \PGMS\CUST\MSC\ \PGMS\CUST\SALES\

PGN System Variable PGN Current Pr ogram PathnameCurrent Program Pathname
String System Variable

Contents String, name of currently loaded program.

Description This system variable contains the name of the currently loaded program, complete
with its full operating system pathname.

See Also 'OP' System Parameter, p.678.

Example 0100 PRINT PGN
0110 SET_PARAM 'OP'
0120 PRINT PGN
-:run
C:\Program Files\Sage Software\ProvideX\TST\TST_EGS
TST_EGS

Note: There is one exception to the above. If you have the 'OP' (original program)
system parameter set to ON, PGN returns only the program name (i.e., without an
expanded pathname).

4. System Variables PRC

ProvideX Language Reference V8.30 Back 569

PRC System Variable PRC Precision Cur rently In EffectPrecision Currently In Effect
Numeric System Variable

Contents Integer, current PRECISION.

Description This system variable contains a numeric value (integer) that indicates the current
PRECISION in effect (except in scientific notation). This value will be in the range: -1
to 18. The default is 2 (two digits to the right of the decimal point).

If the mode is FLOATING POINT, then the value returned is in scientific notation.
Either a PRECISION -1 statement or a FLOATING POINT directive will activate
scientific notation. The PRECISION directive cancels it.

See Also 'PD'= System Parameter, p.679
PRECISION Directive, p.248
PRC() Function, p.503

Examples 0010 PRECISION 14; FLOATING POINT ; LET A=7.1234
0020 PRINT PRC,@(10),A
0030 BEGIN ! Resets A=0, precision=2 (cancels scientific notation)
0040 PRINT PRC,@(10),A
0050 LET A=6.1234
0060 PRINT PRC,@(10),A
-:run
.14E+02 .71234E+01
2 0
2 6.12

4. System Variables PRM

ProvideX Language Reference V8.30 Back 570

PRM System Variable PRM ProvideX Parameter Setting sProvideX Parameter Settings
String System Variable

Contents String, comma-delimited list of current system parameter settings.

Description This system variable contains a comma-delimited string listing the current settings
of OS parameters for ProvideX use. See also Chapter 6. System Parameters, p.653.
Some parameters only appear in the list when set, and some are OS specific.

Example PRINT PRM ! Version 4.20 WINDOWS settings
-'3D',-'AD',-'AH','AI'=10,-'B0','BF'=10,-'BT',-'BX','BY'=1970,-'CD','CS','CT'=0,
'CU'=36,-'D0','DC','DF'=0,'DL'=0,'DP'=46,'DT'=0,'DW'=0,-'EG','EL'=0,-'EO',-'ES',
-'EX',-'F4','FB'=5,-'FC','FF'=0,-'FI','FO'=0,-'FU',-'FL','FP','FS'=138,-'FT',-'F
X',-'F,',-'I0',-'I2','IC',-'IM','IR','IS'=5,-'IZ',-'KR','LB'=4,-'LC',-'LD',-'LE'
,'LS'=1,-'LU',-'LZ','MB'=0,'MF'=50,-'MP','NE',-'NI',-'NK',-'NL',-'NN',-'NR',-'OC
','OL'=25,'OM',-'OP','OR','OW'=0,'PC'=10,'PD'=2,-'PO',-'PU','PW'=36,-'PZ','QF'=1
,'Q_'=2,'Q^'=2,-'QS',-'QT',-'RI','RN'=1,'RP',-'RR',-'RS',-'SC',-'SD',-'SF',-'SK'
,'SL'=32,-'SP',-'SR','SV'=1,'SZ'=32000,-'TB','TC'=0,'TH'=44,-'TL',-'TN',-'TT',-'
TU',-'TX','VP'=48,'VR'=0,'VW'=0,'WB','WD'=10000,-'WF','WH'=0,'
'=2,-'XC',-'XF',-'XI',-'XT',-'ZP',-'DD','!B'=3,'!U'=0,-'1U'

You can have the PRM() function return a specific parameter's current setting (or the
Boolean value, 1=ON / 0=OFF, for a switch), even when it's hidden from the PRM
listing.

->?prm('!i') ! hidden unless ON
0

PSZ System Variable PSZ Cur rent Pro gram SizeCurrent Program Size
Numeric System Variable

Contents Integer, program size

Description This numeric system variable indicates the current program size in bytes.

Example ->?PSZ
2605

4. System Variables QUO

ProvideX Language Reference V8.30 Back 571

QUO System Variable QUO ASCII Quote CharacterASCII Quote Character
String System Variable

Contents String, ASCII quote (") character.

Description This string system variable contains the ASCII quote character (").

Example COMMAND$="SAVE "+QUO+PGN+QUO

RET System Variable RET Operating Syst em's Last Err or CodeOperating System's Last Error Code
Numeric System Variable

Contents Integer, operating system error + 256.

Description This numeric system variable returns an integer reporting the operating system's
error code associated with the last operating call. ProvideX generates this value by
adding 256 to the error code value in the ERR system variable.

Example -: PRINT "RET = ",RET
RET = 258

See Also ERR Last System-Detected Error Value, p.560
DEF sysvar= Define System Variables, p.76

RND System Variable RND Random Number Generat orRandom Number Generator
Numeric System Variable

Contents Decimal numeric, PRECISION 8, random number.

Description This system variable contains a different random number each time you use it to
return a value. The value will be in the range from 0 to 1, with a PRECISION of 8.

Example 0010 FOR I=1 TO 3
0020 PRINT RND,
0030 NEXT
0040 PRINT " DONE"; END
-:run
 0.76559375 0.5199119 0.9505763 DONE

See Also RANDOMIZE Directive, p.270
RND() Function, p.513

4. System Variables SEP

ProvideX Language Reference V8.30 Back 572

SEP System Variable SEP ProvideX Field DelimiterProvideX Field Delimiter
String System Variable

Contents String, separator value, default $8A$.

Description This string system variable indicates the record field separator; the ProvideX default is
$8A$). Note that when you WRITE using an IOList, SEP is the field delimiter.

Examples MSGBOX "Unable to save "+P$+SEP+MSG(ERR), "Save Error"
LIST_BOX LOAD ITEMS.CTL,0, item_code$+SEP+item_desc$

SID System Variable SID Syst em Identification CodeSystem Identification Code
String System Variable

Contents String, operating system identification code.

Description This system variable contains the system identification code as defined by the
operating system.

Example ->?SID
MSDOS
->

SSN System Variable SSN System Soft war e Id ent ifierSystem Software Identifier
String System Variable

Contents String, software identifier.

Description This system variable contains a sixteen character system software identifier. The first
4 characters report the version number, characters 6-8 report the machine
classification, and 10-16 report the software serial number.

Example ->?SSN
0510-001-1234567
->

4. System Variables SYS

ProvideX Language Reference V8.30 Back 573

SYS System Variable SYS Operating System IdentificationOperating System Identification
String System Variable

Contents String, name of operating system.

Description This string system variable contains the name of the operating system.

Example ->?SYS
MS-WINDOWS

TIM System Variable TIM Time in Hours Past M idnightTime in Hours Past Midnight
Numeric System Variable

Contents Decimal numeric, PRECISION 6, system time.

Description This system variable returns the current system time in hours past midnight. The
TME and TIM variables are identical.

See Also SETTIME Directive, p.323

Example 0100 PRINT TIM
0110 SETTIME 1.10
0120 PRINT "Current time",TIM
RUN
 19.341613
Current time 1.100502

4. System Variables TME

ProvideX Language Reference V8.30 Back 574

TME System Variable TME Time in Hours Past M idnightTime in Hours Past Midnight
Numeric System Variable

Contents Decimal numeric, PRECISION 6, system time.

Description This system variable returns the current system time in hours past midnight. The
TME and TIM variables are identical.

See Also SETTIME Directive, p.323

Example 0100 PRINT TME
0110 SETTIME 1.10
0120 PRINT "Current time",TME
RUN
 19.341613
Current time 1.100502

TMS System Variable TMS Second s Expired in Curr ent MinuteSeconds Expired in Current Minute
Numeric System Variable

Contents Integer, system time in seconds passed in current minute.

Description The TMS variable contains a numeric value (integer) indicating the current number
of seconds that have passed in the current minute according to the operating
system's clock. This value will be in the range: 0 to 60.

Example ->?TMS
15

4. System Variables TSM

ProvideX Language Reference V8.30 Back 575

TSM System Variable TSM Er ror Stat us of C urrent Pr ogramError Status of Current Program
String System Variable

Contents String, error status of current program.

Description This system variable indicates the error status of the currently running program.
(This is included in ProvideX primarily for compatibility with other Business Basics.)
Its contents are as follows:

UID System Variable UID Curr ent User IDCurrent UserID
String System Variable

Contents String, current User ID.

Description This system variable contains the current UserID. On systems without user
registration, it returns the value of the environment variable USER or the Network
UserID. The UID and WHO variables are identical.

Example 0010 ! START_UP
0020 OPEN (1)"MYCONFIG"
0030 READ (1,KEY=WHO,ERR=0050)X$
0040 SETFID X$
0050 CLOSE (1)
->?UID
SMITHJ

Note: This variable is included for compatibility with other languages.

(1,1) "0"
(2,16) Name of program with last error. Padded with nulls.
(18,5) Line with error
(23,5) Error status
(28,5) Operating system error code

4. System Variables UNT

ProvideX Language Reference V8.30 Back 576

UNT System Variable UNT Lowest Available Local ChannelLowest Available Local Channel
Numeric System Variable

Contents Integer, lowest channel/file number not open.

Description The UNT system variable contains the lowest available channel/file number.

See Also ENABLE Directive, p.110,
PREFIX Directive, p.249.

Example 0010 LET CHAN_NUM=UNT
0020 OPEN (CHAN_NUM)"FILENAME"
0030 print CHAN_NUM
->?
1

WHO System Variable WHO Curr ent User IDCurrent UserID
String System Variable

Contents String, current User ID.

Description This system variable contains the current UserID. On systems without user
registration, it returns the value of the environment variable USER or the Network
UserID. The UID and WHO variables are identical.

Example 0010 ! START_UP
0020 OPEN (1)"MYCONFIG"
0030 READ (1,KEY=WHO,ERR=0050)X$
0040 SETFID X$
0050 CLOSE (1)
->?WHO
SMITHJ

Note: Some older Business Basics opened the printer on Channel (1). If you are
dealing with such applications in legacy code, try using HFN instead of UNT. (See HFN
Highest Available Local Channel, p.562.)

ProvideX Language Reference V8.30 Back 577

Language Reference 5
Mnemonics

Over view

Overview
ProvideX mnemonics deliver special control sequences to a display device or printer.
Discussions on the creation, format, and use of mnemonics begin on the following page. For
groupings see Mnemonic Categories, p.581. For detailed descriptions, refer to the
alphabetically-arranged List of Mnemonics on p. 585.

'@@'
'+$' & '-$'
'2D'
'3D'
'4D'
'AB'
'ARC'
'AT'
'+B' & '-B'
'Bn'
'BACKGR'
'BB'
'BE'
'BEEP'
'BG'
'BI'
'BJ'
'BK'
'BLACK'
'_BLACK'
'BLUE'
'_BLUE'
'BM'
'BO'
'BOX'
'BR'
'BS'
'BT'
'BU'
'BW'
'BX'
'*C'

'Cn'
'CAPTION'
'CE'
'CF'
'CH'
'CI'
'CIRCLE'
'CL'
'COLOUR'
'_COLOUR'
'CP'
'CPI'
'CR'
'CS'
'CURSOR'
'CYAN' '_CYAN'
'+D' & '-D'
'DC'
'DEFAULT'
'DF'
'DIALOGUE'
'DN'
'DO'
'DROP'
'+E' & '-E'
'EB'
'EE'
'EF'
'EG'
'EI'
'EJ'
'EL'

'EM'
'EO'
'EP'
'ER'
'ES'
'ET'
'EU'
'EW'
'+F' & '-F'
'Fn'
'FF'
'FILL'
'FL'
'FONT'
'FRAME'
'GD'
'GE'
'GF'
'GOTO'
'GREEN'
'_GREEN'
'GS'
'*H'
'HIDE'
'*I'
'+I' & '-I'
'IC'
'IMAGE'
'JC'
'JD'
'JL'
'JN'

'JR'
'JS'
'L6'
'L8'
'LC'
'LD'
'LF'
'LI'
'LINE'
'LM'
'LPI'
'LT'
'MAGENTA'
'_MAGENTA'
'MAXSIZE'
'MINSIZE'
'ME'
'MESSAGE'
'MINSIZE'
'MN'
'MODE'
'MOVE'
'MP'
'MS'
'+N' & '-N'
'NI'
'*O'
'OFFSET'
'OPTION'
'+P' & '-P'
'PE'
'PEN'

'PICTURE'
'PIE'
'PM'
'POLYGON'
'POP'
'PS'
'PUSH'
'*R'
'RB'
'RC'
'RECTANGLE'
'RED'
'_RED'
'RL'
'RM'
'RP'
'RS'
'RT'
'+S' & '-S'
'Sn'
'SB'
'SCROLL'
'SE' & 'SD'
'SF'
'SHOW' / 'HIDE'
'SIZE'
'SL'
'SN'
'SP'
'SR'
'SWAP'
'SX'

'+T' & '-T'
'TEXT'
'TEXTWDW'
'TR'
'TW'
'+U' & '-U'
'UC'
'UP'
'+V' & '-V'
'VT
'!W''
'+W' & '-W'
'WA'
'WC'
'WD'
'WG'
'WHITE'
'_WHITE'
'WINDOW'
'WM'
'WP'
'WR'
'WRAP'
'WS'
'WX'
'*X'
'+X' & '-X'
'XP'
'YELLOW'
'_YELLOW'
'+Z' & '-Z'
'ZX'

5. Mnemonics Overview

ProvideX Language Reference V8.30 Back 578

Using Mnemonics

Mnemonics are generally inserted within a PRINT (or INPUT) statement to invoke
such functions as clearing the screen, positioning the cursor, changing the colour of
characters, setting/resetting various attributes, or enabling/disabling I/O modes.

All mnemonics are enclosed within single quotes. Some require arguments (e.g.,
PRINT 'CIRCLE'(720,600,100,1)). Some are represented by more than one
keyword: a long form or short form (e.g., use either the 'PUSH' or 'WC' to copy the
current window).

Use of an invalid mnemonic, or one that is not applicable to a particular device,
results in Error #29: Invalid Mnemonic or position specification.

Creating and Redefining Mnemonics
Creating or Redef ining Mnemonics

Use the MNEMONIC directive to define/redefine 2-character mnemonics for any file
or device. For example, to assign settings for the ProvideX mnemonics 'CP' and 'SP':

MNEMONIC(0)'CP'="Courier New,-8":120,40
MNEMONIC(0)'SP'="*":80,25

When a defined mnemonic is encountered in a PRINT or INPUT statement, the
system converts it to the character string specified. Some 2-character mnemonics are
predefined. For example, 'CR', 'LF', and 'FF are predefined as 00, $0A$, and $0C$
respectively.

All 2-character mnemonics listed in this reference that are used for character display
can also be used for character printing. This is provided that the mnemonic is
defined for the printer output channel using the correct escape sequence for the
device specified.

Many motion/editing operations will be emulated when they are not actually
supported by the device specified. However, it is still better to define mnemonics
using the correct motion/editing sequences that are available for the specific device.
Emulation of some sequences may result in slower performance.

For further details on mnemonic definitions, refer to the MNEMONIC Directive, p.210,
and the [WDX] Tag, p.801.

Note: Mnemonics are specific to the channel on which they are defined and are only valid
while the channel remains open. When the channel is closed, the mnemonics are cleared.

5. Mnemonics Overview

ProvideX Language Reference V8.30 Back 579

X,Y Coordinates
X,Y Coord in at es

When using GUI mnemonics, the values for x, y, and radius are considered logical
screen coordinates not line/column coordinates. In ProvideX, these are known as
graphical units (similar to pixels). Use @X() / @Y() functions, to convert
line/column values to graphical units ; e.g.,

0110 LET RADIUS=(100)
0120 LET X=@X(45)! X=graphical units for column value 45
0130 LET Y=@Y(20)! Y=graphical units for line value 20
0140 PRINT @(45,15),'CIRCLE'(X,Y,RADIUS,1)

Mnemonic Settings, Window / Region
M nem onic Sett in gs, Window / Region

When you send output to the screen, ProvideX remembers all graphic mnemonics
until a 'CS' Clear Screen, p.598, is performed or the window is destroyed. This
enables Windows to repaint the window properly when required.

Windows API Frame Styles
W indows API Frame Styles

ProvideX has three Windows API frame styles available to it. The mnemonic
'WINDOW' or 'WA' Mnemonics, p.647 uses WS_BORDER frame style, which is not
popular with everyone. However, it has advantages: it maintains a global menu and
buttons and is always relative to the main window. The mnemonic 'DIALOGUE'
Mnemonic, p.600, on the other hand, uses WS_DLGFRAME, which is more popular,
but requires absolute screen position and doesn't allow global menus and buttons.

To change the look of the window frame without losing 'WINDOW' functionality,
you can use the WS_THICKFRAME style. To do this, add OPT="Z" to the 'WINDOW'
mnemonic:

PRINT 'WINDOW'(10,10,40,10,"Title",OPT="Z")

5. Mnemonics Dynamic Information in Mnemonics

ProvideX Language Reference V8.30 Back 580

Dynamic Information in Mnemonics D ynamic Infor mat ion in Mnemonics

Some mnemonics require dynamic information to generate specific output sequences
(e.g., the line and column number in the '@@' mnemonic). Use the format below to
define a mnemonic that contains dynamic information in its output sequence. You
must identify a variable using a leading \ (backslash) followed by the one-character
identifier, optional modifier, and format code.

Format Define Variable: =ESC+"[\id_char{modifier}fmt_code"

Where

\id_char Identifier for the variable. Include the backslash in the syntax. Valid
identifiers include:
\b Bottom margin of window/scroll region
\h Height of window/scroll region
\l (Lower case L). Left margin of window/scroll region
\r Right margin of window/scroll region
\t Top margin of window/scroll region
\w Width of window/scroll region
\A Current attributes in binary
\B Background colour index
\C Current column
\F Foreground colour index
\L Current line

modifier Optional modifier(s) of the variable's value. If you include these
operators, insert them between the variable and the output fmt_code.
You can include one or more of the modifiers. The list below shows the
valid modifiers and their associated functions:
+ (Plus sign) Add the value of the next byte
- (Minus sign) Subtract the value of the byte
& (Ampersand) AND the value of the next byte
^ (Caret) XOR the value of the next byte
| (Pipe) OR the value of the next byte

fmt_code Mandatory output format code following each variable. Valid format
codes include:
2 Output is two-byte ASCII
3 Output is three-byte ASCII
a Output is ASCII plain text number (base 0)
b Output is single byte binary (base 0)
A Output is ASCII plain text number (base 1)
B Output is single-byte binary (base 0x20)
T Table output. Following T, the next byte must contain the number of

bytes in the table. The table must follow that in the output sequence. If
the number of bytes exceeds table length, no output is generated.

5. Mnemonics Mnemonic Categories

ProvideX Language Reference V8.30 Back 581

Mnemonic Categories Cat egor ies

Mnemonics can be classified according to how they are used, and on the type of device
they control. While there are exceptions where mnemonics can be redefined for use
outside of their intended purpose, the following categories were created to help you
identify the standard mnemonics by their functionality as well as their names:

Definition
Each of the following mnemonics contain a definition or provide information to be
used by a device for performing specific operations:

Behaviour

The following mnemonics are used to modify the behaviour of ProvideX specific to
the channel on which they are defined:

Definition Behaviour Editing

GUI Display Graphical Printer Graphical Display/Printer

Character Display Character Printer Character Display/Printer

Motion

'*C' Automatic Output on CLOSE
'*H' Control Screen Colours
'*I' Input Conversion Table
'*O' Output Conversion Table
'*R'' OS Command String

'*X' Program to Call on CLOSE
'@@' Define Cursor Position Sequence
'AT' Character Attribute Output Sequence
'GD' Define Graphics Character Set
'WX' Windows Definition Sequence

'+E' & '-E' Multi-line Enter as Tab
'+F' & '-F' Signal Change of Focus
'+I' & '-I' Implied Decimals
'+N' & '-N' Drop Box Write Error
'+T' & '-T' Text Display On/Off
'+U' & '-U' Screen Refresh
'+V' & '-V' Row Highlighting
'+W' & '-W' Windows-Style
'BEEP' Simple Sound Effect
'BG' Begin Generating Error #29
'BI' Begin Input Transparency
'BM' Begin Markup
'BO' Begin Output Transparency
'BT' Begin Type-Ahead Mode
'BW' Begin WrapAround
'EG' End Generating Error #29
'EI' End Input Transparency

'EL' Start Edit Key Load
'EM' End Output Markup Mode
'EO' End Output Transparency
'ET' End Type Ahead
'EW' End WrapAround
'FL' Start Function Key Load
'IC' Insert a Space at Cursor
'LC' Mixed-Case User Input
'ME' Begin Edit Mode
'MN' End Edit Mode
'OPTION' On-The-Fly Setting
'RM' Reset to Default Mode
'SN' Native Screen Mode
'SX' Set Extended Screen Mode
'WC' Save/Copy Current Window
'WRAP' WrapAround On/Off
'ZX' Return Attributes as per BBx

5. Mnemonics Mnemonic Categories

ProvideX Language Reference V8.30 Back 582

Editing
The following mnemonics are used to control various editing operations in both
character-based and GUI display environments:

Graphical Display/Printer
The following mnemonics are used all types of graphical output — they can be sent
to a graphical print spooling system (i.e., *WINPRT*), or as output to a screen:

For more graphical mnemonics, see GUI Display and Graphical Printer, p.583.

'BE' Begin Echoing
'BI' Begin Input Transparency
'BT' Begin Type-Ahead Mode
'BW' Begin WrapAround
'CE' Clear from Cursor to End of Screen
'CF' Clear Foreground Mode
'CI' Clear Input Type-Ahead Buffer
'CL' Clear from Cursor to End of Line
'CS' Clear Screen
'DC' Delete Character at Cursor
'EE' End Echo Mode
'EI' End Input Transparency
'EL' Start Edit Key Load
'ET' End Type Ahead
'EW' End WrapAround
'FL' Start Function Key Load

'LI' Insert Line
'ME' Begin Edit Mode
'MN' End Edit Mode
NI' Next Input Numeric
'RB' Ring Bell
'RC' Return Cursor Address
'RL' Return Line Contents
'RP' Terminal Read to End
'RS' Restore Screen
'SCROLL' Define/Control Scroll Region
'SE' & 'SD' Scroll Enable/Disable
'TR' Terminal Read from Start
'TW' Transmit Windows as String
'UC' Convert Input UpperCase
'WRAP' WrapAround On/Off

'ARC' Define/Draw Arc
'Bn' Background Colour
'BACKGR' or 'BK' Next Colour Is Background
'BLACK' & '_BLACK' Colour Text
'BLUE' & '_BLUE' Colour Text
'BU' Begin Underscoring
'CIRCLE' Define / Draw a Circle
'CP' Condense Print for Screen
'COLOUR' & '_COLOUR' User-Defined Colours
'CYAN' & '_CYAN' 'Colour Text
'DEFAULT' or 'DF' 'Define Default
'EP' Start Expanded Print
'EU' End Underscoring
'FILL' Define Fill Style
'Fn' Foreground Colour
'FONT' Define / List Fonts
'GREEN' & '_GREEN' Colour Text
'GE' End Graphics Data
'GS' 'Start Graphics Transmission
'IMAGE' Define a Graphics Group
'JC' Justify Centre

'JD' Justify Decimal-Aligned
'JL' Left-Justify Text
'JN' Right-Justify Numeric
'JR' Right-Justify Text
'JS' Left-Justify String
'LINE' Define / Draw a Line
'LM' 'Landscape Mode
'LF' Line Feed (Advance Line)
'MAGENTA' & '_MAGENTA' Colour Text
'MS' Mode Serial
'PEN' Define Pen Style
'PICTURE' Define / Draw Picture
'PIE' Define / Draw Pie Slice
'PM' 'Portrait Mode
'POLYGON' Draw Polygon
'RECTANGLE' Draw a Rectangle
'RED' & '_RED' Colour Text
'SP' Standard Print
'TEXT' Draw Text
'WHITE' & '_WHITE' Color Text
'YELLOW' & '_YELLOW' Colour Text

Note: In Windows, the 'FILL', 'FONT', 'PEN', and 'PICTURE' mnemonics use Graphical
Device Interface (GDI) resources/handles that are only released when the window
they are in is dropped or cleared, or their 'IMAGE' group is deleted.

5. Mnemonics Mnemonic Categories

ProvideX Language Reference V8.30 Back 583

Graphical Printer
The following mnemonics are used only when sent to a graphical printer spooling
system (i.e., *WINPRT*):

For more graphical mnemonics, see Graphical Display/Printer, p.582.

GUI Display
The following mnemonics are used only for graphical user interfaces:

For more graphical mnemonics, see Graphical Display/Printer, p.582.

Character Printer

The following mnemonics are used only when sent to direct-to-output devices:

'+S' & '-S' Substitute Solid Lines On/Off
'AB' Abort (For Windows Spooler)
'CPI' Logical Characters per Inch
'L6' Set to 6 LPI

'L8' Set to 8 LPI
'LPI' Logical Lines / Inch
'OFFSET' Offset for *WINPRT*

'+E' & '-E' Multi-line Enter as Tab
'+F' & '-F' 'Signal Change of Focus
'+I' & '-I' Implied Decimals
'+N' & '-N' 'Drop Box Write Error
'+P' & '-P' Mouse Movements
'+T' & '-T' Text Display On/Off
'+U' & '-U' Screen Refresh
'+V' & '-V' 'Row Highlighting
'+W' & '-W' Windows-Style
'+X' & '-X' Windows ’X’ Close Button
'+Z' & '-Z' Text-to-Windows Look
'2D' 'Use 2D Controls
'3D' Use 3D Controls
'4D' Use 4D Controls
'BOX' Define / Draw a Box
'BR' Begin Reverse Video
'BX' Define / Draw a Box
'CAPTION' Replace Caption
'Cn' Control Cursor Display
'CURSOR' Cursor/Mouse Pointer
'DIALOGUE' Define Dialogue
'DO' Delete Objects in Scroll Region
'DROP' Drop Identified Window
'ER' End Reverse Video
'FRAME' Define / Draw a Frame

'GF' Default Window Font
'GOTO' Make Window Current
'GREEN' Colour Text
'HIDE' Hide Window Display
'MAXSIZE'Window Resize Limit
'MESSAGE' Message Line Text
'MINSIZE' Window Resize Limit
'MOVE' Move Current Window
'POP' Restore Previous Window
'PUSH' Save/Copy Window
'SCROLL' Define Scroll Region
'SE' & 'SD' Scroll Enable/Disable
'SHOW' Show Window Display
'SIZE' Visual Size of Window
'SR' Scroll Reset
'SWAP' Swap Windows on Stack
'TEXTWDW' Text Window
'WA' Define / Draw Window
'WC' Save/Copy Current Window
'WG' Make Window Current
'WINDOW' Define / Draw Window
'WR' 'Remove Current Window
'WS' Swap Windows On Stack

'EF' End Expanded Print
'EL' Start Edit Key Load
'EP' Start Expanded Print
'L6' Set to 6 LPI
'L8' Set to 8 LPI
'PE' Disable Attached Printer Port

'PS' Enable Attached Printer Port
'Sn' Slew to Channel #
'SL' Start VFU Load
'VT' Slew to S6, Vertical Tab
'WP' Wide Printer (DOS)

5. Mnemonics Mnemonic Categories

ProvideX Language Reference V8.30 Back 584

Character Display
The following mnemonics are used only when sent to text-based CUI devices:

Character Display/Printer

The following mnemonics are usable on both direct-to-output and text-based CUI
devices:

Motion
The following mnemonics are used to direct cursor movement in both text-based
and GUI display environments:

'Bn' Background Colour
'BACKGR' or 'BK' Next Colour Is Background
'BB' Begin Blinking (DOS)
'BJ' Join Box Intersections
'BLACK' & '_BLACK' Colour Text
'BLUE' & '_BLUE' Colour Text
'BOX' Define / Draw a Box
'BX' Define / Draw a Box
'CAPTION' Replace Caption
'Cn' Control Cursor Display
'COLOUR' & '_COLOUR' User-Defined Colours
'CURSOR' Cursor/Mouse Pointer
'CYAN' & '_CYAN' Colour Text
'DEFAULT' or 'DF' Define Default
'DROP' Drop Identified Window
'EB' End Blinking Mode (DOS)
'EJ' End Box Joining
'EP' Start Expanded Print
'Fn' Foreground Colour
'GE' End Graphics Data
'GOTO' Make Window Current
'GS' Start Graphics Transmission
'GREEN' & '_GREEN' Colour Text
'MAGENTA' & '_MAGENTA' Colour Text

'MODE' Set Attributes/Colour
'MOVE' Move Current Window
'POP' Restore Previous Window
'PUSH' Save/Copy Window
'RED' & '_RED' Colour Text
'RS' Restore Screen
'SB' Set Mode to Background
'SCROLL' Define Scroll Region
'SE' & 'SD' Scroll Enable/Disable
'SF' Set Mode to Foreground
'SR' Scroll Reset
'SWAP' Swap Windows on Stack
'TEXTWDW' Text Window
'WA' Define / Draw Window
'WC' Save/Copy Current Window
'WD' Drop Identified Window
'WG' Make Window Current
'WHITE' & '_WHITE' Color Text
'WINDOW' Define / Draw Window
'WM' Relocate Current Window
'WR' Remove Current Window
'WS' Swap Windows On Stack
'XP' Line Mode (DOS)
'YELLOW' & '_YELLOW' Colour Text

'BR' Begin Reverse Video
'BU' Begin Underscoring
'CP' Condense Print for Screen
'ER' End Reverse Video
'EU' End Underscoring

'ES' 'Send Escape
'FF' FormFeed
'LF' Line Feed (Advance Line)
'MS' Mode Serial
'SP' Standard Print

'BS' Cursor Back One Space
'CH' Position Cursor at Home
'CR' 'Carriage Return
'CS' Clear Screen

'DN' Move Cursor Down a Line
'LT' Move Left One Column
'RT' Move Right One Column
'UP' Move Up One Line

5. Mnemonics List of Mnemonics

ProvideX Language Reference V8.30 Back 585

List of Mnemonics List o f Mnemonics

The ProvideX mnemonics listed below are in ASCII sort order, except where the
mnemonic keyword has an initial asterisk, plus sign, minus sign or underscore.
These are listed under their second character; e.g., you'll find '_BLUE' under "B" with
'BLUE' and '+S' / '-S' under "S".

'@@' Mnemonic '@ @' Define Cursor Pos ition SequenceDefine Cursor Position Sequence
Definition

Format '@@'=esc_seq$

Where:

Description Use '@@' to define the cursor print positioning.

For additional information regarding the use of special mnemonics (i.e., '@@', '*C', '*I',
'*O', '*R', '*X', 'AT', 'GD', 'WX') when creating a device driver, see Dynamic Information
in Mnemonics, p.580 or Device Drivers in the ProvideX User's Guide.

'+$' & '-$' Mnemonics For Internal Use Only
GUI Display

Description For Sage Software Canada use only - Internal debugging attribute included here for
completeness only.

'2D' Mnemonic ' 2D' Use 2D Contr olsUse 2D Controls
GUI Display
Description Display two-dimensional controls (older Windows visual style) for all

current/subsequent windows (deactivates '3D' or '4D' controls).

esc_seq$ ESC+"[and a string expression defining the cursor position
coordinates, using the format:

 \id_char{modifier | ;}format_code

For example, '@@'=ESC+"[\LA;\CAH".

5. Mnemonics '3D'

ProvideX Language Reference V8.30 Back 586

'3D' Mnemonic ' 3D' Use 3D Contr olsUse 3D Controls
GUI Display

Description Display three-dimensional controls (Windows 95 visual style) for all current/subsequent
windows. To deactivate, use PRINT '2D'.

'4D' Mnemonic ' 4D' Use 4D Contr olsUse 4D Controls
GUI Display

Description Display Windows Vista (or XP) visual style for all current/subsequent windows.
Vista style appears only when run under Vista. On other Windows systems, this
mnemonic renders an XP visual style. To deactivate, use PRINT '2D'.

'AB' Mnemonic 'AB' Abor t (For Windows Spooler)Abort (For Windows Spooler)
Graphical Printer

Description For Windows Spooler Only. Use 'AB' to abort output to the Windows print spooler.
See also Printing in Windows, User’s Guide.

Example PRINT (30)'ab'

'ARC' Mnemonic 'A RC' D ef ine/D raw ArcDefine/Draw Arc
Graphical Display/Printer

Format 'ARC'(x,y,radius,aspect,angle_1,angle_2)

Where:

angle_1 Starting angle, in degrees. Numeric expression.

angle_2 Ending angle, in degrees. Numeric expression.

aspect Aspect ratio / viewpoint. (Ratio=1 results in no tilt.) Numeric
expression.

radius Radius of the circle, in graphical units. Numeric expression.

x,y Coordinates for the centre of the drawing, in graphical units. Numeric expression.

5. Mnemonics 'AT'

ProvideX Language Reference V8.30 Back 587

Description Use 'ARC' to draw (print) an arc on the device. Use graphical units or @X(col) and
@Y(line) functions for x, y, and radius. The arc will extend from the starting angle1
to angle2. The 'ARC' mnemonic uses the current 'PEN' attributes.

Example The example below draws two different-coloured arcs. Aspect ratio=3 tilts the
resulting drawing into an elliptical "shape". (Since this ellipsis is really two arcs as
opposed to an enclosed shape, 'FILL' attributes do not apply.) Aspect ratio=1 would
join the arcs in a circular shape instead.

0060 PRINT 'PEN'(1,3,1)
0070 PRINT 'ARC'(800,250,75,3,1,75)
0080 PRINT 'PEN'(
0090 PRINT 'ARC'(800,250,75,3,75,1)

'AT' Mnemonic 'A T' Character At tribut e Outp ut SequenceCharacter Attribute Output Sequence
Definition

Description Use 'AT' to define a character attribute output sequence.

For additional information regarding the use of special mnemonics (i.e., '@@', '*C', '*I',
'*O', '*R', '*X', 'AT', 'GD', 'WX') when creating a device driver, see Dynamic Information
in Mnemonics, p.580 or Device Drivers in the ProvideX User's Guide.

'+B' & '-B' Mnemonics '+B' and ' -B' Outp ut Buff er eing On/Of fOutput Buffering On/Off
Behaviour or GUI Display

Format Enable File Buffering (default): '+B'
Disable File Buffering: '-B'

Description Setting this option enables file output to be buffered or not buffered (physically flushed)
after each PRINT or WRITE operation. The primary use of this option is for Log type files.

5. Mnemonics 'Bn'

ProvideX Language Reference V8.30 Back 588

'Bn' Mnemonic ' Bn' Background ColourBackground Colour
Graphical Display/Printer or Character Display

Where:

Description Use the format above to begin outputting a background colour to a device (i.e.,
PRINT, INPUT, etc). The 16 colour codes are in ASCII sequence from 0 to ?.

Use the same colour codes for 'Fn' Foreground Colour, p.607.

Example In this example, the prompt and user's response will both be in white text on a blue
background.

0010 INPUT 'B4','WHITE',"Please enter your name: ",NAME$,

'BACKGR' or 'BK' Mnemonic 'BA CKGR' Next Colour Is Backgr ound

 Next Colour Is Background
Graphical Display/Printer or Character Display

Format Long or short form: 'BACKGR' or 'BK'

Description Use either 'BACKGR' or 'BK' to designate that the next colour mnemonic (e.g., 'BLUE')
is the background colour for the text region when a directive sends output to the
display device (i.e., PRINT, INPUT, etc.).

Example 0020 PRINT 'BK','BLUE','WHITE',"Hello, ",USER_ID$,

'BB' Mnemonic ' BB' Begin BlinkingBegin Blinking
Character Display

Description Included for completeness only. Use 'BB' to begin blinking of characters (legacy DOS
systems). To end blinking mode, use the 'EB' Mnemonic, p.603.

n Numeric colour code. Default is 'B0'. Supported options are:

0 Black* 4 Blue 8 Dark Gray < Light Blue
1 Red 5 Magenta 9 Light Red = Light Magenta
2 Green 6 Cyan : Light Green > Light Cyan
3 Yellow 7 White ; Light Yellow ? Light Gray

5. Mnemonics 'BE'

ProvideX Language Reference V8.30 Back 589

'BE' Mnemonic ' BE' B egin EchoingBegin Echoing
Editing

Description Use 'BE' to begin echoing characters entered from the keyboard in response to an
INPUT (or READ, FIND, ...) directive. Echoing is ON by default for channel 0 (zero, the
main terminal). For other channels, echoing is OFF by default. To end echoing, use
the 'EE' Mnemonic, p.603.

'BEEP' Mnemonic ' BEEP' Simple Sound EffectSimple Sound Effect
Behaviour

Description The 'BEEP' mnemonic allows applications to play sounds in a simpler manner than
the MULTI_MEDIA command. This mnemonic accepts a string that contains the same
keywords as the MSGBOX directive relative to the system sounds of "STOP",
"QUESTION", "INFO", "EXCLAMATION", "?" and "!"; e.g.,

PRINT 'BEEP'("STOP")
PRINT 'BEEP'("*STOP,w")

The ,w option causes ProvideX to wait until the sound has completed before
continuing any processing. In order for ,w to work, the sound needs to be
registered. Use an asterisk * before the sound name to have the system look up the
sound in the Windows registry (which is not the same as sound names in the control
panel); e.g.,

PRINT 'BEEP'("*MailBeep") ! Registered Sound Event
PRINT 'BEEP'("*C:\Windows\Media\tada.wav") ! Specific File
PRINT 'BEEP'("*Windows XP Logoff Sound") ! Found by automatic search

In the last example, the real filename is C:\Windows\Media\Windows XP
Logoff Sound.wav. If the name given does not match a registered sound, then
the Windows OS searches its list of possible sound locations (current directory,
Windows directory, System directory, etc.). For more details, consult the Microsoft
documentation on Registering Sound Events or check the registry for
HKEY_CURRENT_USER\AppEvents\EventLabels*

'BG' Mnemonic 'BG ' Begin Gener at ing Error #29Begin Generating Error #29
Behaviour

Description Use 'BG' to begin generating Error #29: Invalid Mnemonic or position
specification whenever an invalid mnemonic is executed. To end generation of
Error #29, use the 'EG' Mnemonic, p.603.

5. Mnemonics 'BI'

ProvideX Language Reference V8.30 Back 590

'BI' Mnemonic 'BI' Begin Input Transpar encyBegin Input Transparency
Editing or Behaviour

Description Use 'BI' to begin input transparency mode. (All input is accepted without any system
interpretation of control codes. With 'BI' activated, a SIZ= option on an INPUT
directive is the only way you can specify a terminator / end of input. To end input
transparency mode, use the 'EI' Mnemonic, p.604.

Example When you need to return input one character at a time, we recommend that you use
the 'ME' Mnemonic, p.620. However, it is also possible to use 'BI' in combination
with SIZ=1 to return input one character at a time. Then, each character is returned
as entered. Standard characters are returned in the variable specified (e.g., CHAR$,
below). Function and edit keys are returned in the system variable CTL. Your
program will still be responsible for processing all the edit keys.

0010 INPUT (0,SIZ=1) 'BI', CHAR$, 'EI' ! This will echo the data
0010 OBTAIN (0,SIZ=1) 'BI', CHAR$, 'EI' ! This will not echo

'BJ' Mnemonic ' BJ' Join Box Intersect ion sJoin Box Intersections
Character Display

Description Use 'BJ' to tell ProvideX to begin joining box intersections. After you use this
mnemonic, all 'BOX' edge lines which intersect existing graphic line characters will
be adjusted to join the intersecting lines properly. To end box joining, use the 'EJ'
Mnemonic, p.604.

Example 0030 PRINT 'BOX'(4,6,16,10,"Box 1",'BJ'),
0040 PRINT 'BOX'(19,6,10,10,"Box 2"),
0050 PRINT 'EJ',

'BK' Mnemonic 'BK' Next Colour Is Backgr oundNext Colour Is Background
Graphical Display/Printer or Character Display

Description See 'BACKGR' Next Colour Is Background, p.588.

5. Mnemonics 'BLACK' & '_BLACK'

ProvideX Language Reference V8.30 Back 591

'BLACK' & '_BLACK' Mnemonics ' BLA CK' & '_BLACK' Black TextColour Text
Graphical Display/Printer or Character Display

Format Foreground: 'BLACK'

Background: '_BLACK'

Description All input or output following this mnemonic will be in black foreground or
background.

Example INPUT '_CYAN','BLACK',"Please enter your name: ",Name$,

'BLUE' & '_BLUE' Mnemonic ' BLU E' & ' _BLU E' Blue TextColour Text
Graphical Display/Printer or Character Display

Format Foreground: 'BLUE'

Background: '_BLUE'

Description All input or output following this mnemonic will be in blue foreground or
background.

Example INPUT '_BLUE','WHITE',"Please enter your name: ",Name$,

'BM' Mnemonic ' BM' Begin Output of Markup FilesBegin Output of Markup Files
Behaviour

Description Use 'BM' to begin output of markup files containing embedded mnemonics. For
instance, in the ProvideX *VIEWER*, 'BM' sends all data directly to the print file without
interpretation in tokenized format (except for 'FF' , 'CR', and 'LF' mnemonics, which are
output as 0C, 0D, and 0A respectively). This allows you to send print jobs to any
Windows printer. To end markup, use the 'EM' Mnemonic, p.605.

'BO' Mnemonic ' BO ' Begin Ou tput Transpar encyBegin Output Transparency
Behaviour

Description Use 'BO' to begin output transparency mode. (All printed output is sent directly to
the display device without checking for embedded mnemonics; i.e., $1B$ (Esc)
followed by the mnemonic code.) Use 'EO' to end output transparency mode.

5. Mnemonics 'BOX'

ProvideX Language Reference V8.30 Back 592

'BOX' Mnemonic ' BOX' Define / Dr aw a BoxDefine / Draw a Box
GUI Display or Character Display

Format Long or short form: 'BOX' or 'BX'
'BOX'(col,ln,wth,ht[,title$[,attrib$]])

Where:

Description You can use either 'BOX' or 'BX' in the format to draw a text mode box. If you include
a title, it is displayed left-justified on the top line of the box unless the 'AH' system
parameter is set. If you include attributes, these are sent to the display device before
the box is displayed. Refer to the 'AH' System Parameter, p.656.

Example The boxes in the example are drawn joined with titles. Current 'FILL' and 'PEN'
settings are ignored when you use 'BOX':

0010 PRINT 'CS'; LIST
0020 PRINT 'PEN'(2,3,6),'FILL'(3,8)
0030 PRINT 'BOX'(4,6,16,10,"Box 1",'BJ')
0040 PRINT 'BX'(19,6,10,10,"Box 2")
0050 PRINT 'EJ'

'BR' Mnemonic 'BR' Begin Rever se VideoBegin Reverse Video
GUI Display or Character Display/Printer

Description Use 'BR' to begin sending characters to the device in reverse video mode. Use an 'ER'
mnemonic to end reverse video mode. (When you have colour attributes, ProvideX
uses the background colour as the foreground colour and vice-versa.) To end reverse
video mode, use the 'ER' Mnemonic, p.605.

'BS' Mnemonic 'BS' Cursor Back One SpaceCursor Back One Space
Motion

Description Use 'BS' to move the cursor back one position to the left. ProvideX ignores this
mnemonic if the cursor is in column 0 zero.

@(col,ln,
wth,ht)

Position/coordinates. Numeric expressions. Column and line
coordinates for top left corner, width in number of columns and height
in number of lines.

attrib$ Optional attributes. If you include attributes, use a string of one or more
mnemonics.

title$ Optional title. String expression.

5. Mnemonics 'BT'

ProvideX Language Reference V8.30 Back 593

'BT' Mnemonic 'BT' Begin Type-Ahead ModeBegin Type-Ahead Mode
Behaviour or Editing

Description Use 'BT' to begin type-ahead mode. This mode lets the user enter input before the
execution of an INPUT statement. ProvideX supplies an internal buffer for the
characters entered. To end type-ahead mode, use 'ET' End Type Ahead, p.606.
(See also: 'CI' Clear Input Type-Ahead Buffer, p.595.)

'BU' Mnemonic 'BU' Begin UnderscoringBegin Underscoring
Graphical Display/Printer or Character Display/Printer

Description Use 'BU' to begin underscoring characters sent to the display device. To end
underscoring, use the 'EU' Mnemonic, p.606.

'BW' Mnemonic 'BW' Begin WrapAr oundBegin WrapAround
Behaviour or Editing

Description Begin WrapAround. (See 'EW' or 'WRAP' WrapAround On/Off, p.648.).

'BX' Mnemonic 'BX' Define / Dr aw a BoxDefine / Draw a Box
GUI Display or Character Display

Description See 'BOX' Define / Draw a Box, p.592.

5. Mnemonics '*C'

ProvideX Language Reference V8.30 Back 594

'*C' Mnemonic ' C' Au tomatic Out put on CLOSEAutomatic Output on CLOSE
Definition

Format MNEMONIC (chan)'*C'=data$

Description '*C' (star-c) contains a string expression that will be automatically printed to the device
driver when a CLOSE is executed.

For additional information regarding the use of special mnemonics (i.e., '@@', '*C', '*I',
'*O', '*R', '*X', 'AT', 'GD', 'WX') when creating a device driver, see Dynamic Information
in Mnemonics, p.580 or Device Drivers in the ProvideX User's Guide.

'Cn' Mnemonic 'Cn' Contr ol C urso r Display_ModeControl Cursor Display Mode
GUI Display or Character Display

Where:

Description Use the format above ('C0', 'C1', or 'C2') to control how the cursor is displayed.

'CAPTION' Mnemonic 'CA PTION' Replace Caption f or WindowReplace Caption for Window
GUI Display

Format 'CAPTION'(text)

Where:

Description Use 'CAPTION'(text) to change the caption for the current window. If the current
window does not have a caption and is located at position 0.0, ProvideX replaces the
caption on the main window. ('WINDOW' or 'DIALOGUE')

To find out the caption for the current window you can use a MULTI_LINE READ
directive with CTL=0, as in MULTI_LINE READ 0,A$.

Note: For *WINPRT* devices, because the Windows spooler automatically resets the
printer when closed, the '*C' mnemonic is ignored.

n Display mode:
0 - zero Hide Cursor 'C0'
1 - Display Normal Cursor 'C1'
2 - Insert Mode Cursor 'C2'

text Replacement caption. String expression.

5. Mnemonics 'CE'

ProvideX Language Reference V8.30 Back 595

Example 0010 multi_line read 0,a$
0020 print a$
0030 print 'caption'("My Window")
0040 multi_line read 0,a$
0050 print a$

'CE' Mnemonic 'CE' Clear from Cursor to End of ScreenClear from Cursor to End of Screen
Editing

Description Use 'CE' to clear the screen from the cursor position to the end of the screen.

'CF' Mnemonic 'CF' C lear Foregr ound ModeClear Foreground Mode
Editing

Description Use 'CF' to clear non-protected mode for characters on the screen. (See also: 'SF' Set
Mode to Foreground, p.639.)

'CH' Mnemonic 'CH' Pos ition Cur sor at Home Position Cursor at Home
Motion

Description Use 'CF' to position the cursor to the device’s home location; i.e., @(0,0). The screen
is not cleared.

'CI' Mnemonic 'CI' C lear In put Type-Ahead Buf ferClear Input Type-Ahead Buffer
Editing

Description Use 'CI' to clear any input from the type-ahead buffer. (See also 'BT' Begin
Type-Ahead Mode, p.593.)

5. Mnemonics 'CIRCLE'

ProvideX Language Reference V8.30 Back 596

'CIRCLE' Mnemonic 'CIRCLE' Define / Dr aw a Cir cleDefine / Draw a Circle
Graphical Display/Printer

Format 'CIRCLE'(x,y,radius,aspect)

Where:

Description Use 'CIRCLE' to draw (print) a circle on the device. For x, y, and radius, use graphical
units or the @X() / @Y() Functions, p.391. The 'CIRCLE' mnemonic uses the current
attributes for 'FILL' Define Fill Style, p.607, and 'PEN' Define Pen Style, p.630.

Example 0170 PRINT 'PEN'(1,3,1),'FILL'(2,6)
0180 PRINT 'CIRCLE'(720,600,100,1)
0190 PRINT 'PEN'(1,3,6),'CIRCLE'(950,600,100,2)

'CL' Mnemonic 'C L' Clear from Cursor to End of LineClear from Cursor to End of Line
Editing

Description Use 'CL' to clear the current line from the cursor position to the end of the line.

'COLOUR' & '_COLOUR' Mnemonics 'COLOUR' User -Defined Colour sUser-Defined Colours
Graphical Display/Printer or Character Display

Format Foreground: 'COLOUR' ("RGB: n n n" | num | name$)
'COLOR' ("RGB: n n n" | num | name$)

Background: '_COLOUR' ("RGB: n n n" | num | name$)
'_COLOR' ("RGB: n n n" | num | name$)

Where:

Description All input or output following this mnemonic will be set to the defined foreground or
background colour. For further information, refer to the description for changing the
colour index provided under the 'OPTION' Mnemonic, p.627.

aspect Numeric aspect ratio / viewpoint. (Ratio=1 results in no tilt.)

radius Radius of the circle, in graphical units. Numeric expression.

x,y Coordinates for the centre of the drawing, in graphical units.
Numeric expression.

name$ Pre-defined or user-defined colour name; e.g., 'COLOUR' ("LightBlue").
num Pre-defined (0-15) or user-defined (16-254) colour number (n=0-254).
RGB: n n n Three-number RGB value (n=0-255).

5. Mnemonics 'CP'

ProvideX Language Reference V8.30 Back 597

'CP' Mnemonic 'CP' Condense Pr int for ScreenCondense Print for Screen
Graphical Display/Printer or Character Display/Printer

Description Use 'CP' to reduce the window and region size, and/or change the font to condensed
print. To restore the screen and font to regular size, use the 'SP' Mnemonic, p.640. In
ProvideX, 'CP' or 'SP' affect only the data that follows the mnemonic.

On GUI devices, the 'CP' mnemonic will output using a font size that is approximately
5/8ths the size of the current default text font.

Example 10 open(1)"LP"
20 print (1)"NORMAL"+'CP'+"COMPRESSED"+'SP'+"NORMAL"
30 close(1)

If the example above is run in ProvideX, the word COMPRESSED would be in condensed
print, and NORMAL would be in standard print. (In other Business Basics, the font for the
complete line is affected and, for this example, would be in standard print.)

'CPI' Mnemonic 'CPI' Logical Ch ar act er s per InchLogical Characters per Inch
Graphical Printer

Format 'CPI'(chars)

Where:

Description Use 'CPI'(chars) to set the logical CPI (characters per inch) for printing in graphics
mode, where (as a rough guide to equivalent sizes):

Point size -12 = 6 LPI, 10 CPI
Point size -10 = 7.2 LPI, 12 CPI
Point size - 7 = 10 LPI, 16 CPI
For more information refer to 'LPI' Logical Lines / Inch, p.618, and the TXH()
Function, p.544, and the TXW() Function, p.545.

Example With both channels (30) and (1) open:

0060 PRINT (30)'CPI'(120/7.5),'LPI'(6),Data$
0070 PRINT (1)'CPI'(16),Data$20 print

chars Logical characters per inch. Numeric expression.

5. Mnemonics 'CR'

ProvideX Language Reference V8.30 Back 598

'CR' Mnemonic 'CR' Carr iage Ret urnCarriage Return
Motion

Description Use 'CR' to return to column 0 (i.e., Carriage Return without line feed).

'CS' Mnemonic 'CS' Clear ScreenClear Screen
Editing or Motion

Description Use 'CS' to clear the screen and set the cursor position @(0,0).

As alternatives, you can use the 'CH' (Cursor Home without clear screen) and 'FF'
(FormFeed, alternative to clear screen for print data) mnemonics.

'CURSOR' Mnemonic 'CURSOR' Co ntrol Cur sor, Mouse PointerControl Cursor, Mouse Pointer
GUI Display or Character Display

Formats 1. Cursor ON (Default): 'CURSOR' ("ON")
2. Hide Cursor: 'CURSOR' ("OFF")
3. Cursor in Replace Mode: 'CURSOR' ("REP")*
4. Cursor in Insert Mode: 'CURSOR' ("INS")
5. Change Mouse Pointer (GUI Only): 'CURSOR' (num)

Where:

Description Use the above formats to control cursor and mouse pointer displays.

num Numeric code for graphic to use as mouse pointer. (Graphics display only.)
Supported options include:
0 - Arrow 7 - Rabbit in hat
1 - Wait (Hourglass) 8 - Happy face
2 - I-Beam 9 - Sad face
3 - Movement arrows 10 - Resize vertical Up/Down arrow
4 - Sizing arrow 11 - Resize horizontal Left/Right arrow
5 - Hand 12 - Not allowed (diagonal line across circle)
6 - Hand in crossed circle ("No" hand)

Note: The mouse pointer selected via the 'CURSOR' mnemonic may be overridden by
settings in the INI file.

5. Mnemonics 'CYAN' & '_CYAN'

ProvideX Language Reference V8.30 Back 599

Example 0010 PRINT 'CS'
0020 CUR=1
0030 BUTTON 10,@(10,10,20,2)="CHANGE CURSOR"
0040 WHILE CTL<>4
0050 OBTAIN X
0060 IF CTL=10 THEN PRINT 'CURSOR'(CUR)
0070 IF CUR=12 THEN CUR=0 ELSE CUR++
0080 WEND
0090 PRINT 'CURSOR'(0)
0100 END

'CYAN' & '_CYAN' Mnemonics Colour Text
Graphical Display/Printer or Character Display

Format Foreground: 'CYAN'

Background: '_CYAN'

Description All input or output following this mnemonic will be in cyan foreground or
background.

Example INPUT '_CYAN','WHITE',"Please enter your name: ",Name$,

'+D' & '-D' Mnemonics Obsolete
Behaviour or GUI Display

Description Included here for completeness only.

'DC' Mnemonic 'D C' D elete Char acter at CursorDelete Character at Cursor
Editing

Description Use 'DC' to delete the character at the current cursor position. (Text shifts one
position to the left for all characters to the right of the cursor on the same line.).

5. Mnemonics 'DEFAULT' or 'DF'

ProvideX Language Reference V8.30 Back 600

'DEFAULT' or 'DF' Mnemonic 'DEFAULT' Def in e Mnemon ic as D efaultDefine Default
Graphical Display/Printer or Character Display

Format Long or short form: 'DEFAULT' or 'DF'

Description Use either 'DEFAULT' or 'DF' to define the current attributes/font as the default for an
OPEN channel. For instance, you can set a default for fixed font, reverse video,
blinking, underscore, foreground / background, etc. To set the default font for all
graphical objects, refer to the 'GF' Mnemonic, p.612.

Example To set a font in *WINPRT* printing as the standard default font for an OPEN channel:

0010 OPEN (30)"*WINPRT*;ASIS"
0020 PRINT (30)'FONT'("Courier New",-7),'DF'

'DIALOGUE' Mnemonic 'DIALOGUE' D efine / Draw Dialogue RegionDefine/Draw Dialogue Region
GUI Display

Format 'DIALOGUE' (col,ln,wth,ht[,wdw_id],[title$][,attrib$][,OPT=string$])

Where:

col,ln,
wth,ht

Position / coordinates. Numeric expressions. Column and line
coordinates for top left corner, width in number of columns and height in
number of lines.

attrib$ Optional attribute string. If you include attributes, use one or more
mnemonics to define the defaults for the window. String expression.

title$ Optional title. String expression.

string$ Optional attributes. Supported options include:
& Ampersand - creates window that logically attaches to the current

window (i.e., leaves the current window active and shares controls)
* Asterisk - creates resizable window with automatic scrollbars for text

plane; e.g., PRINT 'DIALOGUE'(1,1,60,20,"Title",OPT="*")
- Dash - window has a minimize button.
? Window supports Win95 Help button.
^ Caret - window is always on top (not applicable to the 'WINDOW'

mnemonic); e.g., PRINT 'DIALOGUE'(1,2,30,3,"My Top
Dog",OPT="^").

c New window is a child of the window that launched it.
C Disables close button on title bar of window and eliminates the

system control menu from the title bar.
F Window can be maximized, occupying full screen (regardless of

number of columns/rows). Area outside the defined text region will
be cleared to the default background colour for the window.

X

5. Mnemonics 'DIALOGUE'

ProvideX Language Reference V8.30 Back 601

Description Use 'DIALOGUE' to define a new window which is not contained in the main
ProvideX screen. In a non-Windows environment, this does the same as a 'WINDOW'
mnemonic.

ProvideX uses the WS_DLGFRAME frame style from the Windows API for the 'DIALOGUE'
mnemonic. For more information, see Windows API Frame Styles, p.579.
See also: 'TEXTWDW' Create Text Window, p.643 and WINDOW' Define / Draw
Window, p.647.

Example The example below creates a dynamic, resizable/scrollable viewer using a
‘DIALOGUE' window which is large enough to display the complete picture. A 'SIZE'
mnemonic fits the window to the screen. The user is supplied with scroll bars to
view the desired image.

0010 CALL "*picture;Get_size","c:\windows\clouds.bmp",WD,HI
0020 LET WD=INT(WD),HI=INT(HI)
0030 PRINT 'DIALOGUE'(10,10,WD,HI,"MY Photo",OPT="*-m"),
0030: 'SIZE'(30,10),'B?','SR','CS',

(ProvideX normally redraws the text plane below the picture. Line 0040 suppresses
the text plane to avoid flicker.)

0040 PRINT '-T',
0050 PRINT 'PICTURE'(0,0,@X(WD),@Y(HI),"C:\windows\clouds.bmp"),
0060 OBTAIN 'C0',*; IF CTL<>4 THEN GOTO *SAME

h Window has no title bar.
i Window has no icon in the upper left corner.
m Enables "maximize" box in top right corner of window (only for

dialogue windows created with OPT="*").
M Window has a menu bar.
s 'DIALOGUE'() returns a CTL value to signal when the dialogue view

state is changed; i.e.,
CTL=-1106 when the dialogue is minimized
CTL=-1107 when the dialogue is restored to normal state
CTL=-1105 when the dialogue is maximized.
(CTL=-1105 is also returned for the Z option (below) if dialogue has
been resized.)

S Window has Status line / Message Bar.
x Disables close button on title bar of window and eliminates the

system control menu from the title bar.
X Enables close button on title bar of window and supports the

system control menu on the title bar.
Z Creates a resizable window without scrollbars. When the user resizes

the window a CTL=-1105 is generated. See also 'SIZE', p.639.

wdw_id Optional dialogue window's unique ID number (0 -255).

X

X

Note: The ‘DIALOGUE' mnemonic with OPT="^" can be useful for error message
windows. Although the users can still perform other operations, the error message
will remain “always on top” as a constant reminder to deal with the error.

5. Mnemonics 'DN'

ProvideX Language Reference V8.30 Back 602

'DN' Mnemonic 'DN ' Mo ve Cur sor D own a LineMove Cursor Down a Line
Motion

Description Use 'DN' to move the cursor down a line.

'DO' Mnemonic 'D O' Delete Objects in Scroll RegionDelete Objects in Scroll Region
GUI Display

Description Use 'DO' to delete all objects that start (top left corner) in the current scroll region.

'DROP' or 'WD' Mnemonic 'D ROP' Drop Iden tified WindowDrop Identified Window
GUI Display or Character Display

Format Long or short form: 'DROP' or 'WD'
'DROP'(wdw_id)

Where:

Description Use either 'DROP' or 'WD' in the format to drop the identified window. If this
window does not exist or is the only window, ProvideX returns an Error #57: No
such window defined. If wdw_id=-1, all windows except the primary window
are dropped.

Example 30400 LET WW_ADD=HWN(0)
30410 PRINT %W_MSG$,'WINDOW'(20,8,40,8,WW_ADD,"Deleting Sku"
30410:),'CS','SB',
30420 LET DEL_SKU$=FROM_SKU$,SAVE_KEY$=COMP$+FORM$
30430 !
30440 LET ADD_SKU$=TO_SKU$
30460 GOSUB DELETE_ITEM
30470 READ (E855FENT_H,KEY=SAVE_KEY$)IOL=0310
30480 PRINT 'WG'(W_ADD),'WD'(WW_ADD),%NORM_SCR$,

wdw_id Window's unique ID number (0 - 255).

5. Mnemonics '+E' & '-E'

ProvideX Language Reference V8.30 Back 603

'+E' & '-E' Mnemonics '+E' and '-E' Multi-line Enter as TabMulti-line Enter as Tab
Behaviour or GUI Display

Format Allow = : '+E'

Disable = : '-E'

Description Use '+E' and '-E' to control the use of the key as in multi-lines.

'EB' Mnemonic ' EB' End Blinking Mode (D OS)End Blinking Mode (DOS)
Character Display

Description Included for completeness only. Use 'EB' to end blinking of characters (legacy DOS
systems). This is the opposite of the 'BB' Mnemonic, p.588.

'EE' Mnemonic ' EE' End Echo ModeEnd Echo Mode
Editing

Description Use 'EE' to end echoing of characters sent to the display device. This is the opposite
of the 'BE' Mnemonic, p.589.

'EF' Mnemonic ' EF' End Expan ded Pr intEnd Expanded Print
Graphical Display/Printer or Character Printer

Description Use 'EF' to end expanded print mode. This is the opposite of the 'EP' Mnemonic,
p.605.

'EG' Mnemonic 'EG ' End Gener at ing Error #29End Generating Error #29
Behaviour

Description Use 'EG' to stop generation of Error #29: Invalid Mnemonic or position
specification whenever an invalid mnemonic is executed. This is the opposite
of the 'BG' Mnemonic, p.589.

Enter Tab

Enter Tab

Enter Tab

5. Mnemonics 'EI'

ProvideX Language Reference V8.30 Back 604

'EI' Mnemonic 'EI' End Input Transpar encyEnd Input Transparency
Editing or Behaviour

Description Default. Use 'EI' to end input transparency mode. This is the opposite of the 'BI'
Mnemonic, p.590.

'EJ' Mnemonic 'EJ' End Box JoiningEnd Box Joining
Character Display

Description Default. Use 'EJ' to end automatic joining of box intersections for 'BOX' mnemonic
drawings. This is the opposite of the 'BJ' Mnemonic, p.590.

Example 0030 PRINT 'BOX'(4,6,16,10,"Box 1",'BJ')
0040 PRINT 'BOX'(19,6,10,10,"Box 2")
0050 PRINT 'EJ'

'EL' Mnemonic ' EL' Start Ed it Key LoadStart Edit Key Load
Editing or Behaviour

Description Use 'EL' to start loading edit keys. This feature is included for compatibility with
other languages. For more information on conversion and compatibility modes, see
the Installation Guide. Also, refer to the DEFCTL Directive, p.79.

ProvideX Utilities:

ProvideX utilities do not expect function and editing keys to be loaded with other
values from the use of 'FL' or 'EL'. Issue a PRINT 'FL',"1",'EL',"1" to reset
loaded function or editing keys just prior to running any of the ProvideX utilities.
See also: 'FL' Start Function Key Load, p.608.

'EL' Mnemonic ' EL' End VFU LoadEnd VFU Load
Character Printer

Description Use 'EL' to end VFU load.The data following 'SL' (from 'SL' up to an 'EL') defines the
VFU channels. The total number of characters defines the page length, the characters
themselves represent the channels that can be slewed to. The first character must be
a 1 (channel 1). See 'SL' Start VFU Load, p.640, 'Sn' Slew to Channel, p.637, and
'VT' Slew to S6, Vertical Tab, p.645.

5. Mnemonics 'EM'

ProvideX Language Reference V8.30 Back 605

'EM' Mnemonic ' EM' End Output Markup ModeEnd Output Markup Mode
Behaviour

Description Use 'EM' to end output of markup files containing embedded mnemonics. This is the
opposite of the 'BM' Mnemonic, p.591.

'EO' Mnemonic 'EO' End Ou tput Transpar encyEnd Output Transparency
Behaviour

Description Use 'EO' to end output transparency mode. This is the opposite of the 'BO'
Mnemonic, p.591. If you want to send ‘EO' as a mnemonic, you must use it as a
stand-alone mnemonic; e.g., PRINT 'BO',X$,'EO'.

To send ‘EO' as part of your data, embed it in an expression (e.g., PRINT
'BO'+X$+'EO') instead of using it as a stand-alone. Then, ProvideX evaluates 'EO'
as an embedded ‘EO' and sends it without interpretation to the device / printer.

'EP' Mnemonic ' EP' Star t Expan ded Pr intStart Expanded Print
Graphical Display/Printer or Character Printer

Description Use 'EP' to begin expanded print (either double wide or double high depending on
the type of printer). To end expanded print, use the 'EF' Mnemonic, p.603. On GUI
devices, the 'EP' mnemonic will start output of standard text using a double-sized font
and reset at the end-of-line.

'ER' Mnemonic 'ER' End Rever se VideoEnd Reverse Video
GUI Display or Character Display/Printer

Description Default. Use 'ER' to end reverse video mode. This is the opposite of the 'BR'
Mnemonic, p.592.

Esc

Esc

Esc

5. Mnemonics 'ES'

ProvideX Language Reference V8.30 Back 606

'ES' Mnemonic 'ES' Send EscapeSend Escape
Character Display/Printer

Description Use the 'ES' mnemonic to send a $1B$ escape code to a text mode device.

'ET' Mnemonic ' ET' End Type AheadEnd Type Ahead
Editing or Behaviour

Description Use 'ET' to end type-ahead mode. This is the opposite of the 'BT' Mnemonic, p.593.

'EU' Mnemonic 'EU' End UnderscoringEnd Underscoring
Graphical Display/Printer or Character Display/Printer

Description Use 'EU' to end the underscoring of characters. This is the opposite of the 'BU'
Mnemonic, p.593.

'EW' Mnemonic 'EW' End Wrap Ar oundEnd WrapAround
Behaviour or Editing

Description Use 'EW' to end WrapAround. (See 'BW' or 'WRAP' WrapAround On/Off, p.648.)

'+F' & '-F' Mnemonics '+F' and '-F' Sig nal C hang e of Focus On/Of fSignal Change of Focus On/Off
Behaviour or GUI Display

Format Signal Change of Focus: '+F'
Do Not Signal Change of Focus: '-F'

Description Use '+F' & '-F' to control whether or not ProvideX signals a change of Focus. If you use
'+F', ProvideX signals a change of Focus by issuing a CTL=1000.

5. Mnemonics 'Fn'

ProvideX Language Reference V8.30 Back 607

'Fn' Mnemonic ' Fn ' Foreground ColourForeground Colour
Graphical Display/Printer or Character Display

Where:

Description Use the format above to begin outputting a foreground colour to a device (i.e.,
PRINT, INPUT, etc). The 16 colour codes are in ASCII sequence from 0 to ?.

Use the same colour codes for 'Bn' Background Colour, p.588.

Example In this example, the prompt and user's response will be in white text on a blue
background.

0010 INPUT 'B4','F7',"Please enter your name: ",NAME$,

'FF' Mnemonic ' FF' For mFeedForm Feed
Graphical Display/Printer or Character Display/Printer

Description 'FF' is normally used with printers (as a form feed to advance a page) but you can
also use it as an alternative to 'CS' for clearing the screen (to allow programs
intended for printer output to send data to a display device). This is predefined to
$0C$.

'FILL' Mnemonic 'FILL' Define Fill St yleDefine Fill Style
Graphical Display/Printer

Format 1. One-Colour Fill Pattern: FILL' (pattern,colour1)
2. Two-Colour Fill Pattern/Gradient: 'FILL' (pattern,colour1,colour2)

Where:

n Numeric colour code. Default is 'F7'. Supported options are:

0 Black* 4 Blue 8 Dark Gray < Light Blue
1 Red 5 Magenta 9 Light Red = Light Magenta
2 Green 6 Cyan : Light Green > Light Cyan
3 Yellow 7 White ; Light Yellow ? Light Gray

pattern Numeric code for fill pattern type. Supported options include:
0 - No fill 4 - Crossed line
1 - Solid fill 5 - Bottom left to top right
2 - Horizontal lines 6 - Top left to bottom right
3 - Vertical lines 7 - Diagonal crossed lines

5. Mnemonics 'FL'

ProvideX Language Reference V8.30 Back 608

Description Use 'FILL' to define the current fill pattern/gradient and colours for an open channel
(default is the terminal). The direction for gradient fill is derived from the pattern
codes 2, 3, 5, and 6. Non-gradient two-colour fill patterns: 4 and 7 (first colour for lines,
second colour for background fill).

Examples PRINT 'PEN'(1,3,1),'FILL'(2,6),'CIRCLE'(224,450,100)
PRINT 'Fill'(1,"RGB: 192,192,192"),
PRINT 'Fill'(0,"Light Red"),
PRINT 'Fill'(3,"Colur32","Colur51")

'FL' Mnemonic ' FL' St ar t Funct ion Key LoadStart Function Key Load
Editing or Behaviour

Description Use 'FL' to start loading Function keys. This feature is included for compatibility
with other languages. For more information on conversion and compatibility modes,
see the Installation Guide. Also, refer to the DEFCTL Directive, p.79.

ProvideX Utilities:

ProvideX utilities do not expect function and editing keys to be loaded with other
values from the use of 'FL' or 'EL'. Issue a PRINT 'FL',"1",'EL',"1" to reset
loaded function or editing keys just prior to running any of the ProvideX utilities.
See also: 'EL' Start Edit Key Load, p.604.

Numeric code for gradient pattern direction. Supported options include:
2 - top to bottom
3 - left to right
5 - top-left to bottom-right
6 - bottom-left to top-right

colour1 Fill colour. String or numeric. Use colour code, colour name, or RGB
setting; i.e., RGB:n n n where n=0-255. Options include:
0 - Black 8 - Dark Gray
1 - Light Red 9 - Dark Red
2 - Light Green 10 - Dark green
3 - Light Yellow 11 - Dark Yellow
4 - Light Blue 12 - Dark Blue
5 - Light Magenta 13 - Dark Magenta
6 - Light Cyan 14 - Dark Cyan
7 - White 15 - Gray

colour2 Second colour for two-colour gradient or fill patterns. String or numeric.
Options are the same as for colour1; however, when applying two
colours, ensure that both are defined using the same convention – if
colour1 uses RGB, colour2 must use RGB as well.

5. Mnemonics 'FONT'

ProvideX Language Reference V8.30 Back 609

'FONT' Mnemonic ' FONT' Define / List Font sDefine / List Fonts
Graphical Display/Printer

Formats 1. Define Font (with specification): 'FONT'(name$,size[,attrib$[,angle]])
2. Define Font (via special names): 'FONT'({"*SYSFONT" |"*GUIFONT"})
3. List Channel's Fonts: 'FONT'(LIST*[,chan])
4. List Fonts, Properties: 'FONT'(LIST PROPERTIES FOR [name$][,chan])
5. List Sizes for a Font: 'FONT'(LIST name$[,chan])

Where:

angle Slant for printing, in degrees. Optional.

attrib$ Font attributes. Optional string expression. Valid codes include:
& Underscore the character following the '&' (as in hot keys)
B Bold
C Centre text
F Show focus lines around text
I Italics
N Numeric data alignment
R Right justify text
S Applies background colour to area directly behind text.
U Underscore ("_")
W Word wrap
Same as N
In addition, you can control the character set.
! Use symbol character set (char. set 2)
O Use OEM character set (char. set 255)
J Use Japanese character set (char. set 128)
D Use character set 1 or current default for the given font.
%nnn Use specific Windows character set nnn.
The default is ANSI, character set 0.

chan Logical file number or channel.

*GUIFONT Keyword representing the dialogue font used by standard MS
Windows applications for dialogues.

name$ Font name. String expression. Font must exist in the system.

size Numeric. Use positive values for font sizes relative to the current
default for the device (.5 for half size, 2 for double, etc.). Use negative
sizes for absolute font size in points. As a rough guide to equivalent
sizes:

Point size -12 = 6 LPI, 10 CPI
Point size -10 = 7.2 LPI, 12 CPI
Point size - 7 = 10 LPI, 16 CPI.

*SYSFONT Keyword representing the default graphical system font - typically
"System,0.66,B".

5. Mnemonics 'FRAME'

ProvideX Language Reference V8.30 Back 610

Description 'FONT' defines the current font and specifications. It can also be used to return
comma-delimited font and property (attribute) lists for the channel (default=the
terminal), or a size list for a specific (existing) font.

Two special font names may be used in place of the specifications: *SYSFONT
(default graphical system font) and *GUIFONT (standard MS Windows dialogue
font). These fonts will change based on OS Version and theme. The new special font
names may be used anywhere a font specification is given.

Example f$="MS Serif"; ? 'FONT'(LIST F$) ! returns sizes for MS Serif font:
13,16,19,21,27,35,10,11,
0100 PRINT 'FONT'("MS Serif",-11)

'FRAME' Mnemonic 'FRAM E' Define / Dr aw a FrameDefine / Draw a Frame
GUI Display

Format 'FRAME'(x,y,x,y,style,[,title$])

Where:

Description Use 'FRAME' to draw (print) a frame on the screen. Use graphical units or @X(col)
and @Y(line) functions for beginning and ending the frame.

Example 0010 PRINT 'FRAME'(100,100,450,450,10,"Hello There")

Note: 'FONT' does not work with direct-to-device printers; i.e., it can be used with
WINPRT but not *WINDEV*. See *WINPRT* Windows Printing, p.760.

title$ Frame title. Optional. String expression.

style Determines the style level and bevel sizes in creating the frame.
Numeric expression:
>0 'FRAME' is elevated button with bevel width=style value
<0 'FRAME' is inset with bevel width=style value
=0 'FRAME' appears etched or flat (depends on '2D' , '3D' , or '4D'.

x,y Placement coordinates, top left and bottom right, in graphical
units. Numeric expression.

5. Mnemonics 'GD'

ProvideX Language Reference V8.30 Back 611

'GD' Mnemonic 'GD' Define Gr aphics Character SetDefine Graphics Character Set
Definition

Description Use the 'GD' mnemonic to define the 11 characters that can be used for text mode
line-drawing operations. The standard line-drawing characters are A-K (and for
compatibility 0-9 and colon) as defined below:

Each character consists of up to four lines (each line represented by a bit in the byte
defined by 'GD'); i.e.,

01 - Horizontal line centered top to bottom in left half of cell.
02 - Vertical line centered left-right in top half of cell.
04 - Horizontal line centered top to bottom in right half of cell.
08 - Vertical line centered left-right in bottom half of cell.

If 'GD' is not defined for the output, then $0C090603050A0F0E0B070D$ is the
default. This conforms to the standard graphical character outputs as defined in the
table above. The mnemonics 'GS' and 'GE' will not (and should not) be defined. If an
output character is not defined by the 'GD' mnemonic, the cross hairs will be used.

For additional information regarding the use of special mnemonics (i.e., '@@', '*C', '*I',
'*O', '*R', '*X', 'AT', 'GD', 'WX') when creating a device driver, see Dynamic Information
in Mnemonics, p.580 or Device Drivers in the ProvideX User's Guide.

Examples MNEMONIC(FIL_NO)'GD'=$C9BBC8BCCDBACECCB9CACB$! For double-line graphics
MNEMONIC(FIL_NO)'GD'=$DABFC0D9C4B3C5C3B4C1C2$! For single-line graphics

'GE' Mnemonic 'GE' End Gr ap hics DataEnd Graphics Data
Graphical Display/Printer or Character Display

Description Use 'GE' to end graphics data transmission. This is the opposite of the 'GS'
Mnemonic, p.613.

A or 2 Top left corner. G or : Cross hairs.

B or 3 Top right corner. H or 6 Vertical with horizontal right.

C or 4 Bottom left corner. I or 7 Vertical with horizontal left.

D or 5 Bottom right corner. J or 8 Horizontal with vertical up.

E or 0 Horizontal line. K or 9 Horizontal with vertical down.

F or 1 Vertical line.

5. Mnemonics 'GF'

ProvideX Language Reference V8.30 Back 612

'GF' Mnemonic 'GF' Default Font f or Window Object sDefault Font for Window Objects
GUI Display

Description Use 'GF' to declare the current font in use as the default graphic font for all objects to
be created in the window.

'GOTO' or 'WG' Mnemonic 'GOTO ' Make Window Cur rentMake Window Current
GUI Display or Character Display

Format Long or short form: 'GOTO' or 'WG'
'GOTO'(wdw_id)

Where:

Description Use either 'GOTO' or 'WG' in the format to make the identified window the current
window and move it the top of the window stack. If this window does not exist or is
the only window, ProvideX returns an Error #57: No such window defined.

Example 30400 LET WW_ADD=HWN(0)
30410 PRINT %W_MSG$,'WINDOW'(20,8,40,8,WW_ADD,"Deleting Sku"
30410:),'CS','SB',
30420 LET DEL_SKU$=FROM_SKU$,SAVE_KEY$=COMP$+FORM$
30430 !
30440 LET ADD_SKU$=TO_SKU$
30460 GOSUB DELETE_ITEM
30470 READ (E855FENT_H,KEY=SAVE_KEY$)IOL=0310
30480 PRINT 'WG'(W_ADD),'WD'(WW_ADD),%NORM_SCR$,

'GREEN' & '_GREEN' Mnemonics 'GREEN' & ' _GREEN ' Green TextColour Text
Graphical Display/Printer or Character Display

Format Foreground: 'GREEN'

Background: '_GREEN'

Description All input or output following this mnemonic will be in green foreground or
background.

Example INPUT '_GREEN','WHITE',"Please enter your name: ",Name$,

wdw_id Window's unique ID number (0 - 255).

5. Mnemonics 'GS'

ProvideX Language Reference V8.30 Back 613

'GS' Mnemonic 'GS' Start Graphics D ata Tr ansmissionStart Graphics Data Transmission
Graphical Display/Printer or Character Display

Description Use 'GS' to begin printing/displaying of (line-drawing) graphics. For a list of
available line-drawing characters, refer to the mnemonic 'GD' Define Graphics
Character Set, p.611. To end transmission, use 'GE' End Graphics Data, p.611.

'*H' Mnemonic ' H' Contr ol Screen Colour sControl Screen Colours
Definition

Format '*H' =colour_codes$

Where:

Description Use '*H' (Star-h) to define colours in a displayed listing for the LIST Directive, p.176,
and LST() Function, p.477. (See also: 'CS' System Parameter, p.660.) Default settings
are shown in the example below.

Example MNEMONIC '*H'=";4:>1=;9"

colour_codes$ String of 8 characters representing screen colours for program
listings. The following ASCII colour codes are supported:

0 Black* 4 Blue 8 Dark Gray < Dark Blue
1 Red 5 Magenta 9 Dark Red = Dark Magenta
2 Green 6 Cyan : Dark Green > Dark Cyan
3 Yellow 7 White ; Dark Yellow ? Dark Gray

Each colour code position represents different elements:
1: Background colour for highlighting *[...] searches

0 to 7 for standard background colours
8 to ? for bright/foreground colours
R for Reverse Video.

2: Colour for variables.
3: Colour for literals.
4: Colour for remarks.
5: Colour for error lines.
6: Colour for mnemonics.
7: Colour for statement numbers or labels.
8: Colour for operators (e.g., + - () * /).
For positions 2 to 8 the colour codes are 0 to 7 for standard
foreground colours and 8 to ? for dim / background colours. The
command mode scanning feature uses Highlight=Yellow.

5. Mnemonics 'HIDE'

ProvideX Language Reference V8.30 Back 614

'HIDE' Mnemonic 'HIDE' Contro l W indow Disp layControl Window Display
GUI Display

Description Same as 'SHOW' / 'HIDE' Control Window Display, p.639.

'*I' Mnemonic ' I' Input C onvers ion TableInput Conversion Table
Definition

Format '*I' =table$

Description '*I' (star-i) is used to create a 256-character terminal input conversion table. As each
character is received from an input device, it is translated into a new character based
on this table, if defined. An incoming character is translated to its numeric value in
an ASCII table (0-255) and this value is used as an offset into the 256-character table
defined by '*I' — the character at that offset will be used for input instead of the
original incoming character.

For additional information regarding the use of special mnemonics (i.e., '@@', '*C', '*I',
'*O', '*R', '*X', 'AT', 'GD', 'WX') when creating a device driver, see Dynamic Information
in Mnemonics, p.580 or Device Drivers in the ProvideX User's Guide.

'+I' & '-I' Mnemonics '+I' and ' -I' Im plied D ecimals On/Of f Implied Decimals On/Off
GUI Display or Behaviour

Format Enable Implied Decimals for Numeric Multi-lines: '+I'
Disable Implied Decimals for Numeric Multi-lines: '-I'

Description Use PRINT '+I ' during system startup to activate support for implied decimal points for
all numeric multi-lines. Use PRINT '-I ' to cancel it. (For a single multi-lines use OPT= 'i '
to suppress implied decimal use.)

'IC' Mnemonic ' IC' In sert a Space at CursorInsert a Space at Cursor
Editing or Behaviour

Description Use 'IC' to insert a space at the current cursor position and shift all remaining
characters on the line one position to the right.

5. Mnemonics 'IMAGE'

ProvideX Language Reference V8.30 Back 615

'IMAGE' Mnemonic ' IMAGE' D ef ine a Graphics GroupDefine a Graphics Group
Graphical Display/Printer

Formats 1. Define Graphics Group: 'IMAGE' (group$)
2. Delete Graphics Group: 'IMAGE'(DELETE group$)
3. Enable/Disable Group: 'IMAGE'({ENABLE | DISABLE} group$)

Where:

Description ProvideX normally queues all mnemonics since the last ‘CS' (to supply information
in case Windows needs to redraw the screen). In consequence, if you are constantly
creating graphics, you can exhaust system resources. 'IMAGE' helps to circumvent
this potential problem.

When 'IMAGE' is used to define and control the display of graphics groups, all graphical
mnemonics following the 'IMAGE' mnemonic will be grouped. You can then disable or
hide the group to remove it from view and enable or show the group to make it visible.

The DELETE option can be used to destroy the group and return resources to the system.

Example 0010 ! Display 'image' groups
0020 PRINT 'CS'
0030 LET FACE$='PEN'(1,4,3)+'ARC'(800,200,105,1,1,360)
0040 LET NOSE$='PEN'(1,4,0)+'LINE'(800,205,800,235)
0050 LET LEFT_EYE$='PEN'(1,2,4)+'FILL'(1,0)+'CIRCLE'(765,170,20)
0060 LET RIGHT_EYE$='PEN'(1,1,0)+'FILL'(1,0)+'CIRCLE'(835,170,18,1)
0070 LET WINK$='PEN'(1,4,0)+'ARC'(765,170,20,1,165,15)+'FILL'(1,0)+'CIRCLE'(775
0070:,170,10)
0080 LET SMILE$='PEN'(1,3,0)+'ARC'(800,230,45,1,190,350)
0090 PRINT 'IMAGE'("HAPPY"),FACE$,NOSE$,SMILE$
0100 PRINT 'IMAGE'("WIDE_EYED"),LEFT_EYE$+RIGHT_EYE$; WAIT .5
0110 PRINT 'IMAGE'(DISABLE "WIDE_EYED")
0120 PRINT 'IMAGE'("WINK"),WINK$,RIGHT_EYE$; WAIT 1; PRINT 'IMAGE'(DELETE "WINK")
0130 PRINT 'IMAGE'(ENABLE "WIDE_EYED"); WAIT 1
0140 PRINT 'IMAGE'(DELETE "HAPPY"),'IMAGE'(DELETE "WIDE_EYED")
0150 PRINT @(0,12); LIST
0160 PRINT WINK$,RIGHT_EYE$,NOSE$,SMILE$; END

group$ Graphics group name. String expression. If you omit this when defining
a group, the default is "" (null).

Hint: When drawing graphical objects, each object will be laid one on top of the next. Use
the 'IMAGE' mnemonic to erase previous graphics instead — this reduces the consumption
of Windows resources and helps prevent flicker during a repaint operation.

5. Mnemonics 'JC'

ProvideX Language Reference V8.30 Back 616

'JC' Mnemonic 'J C' J ust ify CentreJustify Centre
Graphical Display/Printer

Description Use 'JC' to indicate that the following text is to be centre-justified.

'JD' Mnemonic ' JD' Justify D ecimal-AlignedJustify Decimal-Aligned
Graphical Display/Printer

Description Use 'JD' to indicate that the following data is to be decimal-aligned.

'JL' Mnemonic ' JL' Left -Justify TextLeft-Justify Text
Graphical Display/Printer

Description Use 'JL' to indicate that the following text is to be left-justified.

'JN' Mnemonic 'J N' Rig ht-Justify fo r Numer icRight-Justify for Numeric
Graphical Display/Printer

Description Use 'JN' to indicate that the following numeric data is to be right-justified.

'JR' Mnemonic 'J R' Right -Justify Numer icRight-Justify Text
Graphical Display/Printer

Description Use 'JR' to indicate that the following text is to be right-justified.

'JS' Mnemonic 'J S' Left-J ust if y St ringLeft-Justify String
Graphical Display/Printer

Description Use 'JS' to indicate that the following string data is to be left-justified.

5. Mnemonics 'L6'

ProvideX Language Reference V8.30 Back 617

'L6' Mnemonic ' L6' Set t o 6 LPISet to 6 LPI
Graphical Printer or Character Printer

Description On GUI devices, the 'L6' mnemonic is equivalent to setting 'LPI'(6). On text mode
devices, it is not predefined. See 'LPI' Logical Lines / Inch, p.618.

'L8' Mnemonic ' L8' Set t o 8 LPISet to 8 LPI
Graphical Printer or Character Printer

Description On GUI devices, the 'L8' mnemonic is equivalent to setting 'LPI'(8). On text mode
devices, it is not predefined. See 'LPI' Logical Lines / Inch, p.618.

'LC' Mnemonic 'LC' Mixed-Case User In putMixed-Case User Input
Editing or Behaviour

Description Allow upper and lower case (i.e., mixed case) for user input. This is the opposite of
the 'UC' Mnemonic, p.644.

'LD' Mnemonic ' LD' Delet e Current LineDelete Current Line
Editing

Description Delete the current line and shift all subsequent lines up one line.

'LF' Mnemonic 'LF' Line Feed (Advance Line)Line Feed (Advance Line)
Graphical Display/Printer or Character Display/Printer

Description Advance one line, while remaining in the same column position. (This can be
redefined in the device driver, which may result in different behaviour.)

'LI' Mnemonic 'LI' Insert LineInsert Line
Editing

Description Insert a blank line at the current position and push all subsequent lines down by one.
The bottom line on a full screen will be lost.

5. Mnemonics 'LINE'

ProvideX Language Reference V8.30 Back 618

'LINE' Mnemonic ' LINE' D ef ine / D raw a LineDefine / Draw a Line
Graphical Display/Printer

Format 'LINE'(x,y,x,y[,x,y ...])

Where:

Description Use 'LINE' to draw (print) a line on the device (e.g., terminal). Use graphical units or
@X(col) and @Y(line) functions for the various coordinates. The 'LINE' mnemonic
draws these lines using the current 'PEN' attributes.

Example 0010 print 'line'(224,450,355,420,210,400)

'LM' Mnemonic 'EU' End UnderscoringLandscape Mode
Graphical Display/Printer

Description Use 'LM' to switch to landscape mode when printing to *WINPRT*, p.760. This is the
opposite of the 'PM' Mnemonic, p.633.

'LPI' Mnemonic 'LPI' Logical Lines / InchLogical Lines / Inch
Graphical Printer

Format 'LPI'(lines)

Where:

Description Use 'LPI' to set the logical LPI (lines per inch) value in graphics printing, where (as a
rough guide to equivalent sizes):

Point size -12 = 6 LPI, 10 CPI
Point size -10 = 7.2 LPI, 12 CPI
Point size - 7 = 10 LPI, 16 CPI

Refer to the 'CPI' Logical Characters per Inch, p.597, and the functions TXH(),
p.544 and TXW(), p.545.

Example 0060 PRINT (30)'LPI'(6),
0070 PRINT (1)'LPI'(76/10),

x,y Sets of x,y coordinates in graphical units. Numeric expression.

lines Logical lines/rows per inch for graphics mode. Numeric expression.

5. Mnemonics 'LT'

ProvideX Language Reference V8.30 Back 619

'LT' Mnemonic ' LT' Move Left One ColumnMove Left One Column
Motion

Description Use 'LT' to move the cursor one column to the left.

Example 0010 PRINT "OH_X",'LT',"Hello",'RT',"There"
-:RUN
OH_Hello There

'MAGENTA' & '_MAGENTA' Mnemonics 'MAGENTA' & ' _MA GENTA' Magenta TextColour Text
Graphical Display/Printer or Character Display

Format Foreground: 'MAGENTA'

Background: '_MAGENTA'

Description All input or output following this mnemonic will be in magenta foreground or
background.

Example INPUT '_MAGENTA','WHITE',"Please enter your name: ",Name$,

'MAXSIZE' & 'MINSIZE' Mnemonics 'MAXSIZE' & 'MINSIZE' Window Resize User LimitWindow Resize Limit
GUI Display

Format User's Maximum Setting: ‘MAXSIZE'(width,height)

User's Minimum Setting: ‘MINSIZE'(width,height)

Where:

Description Use 'MAXSIZE' and 'MINSIZE' to limit the maximum and minimum a window can be
resized by the user when dragging the window’s edge. These mnemonics only affect
the window size that the user can set, not what the program sets as the size. They
have no effect on the 'SIZE' mnemonic.

width,height Size limits on the user's permission to resize a window. Width in
columns, height in lines. Numeric expression.

Note: The values you use for 'MINSIZE' must not exceed the values for 'MAXSIZE'. By
default, 'MINSIZE' is set to 0,0 and 'MAXSIZE' is set to the originally-defined window
size. If you set 'MAXSIZE'(0,0), then the total defined window size is used.

5. Mnemonics 'ME'

ProvideX Language Reference V8.30 Back 620

Example In the example below, the user is limited to resizing the scrollable dialogues display
area by reducing it to a minimum of 5 columns by 5 lines or increasing it a maximum
of 40 columns by 15 lines:

0010 PRINT 'DIALOGUE'(1,1,80,25,"Title",'CS',OPT="Z")
0020 PRINT 'SIZE'(30,10),
0030 PRINT 'MINSIZE'(5,5),
0040 PRINT 'MAXSIZE'(40,15),

'ME' Mnemonic 'ME' Begin Edit ModeBegin Edit Mode
Editing or Behaviour

Description Use 'ME' to begin Edit Mode. In Edit Mode, any keystroke or negative CTL event not
used by the input (e.g., up / down arrows) will be returned to your program in the CTL
variable instead of being rejected. ProvideX uses built-in edit functions to format and
process all keyboard input, but will terminate input and returns values to your program
when it encounters keystrokes, or negative CTL events the input editor doesn't handle.
To end Edit Mode, use the 'MN' Mnemonic, p.622.

Example 0010 INPUT "Enter Amount:", 'ME', AMNT:"$###,##0", 'MN'

'MESSAGE' Mnemonic 'MESSAGE' Define Message Bar TextDefine Message Bar Text
GUI Display

Format 1. Display Text in Message Bar: 'MESSAGE'(text$)
2. Define Segmented Message: 'MESSAGE'(DEF start_1[,start_2[,start_3]])
3. Reset Message Bar: 'MESSAGE'(DEF 0)
4. Display Text in Specific Segment: 'MESSAGE'(text$,segment)

Description Use 'MESSAGE' to print text on the message bar at the bottom of the ProvideX
window. When you can create optional message bar segments 1, 2 and 3, ProvideX
places the segment separator at the column number you specify in start_# for the
corresponding segment(s). Reset to a single segment (segment 0 at column 0) by
Defining segment 0 zero.

ext$ Text to display. String expression.

start_# Column number where optional additional segments begin. Default
segment 0 starts at column 0. You can have up to 4 segments (0, 1, 2 and
3). Define optional segments 1, 2 and 3 by specifying their starting
column number. Numeric expressions.

segment Segment # for display. Numeric expression. Valid range: 0 to 3.

5. Mnemonics 'MINSIZE'

ProvideX Language Reference V8.30 Back 621

You can send 'MESSAGE' to segment 0 zero and to defined segments by segment
number. By default, if you omit the segment number, your text is displayed in
segment 0 starting at column 0.

Example 0010 print 'message'(def 7,-20) ! create seg1 @(7), seg2 @(20 cols from right)
0020 print 'message'("") ! Null displayed in segment 0
0030 print 'message'("hello",1),'message'("there",2)
0040 print "To reset the message bar PRINT 'message'(def 0)"

Message Bar Region Events

LEFT-MOUSE-CLICK and RIGHT-MOUSE-CLICK events are now supported in the message bar
region. ProvideX returns CTL values when the user clicks on a segment in the
'MESSAGE' region.

Each of the four possible segments of the message bar region has been assigned a
different negative CTL value. The event is reported on the button UP only. The
return values are shown in the chart below.

'MINSIZE' Mnemonic Window Resize User Limit
GUI Display

Description Same as 'MAXSIZE' & 'MINSIZE' Window Resize User Limit, p.619.

Note: If you use a positive column number, the segment's separator is offset that many
columns from the left of the message bar. Use negative values to have the separator's
placement offset from the right instead. If you want to centre text within a segment,
use 09 (character) as the first character of the text to print.Tab

Note: The existence/height of the message bar can be controlled by an INI file setting.

'MESSAGE' Region LEFT-MOUSE-BUTTON-UP RIGHT-MOUSE-BUTTON-UP

1st area (segment zero) CTL= -1400 CTL= -1410

2nd area (segment 1) CTL= -1401 CTL= -1411

3rd area (segment 2) CTL= -1402 CTL= -1412

4th area (segment 3) CTL= -1403 CTL= -1413

5. Mnemonics 'MN'

ProvideX Language Reference V8.30 Back 622

'MN' Mnemonic 'MN' End Edit ModeEnd Edit Mode
Editing or Behaviour

Description Use 'MN' to end Edit Mode. This is the opposite of the 'ME' Mnemonic, p.620. After
use of the 'MN' mnemonic, all keystrokes or negative CTL events not used by the
input will be thrown away, and not returned to the program.

Example 0090 OBTAIN (0,SIZ=1,ERR=0090)@(0,0),'CURSOR'("off"), 'ME',IN_VAR$,'MN'

'MODE' Mnemonic 'MODE' Set Att ributes and ColourSet Attributes and Colour
Character Display

Format 'MODE'(attrib[$])

Where:

Description Use 'MODE' to directly reset the current attributes and colour of text in a
character-based display.

A one-, two- or three-character attribute string is represented as follows:

1 character changes the attribute only.
2 characters change the foreground & background colours only.
3 characters change the attribute (represented by first character) as well as the

foreground & background colours (represented by second and third characters).

If a numeric value is provided, the low order 8 bits is considered as a single character
string and is assumed to contain the new attribute setting. If either of the colour
bytes contain the value FF then the colour byte is ignored and the current colour
(foreground or background) remains as is.

The attribute byte is defined as follows:

attrib[$] Attribute represented by a string or numeric value.

Note: This mnemonic is supported for backwards compatibility of legacy code. For
graphical applications, use the mnemonics listed under GUI Display, p.583.

01 Background

02 Inverse Video

04 Blinking

08 Underscore

10 Graphic character

5. Mnemonics 'MOVE' or 'WM'

ProvideX Language Reference V8.30 Back 623

'MOVE' or 'WM' Mnemonic 'MOVE' Relocate Curr ent WindowRelocate Current Window
GUI Display or Character Display

Format Long or short form: 'MOVE'(col,line) or 'WM'(col,line)

Where:

Description Use either 'MOVE' or 'WM' to relocate the current window to a new placement starting
with the top left corner at the col,line (column and line) coordinates.

'MP' Mnemonic 'MS' Mouse D ef initionPrint Mode (Parallel)
Graphical Display/Printer or Character Display/Printer

Format 'MP'

Description Use 'MP' to switch the printer from serial printer mode to line printer (parallel)
mode. In line printer mode, overstrike data will print on top of existing characters at
their positions on the print line. Use 'MS' to switch the printer to serial mode. See
also 'SP' System Parameter, p.687.

'MS' Mnemonic 'MS' Mouse D ef initionPrint Mode (Serial)
Graphical Display/Printer or Character Display/Printer

Format 'MS'

Description Use 'MS' to switch the printer from line printer (parallel) mode to serial printer
mode. In serial printer mode, overstrike data will replace existing characters on the
print line. Use 'MP' to switch the printer to line printer (parallel) mode. See also 'SP'
System Parameter, p.687.

'+N' & '-N' Mnemonics '+N' and '-N ' Cont rol Dr op Box Write Err or Control Drop/List Box Write Error
Behaviour or GUI Display

Format Do not return Error 11: '+N'
Return Error 11: '-N'

col,line Starting coordinates (top left) of new location. Numeric expressions.

5. Mnemonics 'NI'

ProvideX Language Reference V8.30 Back 624

Description Use '-N' to generate an Error 11 on a DROP_BOX WRITE " " or LIST_BOX WRITE " "
if no such entry exists. '+N' tells the system to clear any selected item when writing
a null string. These mnemonics have no effect on multi-select list boxes.

'NI' Mnemonic 'N I' Next Input Numer icNext Input Numeric
Editing

Description Use 'NI' to indicate that the next input is to contain only numeric data (0-9, -, $, the
comma, and the decimal point).

'*O' Mnemonic ' O ' Output C onvers ion TableOutput Conversion Table
Definition

Format '*O'=table$

Description '*O' (star-o) is used to create a 256-character terminal output conversion table. As each
character is sent to an output device, it is translated into a new character based on this
table, if defined. The outgoing character is translated to its numeric value in an ASCII
table (0-255) and this value is used as an offset into the 256-character table defined by '*O'
— the character at that offset will be used for output instead of the original character.

For additional information regarding the use of special mnemonics (i.e., '@@', '*C', '*I',
'*O', '*R', '*X', 'AT', 'GD', 'WX') when creating a device driver, see Dynamic Information
in Mnemonics, p.580 or Device Drivers in the ProvideX User's Guide.

'OPTION' Mnemonic 'OPTION ' On-The-Fly Set tingOn-The-Fly Setting
Behaviour

Format 'OPTION' (keyword$,value$)

Where:

keyword$ Named setting. Case-insensitive string expression (characteristic,
icon, font, colour index) described below.

value$ Value assigned to keyword$. String expression.

5. Mnemonics 'OPTION'

ProvideX Language Reference V8.30 Back 625

Description The 'OPTION' mnemonic allows various ProvideX environment settings, (typically set
via INI entries) to be changed on the fly at run time within a ProvideX session. These
include Item Colour Settings, Item Shading Settings, Icon Settings, Font
Settings, Resource Library, Colour Index, PDF Bookmarks, Debugging
Functionality, *WINPRT* Printing Options.

Item Colour Settings

The following keyword$ settings assign colours to specific characteristics:

"BtnFocusHilight" Focus highlight
"BtnHoverHilight" Mouse Over highlight
"BtnFaceClr" Button face colour
"BtnFrameClr" Button/check box/radio button frame colour
"CbxMarkClr" Check mark or 'X' in a check box
"RbtMarkClr" Ball within a radio button
"FrameTextClr" Text in a frame.

The associated value$ may be the colour name Black, Light Red, Light Green,
Light Yellow, Light Blue, Light Magenta, Light Cyan, White, Dark Gray,
Dark Red, Dark Green, Dark Yellow, Dark Blue, Dark Magenta, Dark Cyan,
Gray ... or the RGB code (i.e., RGB:n n n where n=0-255); e.g.,

PRINT(0)'option'("BtnNormMidClr","RGB: 192,192,192"),

Item Shading Settings

The following keyword$ settings assign shading for specific characteristics:
"BtnNormTopPct" Lightness applied to face at the top of normal button.
"BtnNormTopClr" Colour for blend at the top of normal button.
"BtnNormMidPct" Lightness applied to face in middle of normal button.
"BtnNormMidClr" Colour for blend at in middle of normal button.
"BtnNormBtmPct" Lightness applied to face at the bottom of normal button.
"BtnNormBtmClr" Colour for blend at the bottom of normal button.
"BtnNormMiddle" Mid point percentage from the top of normal button.
"BtnDownTopPct" Lightness applied to face at the top of pushed button.
"BtnDownTopClr" Colour for blend at the top of pushed button.
"BtnDownMidPct" Lightness applied to face in middle of pushed button.
"BtnDownMidClr" Colour for blend at in middle of pushed button.
"BtnDownBtmPct" Lightness applied to face at the bottom of pushed button.
"BtnDownBtmClr" Colour for blend at the bottom of pushed button.
"BtnDownMiddle" Mid point percentage from the top of pushed button.
"FrameTextClr" Colour of any text used in a frame.

Note: Several other 'OPTION' settings are available specific to ProvideX thin-clients, such
as JavX and UltraFX. These are documented in the ProvideX Client-Server Reference.

5. Mnemonics 'OPTION'

ProvideX Language Reference V8.30 Back 626

"CtlFrameClr" Colour of lines in a frame.
The associated value$ depends on the keyword$, either 0 to 100 (for colours) or -100 to 100
(for percentages); e.g.,

PRINT(0)'option'("BtnDownBtmPct","-75")

Icon Settings

The following keyword$ settings can be used to control which icon, if any, is to be
used within the upper left corner of a window/dialogue:

"ICON" Set the icon for current and subsequent windows.
"WDWICON" Set the icon for the current window only.
The associated value$ may be the path and name of the image .ico file, or a full
icon specification. If a null value " " is specified for "WDWICON", then the icon is
removed from the current window. If it is an asterisk *, the default icon is displayed
for the window. For example,

PRINT 'dialogue'(1,1,80,25,"My Window",'cs',opt="i")
PRINT 'option'("WDWICON","C:\Windows\System32\Shell32.dll@137%32")
PRINT 'option'("WDWICON","")
PRINT 'option'("WDWICON","*")

Font Settings

The following keyword$ settings can be used to change various text plane and
graphic fonts on the fly:

"FONT" Set the current window’s text plane font.
"STDFONT" Set the session’s default text plane font.
"GRAPHICFONT" Set the current window’s default graphic font.
"STDGRAPHICFONT" Set the session’s default graphic font. If set, this must be

prior to drawing any GUI controls.
The associated value$ indicates the current font specification. Refer to the 'FONT'
Mnemonic, p.609 for specifications. If the numeric font size specified in value$ is
negative, then it provides the logical font height not the point size.

Resource Library

Resource libraries are DLLs that may contain icons and bitmaps for use in an
application. The following keyword$ can be used to change the current resource library:

"RESOURCELIB" Set the current resource library.
The associated value$ may be the path and name of the library .DLL file.

5. Mnemonics 'OPTION'

ProvideX Language Reference V8.30 Back 627

Colour Index

The following keyword$ can be used to manually define specific colours (via RGB
code) to be added to the internal colour index (palette):

"COLOURnnn" Set colour index number nnn.
"COLORnnn" Set color index number nnn.
While the index can include from 0 to 254 colours, the first 16 are predefined by
ProvideX (0 to 15). Existing index numbers may be re-assigned to a new RGB value;
however, new colours must be assigned in sequence using the next available index
number (i.e., COLOUR16, then COLOUR17, then COLOUR18 ...). Be aware that colours
defined via the 'COLOUR' mnemonic are added automatically to the next available
index number if they don’t already exist in the palette.

The associated value$ defines the colour assigned to the index number. This may be
any RGB code (RGB:n n n where n=0-255); e.g.,

PRINT 'OPTION'("Colour22","RGB: 200,200,200")

A null " ", either removes the assigned number from the index or resets it to the
default colour (if predefined by ProvideX); e.g.,

PRINT 'OPTION'("Colour64","") Clear out index number 64 for re-use
PRINT 'OPTION'("Colour7","") Reset to the ProvideX default

PDF Bookmarks

Bookmarks (used for selecting and automatically displaying specific pages) can be
added to generated PDFs. The following keyword$ sets the bookmark:

"BookMark" Set PDF bookmark.

The associated value$ defines a bookmark’s location, text, and hierarchy for a PDF.
For details, see Creating Bookmarks under *PDF* PDF Print Interface, p.744.

Debugging Functionality

Debugging functionality includes the ability to add watch values, set dynamic
breakpoints, initiate program tracing, as well as the ability to transfer the contents of
the debug window to the clipboard. This can be set on-the-fly using the keyword$
"DebugWindow", which determines the specific functionality based on the associated
value$ settings; e.g.,

PRINT 'OPTION'("DebugWindow","Trace"),
PRINT 'OPTION'("DebugWindow","Host Command Open"),
PRINT 'OPTION'("DebugWindow","Watch Add "x$"),

Note: Use FIN(0,"COLOURnnn") to retrieve current user-defined colour settings.

5. Mnemonics 'OPTION'

ProvideX Language Reference V8.30 Back 628

The available DebugWindow value$ settings for enhanced debugging functionality
are described by category in the sections below:

Break Window Specific
"Break" Activate Break window.

Command Window Specific
"Command" Activate Command mode window.
"Halt" Simulate a Command window halt (stop program).
"Step" Simulate a Command mode window step.

Trace Window Specific
"[Host] Log [All] [Errors] [Enable|Disable]"

Enable logging of errors on the host or local machine.
"Size=1k" Set 1K program trace size.
"Size=2k" Set 2K program trace size.
"Size=8k" Set 8K program trace size.
"Size=16k" Set 16K program trace size.
"Size=32k" Set 32K program trace size.
"Suppress [Program [Trace [Enable|Disable]]]"

Enable/disable suppress program trace option.
"Trace" Activate Trace window.
"Host Trace Programs [Enable|Disable]"

Enable/disable host trace programs option.
"Show [Property] [GET] [Enable|Disable]"

Enable/disable show property GET option.
"Show [Property] [SET] [Enable|Disable]"

Enable/disable show property SET option.
"File Opens [Enable|Disable]" Enable/disable trace file opens option.
"File Opens [Failures] [Enable|Disable]"

Enable/disable trace file open failures option.
"File [IO] [Operation] [Trace] [Enable|Disable]"

Enable/disable file IO operation trace option.
"DebugPlus [with] [Backtrace] [Enable|Disable]"

Enable/disable debugplus backtrace option.

Watch Window Specific
"Size=0" Select the no-data-break option.
"Size=50" Select the 50-byte-data-break option.
"Size=100" Select the 100-byte-data-break option.
"Size=no" Select the No-data-break option.
"Watch" Activate Watch Window.

5. Mnemonics 'OFFSET'

ProvideX Language Reference V8.30 Back 629

Multi-Use Commands
"Host [Break|Trace|Watch] [Enable|Disable]"

Enable/disable host trace option.
"[Host] [Break|Watch] Add "String to Add"

Add a (pre-formatted) item to the break|watch window.
When using the following commands, if the debug window type is not specified, then the last
window used will be utilized:

"[Host] [Break|Trace|Watch] Clear" Clear window contents
"[Host] [Break|Command|Trace|Watch] Close" Close window option.
"[Host] [Break|Trace|Watch] Copy" Copy window contents to Clip_Board.
"[Host] [Break|Command|Trace|Watch] Disable" Disable window without closing.

WINPRT Printing Options

WINPRT functionality can be set on-the-fly using:

"Source" Changes the source tray when printing to *WINPRT*.
The associated value$ can contain any valid source tray number supported by the
printer. It can also be the source tray name as identified by FIN(chan,"SOURCELIST").

"Orientation" Changes paper orientation when printing to *WINPRT*.
The associated value$ can contain "P" or "Portrait", "L" or "Landscape" and is
case-insensitive.

Both "Source" and "Orientation"options may be issued at any point on a page,
but will not take affect until the start of a new page.

'OFFSET' Mnemonic 'OFFSET' fo r WINPRTOffset for *WINPRT*
Graphical Printer

Format 'OFFSET'(x,y)

Where:

Description This is the 'OFFSET' property used for *WINPRT*. It allows the user to change the
offset to the printable area from the upper left corner of the page. For more
information on *WINPRT* properties, see the WINPRT_SETUP Directive, p.376, and
WINPRT Windows Printing, p.760.

x,y Offset coordinates in thousandths of an inch. Numeric expression.

5. Mnemonics '+P' & '-P'

ProvideX Language Reference V8.30 Back 630

'+P' & '-P' Mnemonics '+P' and ' -P' Mouse Def ine Signal Define Mouse Movement
GUI Display

Format Signal Pixel-to-Pixel Change: '+P'
Signal Line/Column Change: '-P'

Description Use '+P' to transmit mouse movements on any change of position (pixel by pixel
movement). Use '-P' to transmit mouse movements only on a change of line / column.

'PE' Mnemonic ' PE' Auxiliar y Por t Of fAuxiliary Port Off
Character Printer

Description 'PE' contains the auxiliary port off sequence that tells the terminal to stop sending
output to the attached printer and to send output back to the terminal’s display area.
This should be defined in the device driver for the terminal type then retrieved and
set on the printer channel after opening the printer. To set the auxiliary port on
sequence use the 'PS' Mnemonic, p.634.

'PEN' Mnemonic ' PEN ' D efine Pen St yleDefine Pen Style
Graphical Display/Printer

Format 'PEN'(style,width,colour)

Where:

colour 'PEN' colour. Use colour code, colour name, or RGB setting; i.e.,
RGB:n n n where n=0-255. Options include:
0 - Black 8 - Dark Gray
1 - Light Red 9 - Dark Red
2 - Light Green 10 - Dark green
3 - Light Yellow 11 - Dark Yellow
4 - Light Blue 12 - Dark Blue
5 - Light Magenta 13 - Dark Magenta
6 - Light Cyan 14 - Dark Cyan
7 - White 15 - Gray

style Numeric code for fill pattern type. Supported options include:
0 - No Pen 3 - Dotted
1 - Solid Pen 4 - Dash-dot
2 - Dashed 5 - Dash-dot-dot

width Pen width, in graphical units. Numeric expression

5. Mnemonics 'PICTURE'

ProvideX Language Reference V8.30 Back 631

Description Use 'PEN' to define the current pen style, width, and colour for graphics drawing.

Example 'PEN'(1,10,6)
'PEN'(1,"RGB: 192,192,192")
'PEN'(0,"Light Red")

'PICTURE' Mnemonic ' PICTURE' Define / Draw PictureDefine / Draw Picture
Graphical Display/Printer

Format 1. Define Picture: 'PICTURE'(x,y,x,y,{name$|#chan[,transp_opt]}[,display_opt])
2. List Embedded Pictures: variable$='PICTURE'(*)

Where:

Note: 'PEN' styles 2 (Dashed), 3 (Dotted), 4 (Dash-dot) and 5 (Dash-dot-dot)
only work if width is 1. 'PEN' style 1 (Solid) is the only style that works if width is
greater than 1. (This is an internal Windows API specification/ restriction.).

* Asterisk. To have ProvideX return a list of its embedded pictures; e.g.,
X$='PICTURE'(*)
PRINT X$

This argument is not directly supported in WindX. Use syntax similar to the
following to enable ProvideX on the server to retrieve a list of images
from the workstation:

CALL "[WDX]*Windx.utl;get_val","'picture'(*)",x$

#chan String consisting of a # plus the channel containing the graphic; i.e,
the channel opened via *BITMAP* , p.738.

display_opt Numeric code–define display of graphic. Supported options
include:
0=Align at top-left
1=Centre/crop within region
2=Scale to fit
3=Tile bitmaps to fill the given area
4=Halftone for enhanced legibility (may lighten black images)
5=Scale with proper aspect ratio but output in top left
6=Scale with proper aspect ratio but centred in the region.
For options 0, 2, and 3, the image is cropped to fit within the region
for the screen and *WINPRT* output; however, no cropping is
supported with *PDF*. For option 3 (tiled) and PDF, only images
that fit completely inside the region will be output (no cropping).

name$ Name of graphic (e.g., C:\your_PATH\your.bmp). String
expression. The icon filename must have .ico as an extension.

5. Mnemonics 'PIE'

ProvideX Language Reference V8.30 Back 632

Description Use 'PICTURE' to draw (print) a picture on the device (e.g., terminal). x,y,x,y
coordinates define placement and size (top left and bottom right corners). Use
graphical units or @X(col) and @Y(line) functions for the various coordinates.

For displaying image transparency, place a G or T at the end of the image filename;
i.e.,

PRINT 'PICTURE'(1,1,100,100,"myimage.bmp,T",0)
BUTTON 10,@(40,2,10,1.6)="{myicon.ico,T}&Name"

For internal images (i.e., those specified with an exclamation within braces
{!imagename}), it is not necessary to use the G option because ProvideX always
assumes this transparency on an internal bitmap, unless it is overridden with T.
Transparent images are only supported when the picture does not need to be scaled.
ProvideX cannot mask a scaled bitmap since the scaling process may alter colour codes.

'PIE' Mnemonic 'PIE' Define / Dr aw Pie SliceDefine / Draw Pie Slice
Graphical Display/Printer

Format 'PIE'(x,y,radius,aspect,angle_1,angle_2)

Where:

Description Use 'PIE' to draw (print) a pie slice on the device (e.g., terminal). Use graphical units
or @X(col) and @Y(line) functions for x, y, and radius. The pie slice extends from the
starting angle1 to angle2. The 'PIE' mnemonic uses current attributes for the 'FILL'
Mnemonic, p.607, and the 'PEN' Mnemonic, p.630.

x,y,x,y Point / position coordinates for top left and bottom right, in
graphical units. Numeric expression.

transp_opt Transparency options:
G specifies that all colours of RGB value 192,192,192 (Light Gray)

are considered to be transparent.
T specifies that the colour of the first pixel in the upper left corner

of the image is to be transparent.
Note: The transparency options are not intended for printed output (i.e.,
WINPRT, *BITMAP*, *PDF*) and can produce incorrect results. Under
UNIX/Linux, the use of these options with *PDF* will generate an
Error #99: Feature not supported.

angle_1 Starting angle, in degrees. Numeric expression.

angle_2 Ending angle, in degrees. Numeric expression.

aspect Aspect ratio / viewpoint. (Ratio=1 results in no tilt.) Numeric expression.

radius Radius of the pie, in graphical units. Numeric expression.

x,y Coordinates for the centre of the pie, in graphical units. Numeric expression.

5. Mnemonics 'PM'

ProvideX Language Reference V8.30 Back 633

Example The following example displays a pie cut into two uneven slices:
0030 PRINT 'PEN'(1,3,8),'FILL'(2,6)
0040 PRINT 'PIE'(224,450,100,1,45,1)
0050 PRINT 'PEN'(1,3,6),'FILL'(4,15)
0060 PRINT 'PIE'(260,440,100,1,1,45)

'PM' Mnemonic 'EU' End UnderscoringPortrait Mode
Graphical Display/Printer

Description Use 'PM' to switch to portrait mode when printing to *WINPRT*, p.760. This is the
opposite of the 'LM' Mnemonic, p.618.

'POLYGON' Mnemonic 'POLYGON' Define / Dr aw a PolygonDefine/Draw a Polygon
Graphical Display/Printer

Format 'POLYGON'(x,y,x,y,x,y,x,y ...)

Where:

Description Use 'POLYGON' to draw (print) a polygon (e.g., triangle, hexagon ...). ProvideX joins
the various x,y points to form the polygon. Use graphical units or @X(col) and
@Y(line) functions for the coordinates.

The 'POLYGON' mnemonic uses current attributes for the 'FILL' Mnemonic, p.607,
and the 'PEN' Mnemonic, p.630.

Example The example below creates an irregular four-sided figure by setting the coordinates
for the four corners:

0030 PRINT 'PEN'(1,3,8),'FILL'(2,6)
0040 PRINT 'POLYGON'(224,450,100,100,400,200,390,390)

'POP' or 'WR' Mnemonic ' POP' Remove Curr ent WindowRestore Previous Window
GUI Display or Character Display

Format Long or short form: 'POP' or 'WR'

Description Use either 'POP' or 'WR' to remove the current window from the top of the stack and
restore the previous window.

x,y Set of point/position coordinates in graphical units. Numeric expression.

5. Mnemonics 'PS'

ProvideX Language Reference V8.30 Back 634

'PS' Mnemonic ' PS' A uxiliary Port OnAuxiliary Port On
Character Printer

Description 'PS' contains the on sequence that tells the terminal to route incoming characters to the
auxiliary port instead of the terminal’s display area. This sequence remains active until
an off sequence is encountered via the 'PE' Mnemonic, p.630. This should be defined in
the device driver for the terminal type then retrieved and set on the printer channel.

'PUSH' or 'WC' Mnemonic ' PUSH' Save/Copy Curr ent WindowSave/Copy Current Window
GUI Display or Character Display

Format Long or short form: 'PUSH' or 'WC'

Description Use either 'PUSH' or 'WC' to save and copy the current window to create a new
window with exactly the same size, position and attributes.

'*R' Mnemonic ' R' OS Comm and St ringOS Command String
Definition

Format '*R'=command$

Description '*R' (star-r) contains the operating system command that will be executed when the
channel is closed and after all printing is completed.

For additional information regarding the use of special mnemonics (i.e., '@@', '*C', '*I',
'*O', '*R', '*X', 'AT', 'GD', 'WX') when creating a device driver, see Dynamic Information
in Mnemonics, p.580 or Device Drivers in the ProvideX User's Guide.

'RB' Mnemonic ' RB' Ring BellRing Bell
Editing

Description Use 'RB' to ring the bell.

5. Mnemonics 'RC'

ProvideX Language Reference V8.30 Back 635

'RC' Mnemonic ' RC' Ret urn Cur sor A ddressReturn Cursor Address
Editing

Description Use 'RC' to return the current cursor address as a four-character string containing the
current line and column. The value will be returned in the input queue, just as a
keystroke would, and may be read via a READ RECORD.

'RECTANGLE' Mnemonic 'RECTANGLE' D raw a RectangleDraw a Rectangle
Graphical Display/Printer

Format 'RECTANGLE'(x,y,x,y,radius)

Where:

Description Use 'RECTANGLE' to draw (print) a rectangle defined by two sets of x,y coordinates.
Use graphical units or @X(col) and @Y(line) functions for the coordinates. The
'RECTANGLE' mnemonic uses current attributes for the 'FILL' Mnemonic, p.607, and
the 'PEN' Mnemonic, p.630.

Example 0030 PRINT 'PEN'(1,3,8),'FILL'(2,6)
0040 PRINT 'RECTANGLE'(100,100,400,600)
0040 PRINT 'RECTANGLE'(700,100,820,220,30)

'RED' & '_RED' Mnemonics ' RED' & '_RED' Red TextColour Text
Graphical Display/Printer or Character Display

Format Foreground: 'RED'

Background: '_RED'

Description All input or output following this mnemonic will be in red foreground or
background.

Example INPUT 'RED','_WHITE',"Please enter your name: ",Name$,

x,y,x,y Coordinates for top left/bottom right corners, in graphical units.

radius Positive integer representing the rounding factor for corners. A negative
value will have its sign flipped. If the radius exceeds half the height (or
width), the system assumes a semi-circle is used to round the edge.

5. Mnemonics 'RL'

ProvideX Language Reference V8.30 Back 636

'RL' Mnemonic ' RL' Return Line Content sReturn Line Contents
Editing

Description Use 'RL' to return the contents of the current line with the next terminal input.

Example 0040 PRINT 'CS'
0050 PRINT @(5,5),DIM(10,"A")
0060 INPUT @(5,5),'RL',B$
0070 PRINT B$
When Run:
AAAAAAAAAA
AAAAAAAAAA

'RM' Mnemonic ' RM' Reset to D ef ault ModeReset to Default Mode
Behaviour

Description Use 'RM' to reset to default modes/attributes (colour, reverse video mode,
underscoring mode, etc.). See also 'SN' Native Screen Mode, p.640 and 'SX' Set
Extended Screen Mode, p.641.

'RP' Mnemonic 'RP' Terminal Read to EndTerminal Read to End
Editing

Description This mnemonic performs the same function as 'TR' Terminal Read from Start,
p.643, except that it reports values from the current cursor location to the end of the
screen. ('TR' returns the screen contents from 0,0 to the current cursor location.)

'RS' Mnemonic 'RS' Restor e ScreenRestore Screen
Character Display or Editing

Description Use 'RS' to restore the complete terminal screen from the information in memory.
This mnemonic can be used to reset the screen after transmission errors or when
operating system output has disrupted screen contents.

Note: In graphics mode ('GS'), if a terminal mnemonic transmits the contents of the
screen to the program, the data consists of four bytes for each character. The first two
bytes are background and foreground characters, the third byte holds character
attributes, and the fourth byte is the actual character on the screen.

5. Mnemonics 'RT'

ProvideX Language Reference V8.30 Back 637

'RT' Mnemonic ' RT' Move Right One ColumnMove Right One Column
Motion

Description Use 'RT' to move the cursor one column to the right.

Example 0010 PRINT "Oh_x",'LT',"Hello",'RT',"There"
-:RUN
Oh_Hello There

'+S' & '-S' Mnemonics '+S' and ' -S' Substit ute Solid Lines On/Of f Substitute Solid Lines On/Off
Behaviour or Graphical Printer

Format Substitute Solid Lines: '+S'
Do not Substitute: '-S'

Description When you use '+S', ProvideX automatically replaces two or more occurrences of the
underscore, dash or equals sign (_ - =) with solid underlines in graphics mode when
printing to *WINPRT*. This only applies to fields that are printed separately. (Primarily for
use in legacy code where these characters were used in place of solid lines.) Use '-S' to
disable '+S'.

Example 0010 DIM A$(10,"_"),B$(10,"-"),C$(10,"=")
0020 LET CHAN=UNT; OPEN (CHAN,ERR=*END)"*winprt*"
0030 PRINT (CHAN)'FONT'("MS Sans Serif",1),'DF',
0040 PRINT (CHAN)'-S',@(0),A$,@(12),B$,@(24),C$
0050 PRINT (CHAN)'+S',@(0),A$,@(12),B$,@(24),C$
0060 PRINT (CHAN)@(0),A$+" "+B$+" "+C$

In the example above, ProvideX will only print solid lines when it executes line 0050. It
will neither print solid lines for line 0040 (with '-S') nor for line 0060 (where the string
expression does not exclusively contain underscores, dashes and/or equals signs).

'Sn' Mnemonic ' Sn' Slew to ChannelSlew to Channel
Character Printer

Description Use 'Sn' to slew to the channel specified by n. 'S6' is the same as 'VT' . See 'EL' End VFU
Load, p.604, 'SL' Start VFU Load, p.640, and 'VT' Slew to S6, Vertical Tab, p.645.

Note: This is not for use on display devices.

5. Mnemonics 'SB'

ProvideX Language Reference V8.30 Back 638

'SB' Mnemonic 'SB' Set Mode to Backgr oundSet Mode to Background
Character Display

Description Use 'SB' to set background mode. (Characters are displayed at low intensity /
dimmed.) To clear background mode, use the 'CF' Mnemonic, p.595. (See also: 'SF'
Set Mode to Foreground, p.639.)

'SCROLL' Mnemonic ' SCROLL' M anipu lat e Scroll RegionDefine/Control Scroll Region
GUI Display or Character Display or Editing

Format 1. Define Region: 'SCROLL'(col,ln,wth,ht)

Long or short forms:

2. Start / Enable Scrolling: 'SCROLL'("ON") or 'SE'

3. Reset to Full Window: 'SCROLL'("RESET") or 'SR'

4. Disable Scrolling: 'SCROLL'("OFF") or 'SD'

Where:

Description Use 'SCROLL' to define or change the scroll region in the screen / window. All subsequent
mnemonics for cursor position, clearing, deletion and insertion will only affect this
defined area.

If the cursor advances beyond the last line: when 'SCROLL' is ON, ProvideX moves all the
lines on the screen up one line; when 'SCROLL' is OFF, ProvideX returns the cursor to the
first column in the first line. Use 'SE' or 'SD' to enable or disable the scroll region. Use 'SR'
or 'SCROLL'("RESET") to reset the scroll region to the full window / screen. For a
window with a border, the border is included in the scroll region.

'SE' & 'SD' Mnemonics 'SE' & 'SD ' Scroll Enable/DisableScroll Enable/Disable
GUI Display or Character Display or Editing

Description See 'SCROLL' Manipulate Scroll Region, p.638.

@(col,ln,
wth,ht)

Position / coordinates. Numeric expressions. Column and line
coordinates for top left corner, width in number of columns and
height in number of lines.

Note: The values ON, OFF and RESET can be literals, variables or string expressions.

5. Mnemonics 'SF'

ProvideX Language Reference V8.30 Back 639

'SF' Mnemonic ' SF' Set Mode t o For egr oundSet Mode to Foreground
Character Display

Description Use 'SF' to set foreground mode. (Characters are displayed at high intensity.) To clear
foreground mode, use the 'CF' Mnemonic, p.595. (See also: 'SB' Set Mode to
Background, p.638.)

'SHOW' / 'HIDE' Mnemonics ' SHOW ' / 'HIDE' Contro l W indow Disp layControl Window Display
GUI Display

Format 1. Show Window: 'SHOW'(n)
2. Hide Window: 'HIDE'

Where:

Description Show or hide a window (graphics display only). The default is to display the
window.

'SIZE' Mnemonic ' SIZE' Cont rol Visual Size of WindowControl Visual Size of Window
GUI Display

Format ‘SIZE'(width,height)

Where:

Description Use 'SIZE' to control the visual size of a window.

n Numeric code. Supported options include:
0 = Minimizes current window
1 = Restores current window to normal display state
2 = Maximises current window
3 = Resizes current window to previous display state
-1 = Hides the current window.

Note: You must restore or show a hidden window through your program, since you
can't send data input directly to it.

width,height Window's width in columns and height in lines. Numeric expression.

Note: There is no effect on the 'SIZE' mnemonic when you use 'MAXSIZE' &
'MINSIZE' to control the window size that the user can set.

5. Mnemonics 'SL'

ProvideX Language Reference V8.30 Back 640

Example To resize a dynamic window to the columns and lines specified:

PRINT 'SIZE'(40,10)

'SL' Mnemonic 'SL' St art VFU LoadStart VFU Load
Character Printer

Description Use 'SL' to start VFU load. The data following 'SL' (from 'SL' up to an 'EL') defines the
VFU channels. The total number of characters defines the page length, the characters
themselves represent the channels that can be slewed to. The first character must be
a 1 (channel 1). See 'EL' End VFU Load, p.604, 'Sn' Slew to Channel, p.637, and
'VT' Slew to S6, Vertical Tab, p.645.

'SN' Mnemonic ' SN ' Native Screen ModeNative Screen Mode
Behaviour

Description Default. When you use 'SN', the "clear" mnemonics fill the cleared regions with the
current colour and Reset Mode (the 'RM' Mnemonic, p.636) resets the output to the
default colours. See also: 'SX' Set Extended Screen Mode, p.641.

'SP' Mnemonic ' SP' Standard Pr intStandard Print
Graphical Display/Printer or Character Display/Printer

Description Use 'SP' to switch to standard print from 'CP' Condense Print for Screen, p.597. In
ProvideX, 'CP' or 'SP' affect only the data that follows the mnemonic.

On GUI devices, the 'SP' mnemonic will reset to standard printing size.

Example 10 open(1)"LP"
20 print (1)"NORMAL"+'cp'+"COMPRESSED"+'SP'+"NORMAL"
30 close(1)

If the example above were run in ProvideX, the word COMPRESSED would be in
condensed print and the word NORMAL would be in standard print. (In some other
Business Basics, the font for the complete line is affected and for this example, all text
would be in standard print.)

5. Mnemonics 'SR'

ProvideX Language Reference V8.30 Back 641

'SR' Mnemonic Scroll Reset
GUI Display or Character Display

Description See 'SCROLL' Manipulate Scroll Region, p.638.

'SWAP' or 'WS' Mnemonic ' SWA P' Swap Windows o n St ackSwap Windows on Stack
GUI Display or Character Display

Description Use 'SWAP' or 'WS' to swap the top two windows on the window stack.

'SX' Mnemonic 'SX' Set Ext end ed Screen ModeSet Extended Screen Mode
Behaviour

Description Use 'SX' to set extended screen mode. The "clear" mnemonics fill the cleared regions
with the default colour and Reset Mode (the 'RM' Mnemonic, p.636), turns off all
visible attributes. See also 'SN' Native Screen Mode, p.640.

'+T' & '-T' Mnemonics '+T' and ' -T' Text Display On/Of f Text Display On/Off
GUI Display or Behaviour

Format Enable Text Display: '+T'
Disable Text Display: '-T'

Description Use '+T' to re-enable the display of the text screen and have ProvideX redraw the text plane.
Note that this can cause flickering in some cases. You can use '-T' to disable the display and
avoid flickering. Refer to the example for the 'DIALOGUE' Mnemonic, p.601.

Note: This feature is only included for compatibility with other languages. Refer to the
ProvideX User's Guide for additional information on conversion and compatibility modes.

5. Mnemonics 'TEXT'

ProvideX Language Reference V8.30 Back 642

'TEXT' Mnemonic 'TEXT' D raw TextDraw Text
Graphical Display/Printer

Format 'TEXT'(x,y[,x,y],text$,attrib$)

Where:

Description Use 'TEXT' to draw (print) text in graphics mode, starting at the point set by the first
x,y coordinates. Use graphical units or @X(col) and @Y(line) functions for the
various coordinates. The 'TEXT' mnemonic uses current 'FONT' and colour attributes
(i.e., 'RED', 'BLUE', ...).

Use the optional second set of x,y parameters to define the bottom right corner of a
rectangular region for displaying the text. You can use the functions TXH(), p.544,
and TXW(), p.545, to make sure the text fits the region.

Example 0010 PRINT 'FONT'("MS Serif",-11)
0020 PRINT 'GREEN','TEXT'(240,420,"&Hello","&")

attrib$ Optional attribute string. Valid codes include:
& Underscore the character following the '&' (as in hot keys)
C Centre text
F Show focus lines around text
N Numeric data alignment
R Right Justify
S Applies background colour to area directly behind text.
W Word wrap
Same as N

text$ String expression.
x,y,x,y Point coordinates for top left and (optionally) bottom right, in graphical

units. Numeric expression.

Note: For Windows printers, if the current background colour is white, the output
will be considered transparent (i.e., with no background fill).

5. Mnemonics 'TEXTWDW'

ProvideX Language Reference V8.30 Back 643

'TEXTWDW' Mnemonic ' TEXTWD W' C reate Text WindowCreate Text Window
GUI Display or Character Display

Format 'TEXTWDW'(col,ln,wth,ht[,wdw_id],[title$][,attrib$][,OPT=val$])

Where:

Description Use 'TEXTWDW' to create a text mode window under Windows. If you include a title,
a box of the defined height and width will be drawn around the window and the
title will be left-justified on the top line of the box.
 See also 'DIALOGUE' Define / Draw Dialogue Region, p.600 and WINDOW'
Define / Draw Window, p.647.

Example PRINT ’TEXTWDW’(10,10,50,10,"Title")

'TR' Mnemonic 'TR' Terminal Read from St ar tTerminal Read from Start
Editing

Description 'TR' transmits an image to a program as a string. Normally, 'TR' reads from 0,0 to the end
of the screen; however, when in BBx emulation mode (SET_PARAM 'BX'), 'TR' reads from
0,0 to the current cursor position.

The 'RP' mnemonic has the same functionality as 'TR' except that it is not affected by BBx
emulation. See also 'RP' Terminal Read to End, p.636, 'RC' Return Cursor Address,
p.635, and 'RL' Return Line Contents, p.636.

@(col,ln,
wth,ht)

Position / coordinates. Numeric expressions. Column and line
coordinates for top left corner, width in number of columns and height in
number of lines.

attrib$ Attribute string. Optional. If you include attributes, use a string of one
or more mnemonics to define the defaults for the window.

title$ Optional title. String expression/literal.

val$ Valid OPT= values for defining windows in a graphics environment:
c Window is a child of the current window.
S Window has Status line / Message Bar.

wdw_id Window's unique ID number (0 - 255).

Note: In graphics mode, if a terminal mnemonic transmits the contents of the screen
to the program, the data consists of four bytes for each character. The first two bytes
contain background and foreground characters, the third byte holds character
attributes, and the fourth byte holds the actual character on the screen.

5. Mnemonics 'TW'

ProvideX Language Reference V8.30 Back 644

'TW' Mnemonic ' TW' Tr ansmit W indows as St ringTransmit Windows as String
Editing

Description Use 'TW' to transmit a list of active windows to the program as a string of 1-byte
numerical values 00 to FF (to be read in the next INPUT statement).

'+U' & '-U' Mnemonics '+U' and '-U ' Screen Refresh On/Of f Screen Refresh On/Off
Behaviour or GUI Display

Format Screen Refresh On: '+U'
Screen Refresh Off: '-U'

Description PVX Windows only. '+U' turns on screen refresh. '-U' turns it off. The default is on.

'UC' Mnemonic 'UC' Convert Input to Up per CaseConvert Input to Upper Case
Editing or Behaviour

Description Use 'UC' to convert all subsequent user input to upper case. To end upper-case
conversion and allow the use of mixed case, use the 'LC' Mnemonic, p.617.

'UP' Mnemonic 'U P' Move Up One LineMove Up One Line
Motion

Description Use 'UP' to move the cursor up one line.

Example 0010 PRINT "Oh_x",'LT',"Hello",'UP',"There"

Note: Be sure to turn this back on at some point.

5. Mnemonics '+V' & '-V'

ProvideX Language Reference V8.30 Back 645

'+V' & '-V' Mnemonics '+V' and ' -V' Contro l Row H ighlightingControl Row Highlighting
Behaviour or GUI Display

Format Full-line Highlight: '+V'
First Column Highlight: '-V'

Description The terminal mnemonic '+V' turns on full-line highlighting of a list view (report
style) list box. When the user clicks anywhere on a row, the entire row will be
highlighted. If '-V' is used, and the user clicks anywhere on the row, only the first
column of the row will be highlighted.

By printing either of these mnemonics, you can adjust the highlight style for your
application without having to modify each occurrence of a list view (report style) list box
in your application. (See Row Highlighting, p.191.)

'VT' Mnemonic 'VT' Slew to S6, Vertical TabSlew to S6, Vertical Tab
Character Printer

Description Slew to S6, Vertical Tab 'VT'. See also 'EL' End VFU Load, p.604, 'SL' Start VFU
Load, p.640, and 'Sn' Slew to Channel, p.637.

'!W' Mnemonic For Internal Use Only
Behaviour

Description For Sage Software Canada use only - Included here for completeness only.

'+W' & '-W' Mnemonics '+W' and '-W' Windows-Style W in dowsWindows-Style Windows
Behaviour or GUI Display

Format Use Windows Style: '+W'
Disable Windows Style: '-W'

Description Use '+W' to enable creation of Windows-style windows. Use '-W' to disable Windows
style. When Windows-style is disabled, all windows are created with text characters.

5. Mnemonics 'WA'

ProvideX Language Reference V8.30 Back 646

'WA' Mnemonic Define / Draw Window
GUI Display or Character Display

Description Same as WINDOW' Define / Draw Window, below.

'WC' Mnemonic Save/Copy Current Window
GUI Display or Character Display

Description Same as 'PUSH' Save/Copy Current Window, p.634.

'WD' Mnemonic Drop Identified Window
GUI Display or Character Display

Description Same as 'DROP' Drop Identified Window, p.602.

'WG' Mnemonic Make Window Current
GUI Display or Character Display

Description Same as 'GOTO' Make Window Current, p.612.

'WHITE' & '_WHITE' Mnemonics 'WHITE' & '_WHITE' C olor TextColor Text
Graphical Display/Printer or Character Display

Format Foreground: 'WHITE'

Background: '_WHITE'

Description All input or output following this mnemonic will be in white foreground or
background.

Example INPUT 'WHITE','_GREEN',"Please enter your name: ",Name$,

5. Mnemonics 'WINDOW' or 'WA'

ProvideX Language Reference V8.30 Back 647

'WINDOW' or 'WA' Mnemonic WINDOW' D efine / D raw WindowDefine / Draw Window
GUI Display or Character Display

Format 'WINDOW'(col,ln,wth,ht[,wdw_id],[title$][,attrib$][,OPT=string$])

Where:

Description Use either 'WINDOW' or 'WA' in the format to draw (print) a new window. If you
include a title, a box of the defined height and width is drawn around the window.
The title will be left-justified on the top line of the box unless the 'AH' system
parameter is set.

ProvideX uses the WS_BORDER and WS_THICKFRAME frame styles from the
Windows API with the 'WINDOW' mnemonic. For more information, see Windows
API Frame Styles, p.579. See also: 'DIALOGUE' Define / Draw Dialogue Region,
p.600 and 'TEXTWDW' Create Text Window, p.643

Example PRINT 'WINDOW'(5,5,100,40,"Title",OPT="-mSZ")

@(col,ln,
wth,ht)

Position / coordinates. Numeric expressions. Column and line
coordinates for top left corner, width in number of columns, height in
number of lines.

attrib$ Attribute string. Optional. If you include attributes, use a string of one
or more mnemonics to define the defaults for the window.

title$ Optional title. String expression/literal.

string$ Optional attributes for defining windows in a graphics environment
(some options are ignored in text mode '+W' & '-W', p.645):
- Window has a minimize button.
c New window is a child of the window that launched it.
C Disables close button on title bar of window and eliminates the

system control menu from the title bar.
m Enables "maximize" box in top right corner of window (only for

dialogue windows created with OPT="*").
S Window has Status line / Message Bar.
x Disables close button on title bar of window and eliminates the

system control menu from the title bar.
X Enables close button on title bar of window and supports the

system control menu on the title bar.
Z Creates a resizable window.

wdw_id Window's unique ID number (0 - 255).

X

X

X

5. Mnemonics 'WM'

ProvideX Language Reference V8.30 Back 648

'WM' Mnemonic Relocate Current Window
GUI Display or Character Display

Description Same as 'MOVE' Relocate Current Window, p.623.

'WP' Mnemonic 'WP' W id e Pr inter (D OS)Wide Printer (DOS)
Character Printer

Description Included for completeness only. Use 'WP' for 40-column mode, wide printer (legacy
DOS systems). See also: 'EP' Start Expanded Print, p.605.

'WR' Mnemonic Remove Current Window
GUI Display or Character Display

Description Same as 'POP' Remove Current Window, p.633.

'WRAP' Mnemonic 'W RAP' Wr apAround On/Of fWrapAround On/Off
Behaviour or Editing

Format Long or short forms:

1. Set WrapAround On: 'WRAP'("ON") or 'BW'
2. Set WrapAround Off: 'WRAP'("OFF") or 'EW'

Description Set 'WRAP' ON / OFF to control automatic word-wrapping at the end of the line, or
use 'BW' Begin WrapAround, p.593, and 'EW' End Wrap Around, p.606.

ON (Default): Information is entered in the last column of the screen or window
region, the cursor will advance to the first position of the next line.

OFF: Continued output over-types at the last position on the line.

'WS' Mnemonic Swap Windows On Stack
GUI Display or Character Display

Description Same as 'SWAP' Swap Windows on Stack, p.641.

5. Mnemonics 'WX'

ProvideX Language Reference V8.30 Back 649

'WX' Mnemonic 'WX' Windows D ef inition SequenceWindows Definition Sequence
Definition

Format 'WX'=esc_seq$

Description Use 'WX' to define the escape sequence for creating a window on the specific
terminal type. However, very few terminals have the ability to create independent
windows in their display area.

For additional information regarding the use of special mnemonics (e.g., '@@', '*C', '*I',
'*O', '*R', '*X', 'AT', 'WX') when creating a device driver, see Dynamic Information in
Mnemonics, p.580 or Device Drivers in the ProvideX User's Guide.

'*X' Mnemonic ' *X' Pr ogram to Call on CLOSEProgram to Call on CLOSE
Definition

Format MNEMONIC (chan)'*X'="prog_name[;entry][;params]"

Where:

Description '*X' (star-x) contains the pathname of a program to CALL on the closing of a channel.
When a file is closed, ProvideX issues a CALL to the program/entry point specified
by the contents of '*X'. This takes place just prior to the file being actually being
closed, allowing the program to alter the contents of the file if desired.

To retrieve the parameter list, the called program should reference PGM(-3), which
contains the complete string contained in the '*X' mnemonic definition.

For additional information regarding the use of special mnemonics (i.e., '@@', '*C', '*I',
'*O', '*R', '*X', 'AT', 'GD', 'WX') when creating a device driver, see Dynamic Information
in Mnemonics, p.580 or Device Drivers in the ProvideX User's Guide.

Example -:LOAD "TSTX"
-:LIST
0010 LBL:
0020 MSGBOX "HELLO--"+SEP+"FIL="+STR(LFA)+SEP+"MNM="+MNM('*X',LFA)
0030 END
-:OPEN (1)"\JUNK.TXT"
-:MNEMONIC (1)'*X'="TSTX;LBL;My backspace key is orange"
-:CLOSE (1)

chan Channel or logical file number for which the mnemonic is defined.

entry Name of starting line label to use as entry point in the program.
Optional. If included, add to the prog_name string expression
(e.g., RUN "PROG;STARTING_LABEL").

params Parameters (if any) needed in your CALLed program.

prog_name Name of the program. String expression.

5. Mnemonics '+X' & '-X'

ProvideX Language Reference V8.30 Back 650

'+X' & '-X' Mnemonics '+X' and '-X' Windows’X’ Close But ton Windows ’X’ Close Button
GUI Display

Format Windows ’X’ Close Button On: '+X'
Windows ’X’ Close Button Off: '-X'

Description When the '+X' mnemonic is set, use of an icon is set as the default for when new
windows are created.

'XP' Mnemonic 'XP' Line Mode (D OS)Line Mode (DOS)
Character Display

Description Included for completeness only. Use 'XP' to control EGA / VGA 43/50 line mode
display (legacy DOS systems). See also: 'CP' Condense Print for Screen, p.597 and
'SP' Standard Print, p.640.

'YELLOW' & '_YELLOW' Mnemonics ' YELLOW ' and '_YELLOW' Yellow Text Colour Text
Graphical Display/Printer or Character Display

Format Foreground: 'YELLOW'

Background: '_YELLOW'

Description All input or output following this mnemonic will be in yellow foreground or
background.

Example INPUT 'YELLOW','_GREEN',"Please enter your name: ",Name$

'+Z' & '-Z' Mnemonics '+Z' and '- Z' Text Mode Like W in dowsText Mode Like Windows
GUI Display

Format Text Mode with Windows Look: '+Z'
Windows Look Off: '-Z'

Description The terminal mnemonic '+Z' gives text mode screens a Windows look and feel. This does
not turn text mode screen into Windows screens, but it does provide a more GUI-like
appearance.

X

5. Mnemonics 'ZX'

ProvideX Language Reference V8.30 Back 651

'ZX' Mnemonic ' ZX' Retur n Att ributes as per BBxReturn Attributes as per BBx
Behaviour

Description Use 'ZX' to resolve inconsistency in the attributes format and the FIN values when
you run ProvideX with code designed for BBx. (In prior versions, the attributes as
returned when issuing a Terminal Read from Start, 'TR', p.643 in graphics mode had
the foreground and background values reversed and an incorrect window scroll
region position.) If you print the 'ZX' mnemonic, ProvideX reports the attributes and
FIN values consistent with BBx.

5. Mnemonics 'ZX'

ProvideX Language Reference V8.30 Back 652

ProvideX Language Reference V8.30 Back 653

Language Reference 6
System Parameters

Over view

Overview
System parameters are used at start-up to define a system's operation under ProvideX.
Each consists of a two-character code enclosed in single quotes. Most parameters are
Boolean switches (0 or negative sign indicates off, 1 or no sign indicates on), but some
require specific values in order to be set. See Setting / Resetting Parameters below.

Most often, system parameters are set only once at the beginning of an application,
typically in a start up program; however, any system parameter can be set or reset in
your software at any time, whenever required.

For related information and examples, refer to the SET_PARAM Directive, p.306, the
PRM System Variable, p.570, and the PRM() Function, p.504.

'1U'
'3D'
'AD'
'AH'
'AI'=
'AP'
'AW'
'B0'
'BF'=
'BL'=
'BT'
'BX'
'BY'=
'CD'
'CE'
'CF'
'CH'=
'CI'
'CO'=
'CS'
'CT'=
'CU'=
'D0'

'DB'=
'DC'
'DD'
'DF'=
'DL'=
'DP'=
'DT'=
'DW'=
'EG'
'EL'=
'EO'
'ES'
'EX'
'F,'
'F4'
'FB'=
'FC'
'FE'
'FF'=
'FI'
'FL'
'FN'
'FO'=

'FP'
'FS'=
'FT'
'FU'
'FX'
'HC'
'HP'
'I0'
'I2'
'IC'
'IM'
'IR'
'IS'=
'IW'
'IZ'=
'JC'
'KF'=
'KR'
'LB'=
'LC'
'LD'
'LE'
'LF'

'LM'
'LP'
'LS'=
'LU'
'LW'
'LZ'
'MB'=
'MC'
'MF'=
'MP'
'MS'=
'MX'
'NE'
'NI'
'NK'
'NL'
'NN'
'NR'
'NS'
'NX'
'OC'
'OF'=
'OL'=

'OM'
'OP'
'OR'
'OW'=
'PC'=
'PD'=
'PE'
'PF'
'PL'=
'PO'
'PP'
'PQ'
'PS'=
'PT'
'PU'
'PW'=
'PZ'
'Q_'=
'Q^'=
'QD'=
'QF'=
'QK'
'QS'

'QT'
'RI'
'RN'=
'RP'
'RR'
'RS'
'SB'
'SC'
'SD'
'SF'
'SK'
'SL'=
'SP'
'SR'
'SS'
'SV'=
'SW'=
'SZ'=
'TA'=
'TB'
'TC'=
'TH'=
'TL'

'TN'
'TT'=
'TU'
'TX'
'UL'
'UM'
'VC'
'VM'
'VP'=
'VR'=
'VW'=
'WB'
'WD'=
'WF'
'WH'=
'WI'=
'WK'
'WL'
'WP'
'WT'=
'WZ'=
'XC'
'XF'

'XI'
'XL'
'XS'=
'XT'
'ZP'
'!9'
'!B'=
'!D'
'!F'
'!I'
'!K'
'!Q'=
'!R'=
'!S'
'!T'
'!U'=
'!V'
'!W'
'!X'
'*K'
'*L'

Note: In this reference, some parameters are always described with an equal sign to
indicate that they are set (on) using non-Boolean values; e.g., 'BY'= or 'DW'=.

6. System Parameters Overview

ProvideX Language Reference V8.30 Back 654

Setting / Resetting Parameters
Sett in g / Resetting Parameter s

The SET_PARAM directive, and the ProvideX *UCP utility, allow you to alter the
current settings of system parameters. The specific method for setting/resetting each
parameter is explained with each definition.

Examples:

SET_PARAM 'AH' Switches Alternative Heading on
SET_PARAM -'AH' Switches Alternative Heading off
SET_PARAM 'AH'=0 Switches Alternative Heading off.
SET_PARAM 'BY'=0 Sets the Base Year to Julian calendar base
SET_PARAM 'BY'=1970 Sets Base Year to 1970.

Off: Parameter shows a negative sign or is set to equal 0 zero.
On: Parameter is not negative or is set to equal a specific value.

Parameter Defaults
Par amet er Default s

The PRM System Variable, p.570, can be used to return a string of the current
system’s parameters and their values. (Some will be hidden from the PRM list unless
they are actually set.) PRINT PRM lists the following defaults in ProvideX for
Windows 32-bit:

PRINT PRM !
-'3D',-'AD',-'AH','AI'=10,-'B0','BF'=10,-'BT',-'BX','BY'=1970,-'CD','CS',
'CT'=0,'CU'=36,-'D0',-'DC','DF'=0,'DL'=0,'DP'=46,'DT'=0,'DW'=0,-'EG','EL'=0,
-'EO',-'ES',-'EX',-'F4','FB'=5,-'FC','FF'=0,-'FI','FO'=0,-'FU',-'FL','FP',
'FS'=138,-'FT',-'FX',-'F,',-'I0',-'I2','IC',-'IM','IR','IS'=5,-'IZ',-'KR',
'LB'=4,-'LC',-'LD',-'LE','LS'=1,-'LU',-'LZ','MB'=0,-'MC','MF'=50,-'MP','NE',
-'NI',-'NK',-'NL',-'NN',-'NR',-'OC','OL'=25,'OM',-'OP','OR','OW'=0,'PC'=0,
'PD'=2,-'PO',-'PU','PW'=36,-'PZ','QF'=1,'Q_'=2,'Q^'=2,-'QS',-'QT',-'RI',
'RN'=1,'RP',-'RR',-'RS',-'SC',-'SD',-'SF',-'SK','SL'=32,-'SP',-'SR','SV'=1,
'SZ'=32000,-'TB','TC'=0,'TH'=44,-'TL',-'TN',-'TT',-'TU',-'TX','VP'=48,'VR'=0,
'VW'=0,'WB','WD'=10000,-'WF','WH'=0,'WI'=1000,-'WK','WT'=2,-'XC',-'XF',-'XI',
-'XT',-'ZP',-'DD','!B'=3,'!U'=0,-'1U'

Saving / Restoring System Parameters
Saving / Resto ring System Parameter s

To avoid conflicts with other software components, we strongly recommend that you save
the current settings for parameters you need to change, and then reset them when done.

Example:

0010 sv_ex=prm('ex'); SET_PARAM -'EX'
.....
9900 SET_PARAM 'EX'=sv_ex

Note: The 'BX' parameter is the only exception to this recommendation, since it affects
a series of system parameters. Never attempt to save/change/restore 'BX'. It should be
set/reset only at the start of a session.

6. System Parameters List of System Parameters

ProvideX Language Reference V8.30 Back 655

List of System Parameters List of Parameter s

The following parameters are listed in ASCII sort-order, except for those beginning
with either an exclamation mark ! or an asterisk *, which are at the end of the chapter.
Where noted, the parameters are system-specific.

'1U' System Parameter ' 1U' For ce Sess ion to Dedicated User SlotForce Dedicated User Slot
Description Forces ProvideX to use a dedicated user slot for the session. This removes the shared

nature of ProvideX under Windows or WindX and also affects FacetTerm sharing.

Default Off. ProvideX attempts to use shared user slots for the session. That is, the same terminal
is considered a single user regardless of the number of invocations. TCB(27) returns the
User Slot Number this session is using and determines whether it is dedicated, shared,
or a background task. Refer to the TCB() Function, p.534.

'3D' System Parameter 3D in W in dows3D in Windows
Description Displays 3D look in Windows. Use the '2D' Mnemonic, p.585, '3D' Mnemonic,

p.586, or the '4D' Mnemonic, p.586 instead.

Default Off.

'AD' System Parameter 'AD ' A uto-DIM ArrayAuto-DIM Array
Description Auto-DIM's an array.

Default Off. You must use the DIM Directive, p.86.

Example SET_PARAM 'AD'
LET X$[ALL]=Y$[ALL]

Note: An equals sign in the heading indicates that the parameter described requires more
than a simple Boolean switch to be set; e.g., 'LB'= accepts a code number from 0 to 7 that
represents a colour option. Other descriptions assume that the parameter is simply set to on
or off ; e.g., 'AH' or -'AH' or 'AH'=0. See Setting / Resetting Parameters, p.654.

Note: Once you set '1U' on, you can't turn it off unless the application terminates.

6. System Parameters 'AH'

ProvideX Language Reference V8.30 Back 656

'AH' System Parameter 'AH ' Alt er native 'WINDOW' / 'BOX' HeadingAlternative 'WINDOW'/'BOX' Heading
Description Uses alternative 'WINDOW'/'BOX' heading (with the title in inverse video, centred

on the top line).

Default Off. The title is text, left-justified on the top line of the 'WINDOW' / 'BOX'.

'AI'= System Parameter 'A I' Aut omatic Line-Numbering IncrementAutomatic Line-Number Increment
Description Assigns a value for the default line numbering increment for LOAD, RUN, CALL, or

PERFORM directives with an ASCII text program and/or when you use the AUTO
directive.

 Default 'AI'=10 (i.e., auto increment by 10).

'AP' System Parameter 'AP' A uto-Enable PDF Out putAuto-Enable PDF Output
Description Processes options selected during *WINPRT* Printer Selection dialogue to be used

for *PDF* output instead.

Default Off.

'AW' System Parameter 'AW' Alternat e W INPRT_SETUPAlternate WINPRT_SETUP
Description PVX Windows/WindX Only. Switches WINPRT_SETUP from implementing legacy

16-bit compatible functions to the Windows-recommended API calls (which observe
account privileges). For more information, see WINPRT_SETUP Directive, p.376.

Default Off.

'B0' System Parameter ' B0' Base Zero f or Level / WindowBase Zero for Level / Window
Description Sets zero as the base number for level and window. For WindX environments, this

parameter must be set on both the client and the server.

Note: 'AI' is reset to the default increment (10) when a START is issued. If the 'UL'
parameter is set, it will override the 'AI' parameter for line numbering .

6. System Parameters 'BF'=

ProvideX Language Reference V8.30 Back 657

Default Off. The base number for level and window is 1.

'BF'= System Parameter ' BF' Common File Buffer sCommon File Buffers
Description Assigns the number of common database Keyed I/O buffers to be maintained by the

system.

Default 'BF'=10.

'BL'= System Parameter 'BL' Br eak Lines in Listing sBreak Lines in Listings
Description Specifies breaks in long lines at the first comma, plus sign, or the words OR and AND,

which occur on or after the number of columns specified.

Default 'BL'=0.

'BT' System Parameter 'BT' Binar y Test : 1s t ReadBinary Test: 1st Read
Description Sets binary test for serial files on first read. If a size is indicated (ISZ=option), then the

file is treated as binary. Otherwise, the file is treated as record oriented.

Default Off.

H

Note: This setting affects the HWN() function, which relies on the base window
number. (See HWN() Function, p.455.)

Warning: If the application is run with ‘B0' set, ensure that it is set on both the UNIX
host and the WindX PC. Otherwise, the wrong windows will be addressed. Set 'B0'
either by using -B0 as an argument on the WindX PC's startup command line or as a
statement from the host; i.e., EXECUTE "[wdx]SET_PARAM 'B0'".

Note: When 'BF'=0 (zero, no common buffers), ProvideX uses the setting in 'FB'
Dedicated File Buffers, p.665.

6. System Parameters 'BX'

ProvideX Language Reference V8.30 Back 658

'BX' System Parameter 'BX ' BBx EmulationBBx Emulation
Description Sets ProvideX to BBx emulation mode. This automatically resets certain system

parameters to behaviour required to run programs designed for BBx.

The following parameters are affected by the 'BX' parameter: 'AD', 'B0', 'BT', 'BY'=,
'CD', 'DC', 'EX', 'FF'=, 'I0', 'JC', 'KR', 'MP', 'NR', 'OP', 'QS', 'RS', 'WK', 'XF'. For WindX
environments, this parameter must be set on both the client and the server.

Default Off. ProvideX is in standard mode ('FF'=0).

'BY'= System Parameter ' BY' Base yearBase year
Description Defines the base year for the JUL() Function, p.463, and the DTE() Function, p.422.

Default 'BY'=1970.

'CD' System Parameter 'CD ' Check Current DirectoryCheck Current Directory
Description Checks the current directory first before checking the prefix list for a file.

Default Off. Searches current directory after the prefixes (normal method).

'CE' System Parameter Obsolete
Description Deprecated. Use the 'NE' System Parameter, p.676.

'CF' System Parameter 'CF' Bypass Con sole FlushBypass Console Flush
Setting PVX UNIX/Linux Only. Bypasses console flush for print statements. Use 'CF' to

improve display performance (i.e., no waiting for OS acknowledgment after every
PRINT statement).

Default Off. Performs a console flush on print statements.

Note: Use the 'LZ' Suppress Leading Zeros, p.673, to control rounding of leading
zeros. (This functionality was previously controlled by the 'BX' parameter.).

Note: The JUL() function uses January 1 of the base year as day 0 zero.
Also: If you SET_PARAM 'BY'=0 zero, the JUL() and DTE() functions operate under
the Julian calendar where day 0 is around 4713 BC.

6. System Parameters 'CH'=

ProvideX Language Reference V8.30 Back 659

'CH'= System Parameter 'CH ' H over ColourHover Colour
Description Controls the text colour of an object that has a hover attribute when the mouse is not

over the object. Supported options include:

0 - Current 8 - Dark Gray
1 - Light Red 9 - Dark Red
2 - Light Green 10 - Dark green
3 - Light Yellow 11 - Dark Yellow
4 - Light Blue 12 - Dark Blue
5 - Light Magenta 13 - Dark Magenta
6 - Light Cyan 14 - Dark Cyan
7 - White 15 - Gray

Default 'CH'=12 (Navy blue).

'CI' System Parameter 'C S' Colour ed SyntaxCache IOList
Setting Enhances performance when reading files opened with an IOL=* by caching

variables associated with the internal IOList.

Default On.

'CO'= System Parameter 'C O' Mouse Over ColourMouse Over Colour
Description Controls the text colour of an object that has a hover attribute when the mouse is

over the object.

Supported options include:

0 - Current 8 - Dark Gray
1 - Light Red 9 - Dark Red
2 - Light Green 10 - Dark green
3 - Light Yellow 11 - Dark Yellow
4 - Light Blue 12 - Dark Blue
5 - Light Magenta 13 - Dark Magenta
6 - Light Cyan 14 - Dark Cyan
7 - White 15 - Gray

Default 'CO'=4 (Blue).

6. System Parameters 'CS'

ProvideX Language Reference V8.30 Back 660

'CS' System Parameter 'C S' Colour ed SyntaxColoured Syntax
Setting On. Displays program with coloured syntax when using the LIST Directive, p.176,

and the LST() Function, p.477.
Off. Does not display coloured syntax.

Default On.

See Also '*H' Mnemonic, p.613.

'CT'= System Parameter 'CT' Charact er Time- outCharacter Time-out
Description PVX Windows/WindX Only. Adjusts character time-outs for slower LPT devices.

This value specifies the multiplier, in milliseconds, used to calculate the total
time-out period for write operations to LPT devices. For each write operation, this
value is multiplied by the number of bytes to be written.

Default 'CT'=0

'CU'= System Parameter 'CU ' Cur rency SymbolCurrency Symbol
Description Assigns the currency symbol / character to be used in formatted numeric data I/O.

Use the ASCII value of the character.

Default 'CU'=36 or 'CU'=ASC("$")

'D0' System Parameter 'D 0' D ivide by ZeroDivide by Zero
Description Sets ProvideX to return 0 zero for divisions by zero.

Default Off. Division by zero results in Error #40: Divide check or numeric overflow.

'DB'= System Parameter 'DB' Dynamic File Buffer sDynamic File Buffers
Description Controls various aspects of the dynamic buffering logic. Valid settings are as follws:

1 - Share O/S file handles when files are opened on multiple channels.
2 - Use local buffers when files are shared.
4 - Allocate optimum number of buffers when updating files.
8 - Add common buffers when single update requires more buffers than are available.

16 - Maintain key buffers and inventory pages by dropping data buffers first.

6. System Parameters 'DC'

ProvideX Language Reference V8.30 Back 661

The above values are additive; e.g., to set 1 and 4, use SET_PARAM 'DB'=5.

Default 'DB'=31. All settings (1+2+4+8+16).

'DC' System Parameter 'DC' Destructive CursorDestructive Cursor
Description Sets destructive cursor. (Moving from left to right, replaces intervening characters

with spaces up to the new cursor position).

Default Off. The cursor jumps over the intervening characters.

Example SET_PARAM 'DC'=0
PRINT @(15),"B", @(10), "A", @(20), "C"

With 'DC' off, the screen output is " A B C". The cursor jumps first to column 15
and prints the B, jumps to column 10 and prints the A, then finally jumps to column
20 and prints the C.

SET_PARAM 'DC'
PRINT @(15),"B", @(10), "A", @(20), "C"

With 'DC' on, ProvideX uses a destructive cursor (line print mode, as in BBx and
some MAI systems). The preceding example would result in " A C", because the
output driver simply issues spaces when advancing on the same line. With 'DC' on,
after printing the B and A, the driver uses 9 spaces to position itself at column 20 to
print the C. The destructive cursor overwrites the B with the space.

'DD' System Parameter 'DD' Convert D OS Dir ector y DelimiterConvert Directory Delimiter
Description Replaces reverse slash (\) in Windows path names with a standard slash (/).

Default Off. No replacement of delimiter occurs.

'DF'= System Parameter 'DF' Enf orced Delay Time after 'FF'Enforced Delay Time after 'FF'
Description Adds automatic delay times after a each 'FF' without having to insert WAIT

statements into your application. Use this parameter to have ProvideX return control
to the OS for longer periods of time. 'DF'=num is a numeric value from 0 to 1000:

0 indicates no delay (default)
1 indicates a forced WAIT 0 when the event occurs.

All other values from 2 through 1000, indicate the number of 100ths of a second to
delay on each event occurrence. (See also: 'FF' Mnemonic, p.607.)

6. System Parameters 'DL'=

ProvideX Language Reference V8.30 Back 662

Default 'DF'=0. No Delay.

'DL'= System Parameter 'DL' En forced Delay Time after 'LF'Enforced Delay Time after 'LF'
Description Adds automatic delay times after a each 'LF' without having to insert WAIT

statements into your application. Use this parameter to have ProvideX return control
to the OS for longer periods of time. 'DL'=num is a numeric value from 0 to 1000:

0 - indicates no delay (default)
1 - indicates a forced WAIT 0 when the event occurs.

All other values from 2 through 1000, indicate the number of 100ths of a second to
delay on each event occurrence.

Default 'DL'=0. No Delay.

'DP'= System Parameter 'DP' Decimal Point SymbolDecimal Point Symbol
Description Assigns decimal point symbol / character for use in formatted numeric data. Use the

ASCII value of your character. For WindX environments, this parameter must be set
on both the client and the server. In order for this format to be applied in numeric
masking, the mask must be identified as numeric using the # character (see Numeric
Format Masks, p.814).

Default 'DP'=46 or 'DP'=ASC("."), the decimal point.

'DT'= System Parameter 'DT' Device Time- outDevice Time-out
Description Sets the number of seconds to wait for output to a device before a device error is

returned.

Default 'DT'=0

Note: The 'DF' delay only applies to 'FF' when sent to a device, Windows print spooler,
or a WindX-connected file.

Note: The 'DL' delay only applies to 'LF' when sent to a device, Windows print spooler,
or a WindX-connected file.

Note: The 'DP' setting is used if I/O is formatted in INPUT, OBTAIN, PRINT and the STR()
function (and ignored for unformatted I/O). It is always ignored by the NUM() function
and when using WRITE, READ, FIND or EXTRACT directives in converting numeric data.

6. System Parameters 'DW'=

ProvideX Language Reference V8.30 Back 663

'DW'= System Parameter 'DW' Enforced Delay Time aft er 'W I'Delay Time after 'WI'
Description Adds automatic delay times after 'WI' is exhausted without having to insert WAIT

statements into your application. Use this parameter to have ProvideX return control
to the OS for longer periods of time. 'DW'=num is a numeric value from 0 to 1000:

0 - indicates no delay (default)
1 - indicates a forced WAIT 0 when the event occurs

All other values from 2 through 1000, indicate the number of 100ths of a second to
delay on each event occurrence.

Default 'DW'=0. No Delay

'EG' System Parameter ' EG' End Generation of Error #29End Generation of Error #29
Description Sets to ignore invalid mnemonics instead of generating Error #29.

Default Off. Generates Error #29: Invalid Mnemonic or position
specification for invalid mnemonics.

See Also 'BG' Mnemonic, p.589,
'EG' Mnemonic, p.603.

'EL'= System Parameter ' EL' Encryption LevelEncryption Level
Description Returns the current encryption setting, or sets encryption to a new level for password

protected programs. This allows ProvideX to load/run any password-protected
programs created with encryption levels 0 through 4 (5 levels in total). See also
PASSWORD Directive, p.239.

Default Varies by version of ProvideX.

Note: The 'EG' parameter affects all file channels while the 'BG' and 'EG' mnemonics affect
specific channels.

6. System Parameters 'EO'

ProvideX Language Reference V8.30 Back 664

'EO' System Parameter 'EO ' Embedded 'EO' MnemonicsEmbedded 'EO' Mnemonics
Description Sets handling of embedded 'EO' mnemonics (to end output transparency). ProvideX

scans strings following a 'BO' mnemonic for embedded ESC+"EO". This parameter
simplifies the conversion to ProvideX from other languages.

Default Off. The strings are not checked for embedded 'EO' mnemonics.

Example The example below shows a typical use of the 'BO' (begin) and 'EO' (end) output
transparency mnemonics. The 'EO' mnemonic is not embedded in the string, so
ProvideX will automatically recognize it and terminate a 'BO' mnemonic.

PRINT(chan)'BO',"some sequence",'EO'

In the next example, the 'EO' mnemonic is embedded in the string (appended using
the +plus sign).

PRINT(chan)'BO'+"some sequence"+'EO'

In this case, if the 'EO' system parameter is off (the default), the embedded 'EO'
mnemonic is ignored. When the 'EO' parameter is on, ProvideX recognizes the
embedded mnemonic and ends output transparency.

'ES' System Parameter 'ES' Display OS Err ors in Command ModeDisplay OS Errors in Command Mode
Description Sets display of OS extended status / errors in Command mode. 'ES' is used primarily by

developers to enforce good programming standards.

Default Off. No display of OS errors in Command mode.

'EX' System Parameter ' EX' Apply Execute at Level 0Apply Execute at Level 0
Description Sets EXECUTE directives to affect the program at level 0.

Default Off. ProvideX changes the current program.

See Also EXECUTE Directive, p.123.

Note: When 'EO' is on, any ESC+"EO" sequence embedded in the data will terminate
output transparency mode.

Note: If the EXECUTE directive starts with a line number, ProvideX modifies the current
program and the line becomes part of the current program, unless the system parameter
'EX' is on, in which case it modifies the program at level 1.

6. System Parameters 'F,'

ProvideX Language Reference V8.30 Back 665

'F,' System Parameter 'F,' Format Overflow: Suppress Commas, RetrySuppress Commas on Numeric Overflow
Description Suppresses commas when numeric formats overflow (i.e., thousands separators are

stripped) and retry the format. For more information, see Data Format Masks, p.813.

Default Off. Generates an Error #43: Format mask invalid on format mask
overflows. (The error is not returned in cases like 0100 INPUT EDIT "Enter
value:",INV_AMT:"$##,##0.00" where the directive allows for more input
than the mask accommodates.)

'F4' System Parameter ' F4' Return CTL=4 for ExitReturn CTL=4 for Exit
Description Returns CTL=4 when the user chooses the Windows close button in a window.

Default Off. Returns CTL=-1999.

'FB'= System Parameter 'FB' D edicat ed File Buffer sDedicated File Buffers
Description Assigns the number of dedicated file buffers to use for each file.

Default 'FB'=5

'FC' System Parameter ' FC ' Force File Commit (DOS/Windo ws)Force File Commit
Description DOS Only. Forces OS file-commit to any updated Keyed file on an INPUT or WAIT

statement.

Default Off. No forced flush.

'FE' System Parameter Obsolete
Description Deprecated. Use the 'FI' System Parameter, p.666.

X

Note: ProvideX uses the 'FB' setting if 'BF'=0 is set (zero, no common buffers).

6. System Parameters 'FF'=

ProvideX Language Reference V8.30 Back 666

'FF'= System Parameter ' FF' File for matFile Format
Description Defines the format of information returned by the FID() function. There are 5

possible formats:
0 - ProvideX standard format
1 - Thoroughbred emulation
2 - Rexon emulation
3 - BBx emulation.
4 - BBx emulation. Sequential files are reported as binary files for the FID() function,
03 rather than a 01 in position (1,1) of the FID.

Default 'FF'=0 (zero, for ProvideX standard format)

See Also 'PO' System Parameter, p.680, FIB() Function, p.434, FID() Function, p.438, and
FIN() Function, p.441.

'FI' System Parameter ' FI' Ignore Format M ask Error sIgnore Format Mask Error
Description Suppresses Error #43 on format mask overflows. This parameter is not intended to

control errors generated when the mask character itself is invalid. For more
information, see Data Format Masks, p.813.

Default Off. Generates an Error #43: Format mask invalid for format mask
overflow errors.

'FL' System Parameter ' FL' Filename in Lower CaseFilename in Lower Case
Description Passes filenames to the OS in lower case.

Default Off. Filenames are passed in original case.

See Also 'FN' System Parameter, p.667, 'FU' System Parameter, p.668, and the FFN()
Function, p.432 (for a UNIX example using these parameters for case-insensitive
searches).

Note: When 'FF' is set to 0 or 4 and the 'PO' system parameter is switched on, the FID() and
FIB() functions return the original path used when the file was opened.
Also: The FID() and FIN() format layouts will be changed whenever there is a change to
the 'FF' system parameter.

Note: When the 'FL' system parameter is set to on, 'FU' is turned off automatically.
Also: The 'FN' system parameter may override the 'FL' setting.

6. System Parameters 'FN'

ProvideX Language Reference V8.30 Back 667

'FN' System Parameter 'FN ' Filenam e A s-Is : No Case C onver sionFilename As-Is: No Case Conversion
Description On. Passes filenames to the OS with no case conversion.

Off. Case conversion is governed by the current setting of either 'FL' (Forces Lower
Case) or 'FU' (Forces Upper Case).

Default On, unless 'FL' or 'FU' are on. The 'FN' setting is not displayed in the list returned
using PRINT PRM.

See Also 'FL' System Parameter, p.666, 'FU' System Parameter, p.668, and the FFN() Function,
p.432 (for a UNIX example using these parameters for case-insensitive searches).

'FO'= System Parameter 'FO ' Format Over flow CharacterFormat Overflow Character
Description Assigns the format overflow symbol / character you want returned as fill on format

errors. Use the ASCII value of your character. For example, to assign the asterisk * as
the overflow character, apply either 'FO'=42 or 'FO'=ASC("*"). For more
information, see Data Format Masks, p.813.

Default 'FO'=0 zero. ProvideX returns Error #43: Format mask invalid.

Example In the example below, ProvideX displays 6 asterisks instead of causing an error:

SET_PARAM 'FO'=ASC("*")
PRINT 123456.78:"##0.00"

'FP' System Parameter ' FP' Float ing PointFloating Point
Description On. Uses floating point hardware automatically if it's available on your computer.

Off. ProvideX leaves 'FP' switched off if floating point hardware is not available.

Default On if your computer has a floating point processor. Otherwise it is off.

'FS'= System Parameter 'FS' D efault Field Separat orDefault Field Separator
Description Assigns the default field separator value for the SEP system variable. Use the ASCII

value of your character, either as a decimal value or by using the ASC() Function,
p.396. You can also use the ASCII value of the character that is currently in the DLM
System Variable, p.558.

Default 'FS'=138 ($8A$, not a printable character) or 'FS'=ASC(SEP).

6. System Parameters 'FT'

ProvideX Language Reference V8.30 Back 668

Example In this example, the current value in the DLM system variable (the backslash, "\")
replaces the SEP value $8A$ (i.e., CHR(138)) as the default field separator:

-:a$=sep;?hta(a$),asc(sep)
8A 138
-:set_param 'fs'=asc(dlm);? hta(sep),asc(sep)
5C 92

'FT' System Parameter ' FT' Tr ap ping the F10 KeyTrapping the F10 Key
Description To use the key to activate the menubar (the standard Windows default). In effect,

 acts as an key.

Default Off. behaves like any other function key. (ProvideX overrides the Windows
default.)

'FU' System Parameter 'FU' Filename in Up per CaseFilename in Upper Case
Description On. Passes filenames to the OS in upper case.

Default Off. Filenames are passed in original case.

See Also 'FL' System Parameter, p.666, 'FN' System Parameter, p.667, and the FFN() Function,
p.432 (UNIX example using these parameters for case-insensitive searches).

'FX' System Parameter 'FX' For ce EXTRACTForce EXTRACT
Description Returns Error #13: File access mode invalid if the program does not

EXTRACT before all rewrites.

Default Off. Allows writes to a file with an extract of the record.

'HC' System Parameter Obsolete
Description Deprecated. Use the 'SC' System Parameter, p.686.

F10
F10 Alt

F10

Note: When the 'FU' system parameter is set to on, 'FL' is turned off automatically.
Also: The 'FN' system parameter may override the 'FU' setting.

6. System Parameters 'HP'

ProvideX Language Reference V8.30 Back 669

'HP' System Parameter ’H P’ LibH ar u *PD F*LibHaru *PDF*
Description Switches between the original and LibHaru implementations of *PDF*, p.744.

LibHaru is an open-source library that enables expanded font support when
generating PDFs. This parameter is WindX aware.

Default On. LibHaru enabled.

'I0' System Parameter 'I0' Ignore Null Substring (No Err or 47)Ignore Null Substring (No Error 47)
Description Treats all substrings of 0 zero length, starting at offset 0 zero, as valid NULL strings and

not generate Error #47.

Default Off. A null substring (e.g., X$(0,0)) results in an Error #47: Substring
reference out of string.

'I2' System Parameter ' I2' Ignor e Max. Recor d Count (No Err or 2)Ignore Max. Record Count (No Error 2)
Description Ignores maximum record counts. No Error #2 is reported when adding records to

keyed or indexed files.

Default Off. To report Error #2: END-OF-FILE on read or File full on write
when the maximum record count is exceeded.

'IC' System Parameter ' IC' Ignor e C ase-Sensitivity for ScanIgnore Case
Description Sets the command line scan function *[] to scan for matches regardless of upper/ lower case.

Default On. The scan function *[] ignores case sensitivity for searches.

'IM' System Parameter 'IM' Inser t Mode for In putInsert Mode for Input
Description Remembers the current insert mode for the next input. This affects the console

command line only.

Default Off. All text mode inputs will start in overstrike mode.

6. System Parameters 'IR'

ProvideX Language Reference V8.30 Back 670

'IR' System Parameter 'IR' Inser t Mode Reset (Decimal Point Inpu t)Insert Mode Reset (Decimal Point)
Description Reset insert mode upon entry of a decimal with input to the right of the decimal during

formatted numeric entry.

Default On.

'IS'= System Parameter 'IS' CTL f or Input Ending o n SIZ=CTL for Input Ending on SIZ=
Description Assigns the control value (CTL) to be returned when input terminates on a SIZ=

clause.

Default 'IS'=5

'IW' System Parameter 'IW' Terminat e Invoke WaitTerminate Invoke Wait
Description Controls whether switching focus back to a ProvideX task will terminate an INVOKE

WAIT. When 'IW' is enabled, ProvideX will wait until the task launched by the
INVOKE WAIT is completed. The 'IW' parameter is WindX aware .

Default On.

'IZ'= System Parameter 'IZ' Ignore Max. Mem ory Set tingIgnore Max. Memory Setting
Description To ignore the maximum memory setting defined by either the START Directive,

p.328, or the 'SZ'= System Parameter, p.688.

Use the 'IZ' parameter when converting an application from another language where
the values on the START directives may be incompatible with ProvideX standards.

Default Off. Memory use will be limited via START and 'SZ'= settings.

'JC' System Parameter Obsolete
Description Deprecated. Use the 'DC' System Parameter, p.661.

6. System Parameters 'KF'=

ProvideX Language Reference V8.30 Back 671

'KF'= System Parameter ' KF' Keyed File For matKeyed File Format
Description To set the default format type for creation by the KEYED directive, where:

'KF'=0, the KEYED directive always creates VLR or FLR-based files.
'KF'=1, the KEYED directive creates EFF formatted files with a 2GB limit.
'KF'=2, the KEYED directive creates EFF formatted files without the 2GB limit on
platforms that provide Large File Support (LFS), 64-bit addressing. Setting this
parameter on a system that does not provide LFS will automatically change to a 'KF'
value of 1.

Default 'KF'=0.

'KR' System Parameter ' KR' Keyed File I/O Emulates BBxKeyed File I/O Emulates BBx
Description To switch the Keyed file I/O module to BBx emulation mode. The KEP() Function,

p.469, returns the key of the record prior to the next record to be read. KEY() functions
do not switch keys.

Default Off. See normal behaviour for the KEYED Directive, p.166.

'LB'= System Parameter 'LB' C olour for Line # in Break Point sColour for Line # in Break Points
Description Sets numeric colour code. Valid colour options for line number in break points:

0 - Black 4 - Blue
1 - Red 5 - Magenta
2 - Green 6 - Cyan
3 - Yellow 7 - White

Default 'LB'=4, Blue.

'LC' System Parameter ' LC' List Variables in Lower CaseList Variables in Lower Case
Description Sets the LST() Function, p.477, and the LIST Directive, p.176, to return variable

names in lower case.
Default Off. Variable names are listed in upper case.

See Also 'MC' Mixed Case, p.674.

6. System Parameters 'LD'

ProvideX Language Reference V8.30 Back 672

'LD' System Parameter ' LD ' List Directives in Lower CaseList Directives in Lower Case
Description Sets the LST() Function, p.477, and the LIST Directive, p.176, to return directive

names in lower case.

Default Off. Directives are listed in upper case.

'LE' System Parameter ' LE' SAVE and LIST: Indent Statement sSAVE / LIST Indent Statements
Description Indents program statements for saves to a serial file (SAVE Directive, p.295) and for

the LIST Directive, p.176.

Default Off.

'LF' System Parameter ' LF' Lo ng For m VariablesLong Form Variables
Description Sets the compiler to allow long variable names. The directive LONG_FORM, p.201

works the same as SET_PARAM 'LF'. Use either SET_PARAM -'LF' or the
SHORT_FORM Directive, p.325 to cancel.

Default On. The compiler allows long variable names

'LM' System Parameter ' LM' List, Show Matched String sList, Show Matched Strings
Description Highlights matches to a currently-defined search string in a LIST operation to the

console (LIST Directive, p.176). For further information on the search utility, refer to
Punctuation/Syntax , p.25.

Default Off.

'LP' System Parameter Obsolete
Description Deprecated. Use the 'SP' System Parameter, p.687.

Note: System parameters 'LF' and 'SF' have reciprocal values and are directly related.
Any change to 'SF' results in an opposite change to 'LF' and vice-versa.

6. System Parameters 'LS'=

ProvideX Language Reference V8.30 Back 673

'LS'= System Parameter ' LS' Colour f or Line wit h Synt ax Err orColour for Line with Syntax Error
Description Sets numeric colour code used for syntax errors. Valid colour options for program

line number with syntax errors:

0 - Black 4 - Blue
1 - Red 5 - Magenta
2 - Green 6 - Cyan
3 - Yellow 7 - White

Default 'LS'=1, Red.

'LU' System Parameter 'LU' Lo ck Unnecessary: Serial FilesLock Unnecessary: Serial Files
Description Makes lock unnecessary on writing to serial files. (No Error #13 on WRITE without

lock.)

Default Off. A "sticky" parameter. ProvideX generates Error #13: File access mode
invalid if there is no lock on the first write to an open file number.

'LW' System Parameter ' LW Lock and WaitFor Internal Use Only
Reserved For Sage Software Canada use only - attribute included here for completeness only.

'LZ' System Parameter ' LZ' Suppress Leading Zero sSuppress Leading Zeros
Description Suppresses leading zeros for numeric values. This was previously controlled by the

'BX' System Parameter, p.658. Printing an expression such as 1/4 normally yields a
return value of 0.25. With 'LZ' enabled, the return value would be .25.

Default Off.

Note: File access mode is checked once, on the first write after opening. An error won't be
generated on a subsequent unlocked write if the file number is continuously open between
writes (even if the parameter is switched off between writes).

6. System Parameters 'MB'=

ProvideX Language Reference V8.30 Back 674

'MB'= System Parameter 'M B' MegaBytes : File Seg men t SizeMegaBytes: File Segment Size
Description Controls segment size in multi-segmented files. 'MB' must be set to a value to

activate the multi-segmented file feature. ProvideX calculates the approximate size
of each segment in megabytes, based on the block size of a file:

Segment size in bytes = 512 + ((bksz - 6) * bksz)

bksz above represents the block size of the file. You can use the BSZ=option when
you create the file, to override the default block size.

The following table lists the maximum number of segments allowed for a file based
on valid block sizes (1 to 31 kilobytes):

Default 'MB'=0

'MC' System Parameter 'MC ' Mixed CaseMaintain Case
Description Allows mixed case for variable names and line labels in program listings; e.g.,

10 ThisIsFirst=10
20 THISISFIRST=20
LIST
10 ThisIsFirst=10
20 ThisIsFirst=20

Once 'MC' is set, the first instance of a variable will establish the case setting for all
subsequent uses. To change the case of a variable name, all references to the variable
must be removed and the program must be saved and reloaded.

Block Size Segments Block Size Segments Block Size Segments
31K 124 30K 120 29K 116
28K 112 27K 108 26K 104
25K 100 24K 96 23K 92
22K 88 21K 84 20K 80
19K 76 18K 72 17K 68
16K 64 15K 60 14K 56
13K 52 12K 48 11K 44
10K 40 9K 36 8K 32
7K 28 6K 24 5K 20
4K 16 3K 12 2K 8
1K 4

Note: This feature is available for variable-length records (VLR) format only.

6. System Parameters 'MF'=

ProvideX Language Reference V8.30 Back 675

Default Off. Variable names and line labels are maintained in uppercase only.

'MF'= System Parameter 'MF' Mult i-Line Size Fact orMulti-Line Size Factor
Description Reduces or increases the multi-line size factor. This affects the amount of white space

appearing above and below multi-line text (where accents and descenters are displayed).

Default 'MF'=50

'MP' System Parameter 'MP' Ret urns Pos itive Modulus ValueReturns Positive Modulus Value
Description To have the MOD() function always return a positive number.

Default Off. See normal behaviour for the MOD() Function, p.483.

'MS'= System Parameter 'MS' Memory fo r Program SwapMemory for Program Swap
Description Included for completeness only. Defines the maximum amount of conventional

memory to be used as program swap space (legacy DOS systems). If using Extended
Memory, the value should be left at zero. See 'XS' Extended Memory (KB), p.697.

Default 'MS'=0

'MX' System Parameter 'M X' U ser-D ef ine Message BoxUser-Defined Message Box
Description Allows use of a customizable message box (msgbox.gui) instead of the standard

message box Windows API. For details, refer to the MSGBOX Directive, p.212.

Default On (if *ext/msgbox.gui exists), Off (if *ext/msgbox.gui does not exist).

Note: The case setting is also affected by the 'LC' System Parameter, p.671.

Note: By default, Windows creates multi-line input 50% larger than the font size to allow
for white space above and below. While the 'MF' parameter allows you to adjust this
default, we do not recommend it.

Note: When 'MX' is set, MSGBOX commands entered in console mode or executed within
an EXECUTE command cannot be followed by any other command (as MSGBOX will
be executing a CALL without a return address).

6. System Parameters 'NE'

ProvideX Language Reference V8.30 Back 676

'NE' System Parameter 'NE' Subprogr am Er ror Repor tSubprogram Error Report
Description On. Errors in a subprogram are reported in the subprogram.

Off. Errors in a subprogram are returned to the ultimate parent program.

Default Off.

'NI' System Parameter 'NI' Ig nore Blanks in Numer ic Field sIgnore Blanks in Numeric Fields
Description Ignores spaces in numeric fields.

Default Off. Spaces in numeric fields return an Error #26: Variable type invalid.

'NK' System Parameter 'NK' Null Key St rippingNull Key Stripping
Description Strips trailing nulls from a key; i.e., key values 00, 0000 and 000000, become $$.

Default Off. No stripping occurs.

'NL' System Parameter 'N L' Suppress LET D irect ive in Listing sSuppress LET Directive in Listings
Description Suppresses the directive LET Directive, p.173, in listings.

Default Off. LET directive is displayed in listings.

'NN' System Parameter 'NN ' No Lin e Numbers as ReferencesNo Line Numbers as References
Description Invalidates statements that reference line numbers. For instance, GOTO 1050 is not

allowed. ProvideX returns Error #85: Program does not support line
numbers. A line label is required; i.e., GOTO Label_1050.

Default Off. Statements can reference line numbers. (No Error #85.).

'NR' System Parameter 'NR' No Intermediate Rounding o n DivisionNo Intermediate Rounding on Division
Description Prevents intermediate rounding on division. (This has no affect on other operations,

such as multiplication.)

Default Off. Intermediate rounding is performed.

6. System Parameters 'NS'

ProvideX Language Reference V8.30 Back 677

'NS' System Parameter 'NS' No SwappingNo Swapping
Description Included for completeness only. Prevents the swapping to extended or expanded

memory (legacy DOS systems).

Default Off. Swapping will occur.

'NX' System Parameter Obsolete
Description Deprecated. Use the 'XT' System Parameter, p.697.

'OC' System Parameter 'OC ' Commit Prior to OPEN D ir ect iveCommit Prior to OPEN Directive
Description Forces the system to commit all file updates and locks prior to OPEN directive.

Default Off. Outstanding file updates will be handled when retrieved.

'OF'= System Parameter 'OF' Maximum Size Befor e Output FlushMaximum Size Before Output Flush
Description PVX UNIX/Linux Only. Defines the maximum transmission size in bytes to be sent

to an output device before forcing an output flush. Some UNIX systems and drivers
can suffer overrun conditions if this parameter is not set.

Default 'OF'=255 on AIX systems.

'OL'= System Parameter 'OL' Maximum Buffer s for OPEN LOA DMaximum Buffers for OPEN LOAD
Description Controls the default maximum number of Keyed buffers for files on OPEN LOAD.

Default 'OL'=25.

Note: Use of this parameter may slow performance.

6. System Parameters 'OM'

ProvideX Language Reference V8.30 Back 678

'OM' System Parameter 'OM' Old Style MaskOld Style Mask
Description Uses old style MSK() function logic. MSK() is now compatible with the UNIX GREP

command.

Default On. See normal behaviour for the MSK() Function, p.486.

'OP' System Parameter 'OP' Retur n Or ig in al Pro gram NameReturn Original Program Name
Description Sets the PGM() function to return the original program name.

Default Off. PGM() will return the full pathname of a program.

'OR' System Parameter 'OR' Full OS Pat h for RenameFull OS Path for Rename
Description On. Treats the destination (second) parameter in the RENAME directive as containing a

fully expanded OS path for the renamed file.

Off. Standard ProvideX search rules and file-naming conventions apply to the
renamed file.

Default On. Refer to the RENAME Directive, p.282.

'OW'= System Parameter 'OW' Owner Application CodeOwner Application Code
Description Assigns an owner application code to all saved programs.

Default 'OW'=0 (zero, no code set).

'PC'= System Parameter 'PC' Program CachingProgram Load Caching
Description Defines the maximum number of programs to remain in program cache. For

'PC'=nnn, ProvideX will maintain the last nnn programs (subprograms) in memory,
thus reducing the time required to reload them.

The program cache is automatically flushed when dropping to a console prompt.
Also, any changes to the 'PC' setting will purge the cache and reload programs from
disk. For example, use the following to reset cached programs so that changes on
disk are reloaded:

SET_PARAM 'PC'=PRM('PC')

6. System Parameters 'PD'=

ProvideX Language Reference V8.30 Back 679

Default 'PC'=0 (no programs in cache).

See Also ADDR Directive, p.30.

'PD'= System Parameter 'PD' Default Precis ion for Cu rrent SessionDefault Precision for Current Session
Description Assigns the default number of decimal places for the current session (PRECISION

range 0 to 18).

Default 'PD'=2

'PE' System Parameter ' PE' Password Er ror Cont rolPassword Error Control
Description Attempts to read a file when an invalid password is supplied for a data file that has

WRITE or WRITE AND ON DATA (read-only) privileges. Refer to the PASSWORD
Directive, p.239 for more information.

Default Off. Generates an error when an invalid password is encountered.

'PF' System Parameter ' PF' EMS Pag e FrameEMS Page Frame
Description Included for completeness only. Sets use of EMS page frame for work space, increasing

the available memory by 64KB (legacy DOS systems).

Default On, if EMS is available on the machine.

'PL'= System Parameter ' PL' Progr am Libr ar iesProgram Libraries
Description Limits the number of cached program libraries.

Default 'PL'=10.

Note: Since the program cache setting is local to the machine, any changes to the "disk file"
will not be reflected across the network until the user initiates a new session, changes the
'PC' setting, or saves the program locally.

Note: This parameter is reset to 2 if a START command is issued.

6. System Parameters 'PO'

ProvideX Language Reference V8.30 Back 680

'PO' System Parameter ' PO ' Path OriginalPath Original
Description Returns the original pathname specified in the FID() Function, p.438.

Default Off. The expanded pathname is returned.

See Also 'FF'= System Parameter, p.666, FIB() Function, p.434, and FID() Function, p.438.

'PP' System Parameter 'PP' Prompt f or PasswordPrompt for Password
Description On. Prompts the user to enter a password when an attempt is made to open a

passworded file without specifying a KEY= value or on a null KEY= value. Refer to
the PASSWORD Directive, p.239 for more information.

Off. No prompts for password.

Default On.

'PQ' System Parameter ' PQ' Passwor d QueuePassword Queue
Description Sets the maximum number of files that can be recorded in the password queue. Refer

to the PASSWORD Directive, p.239 for more information.

The queue stores the filename and password for each passworded file that has been
successfully opened. All attempts to open a passworded file without specifying a
password will be verified with the queue to see if the password has been previously
supplied. If the filename appears in the queue, the password will be re-applied from
the existing entry.

Specifying a password value for a filename that already appears in the queue causes
the entry to be removed and the password to be re-verified. To reset the queue, use:
SET_PARAM 'PQ'=PRM('PQ').

Default 'PQ'=100

Note: When 'FF' is set to 0 or 3 and 'PO' is on, the FID() and FIB() functions return the
original path used when the file was opened.

6. System Parameters 'PS'=

ProvideX Language Reference V8.30 Back 681

'PS'= System Parameter ' PS' Maximum Program Size (KB)Maximum Program Size (KB)
Description Included for completeness only. Defines the size (in KB) of the "program load" region

(legacy DOS systems). Setting this enables the swapping logic and should be set to
just larger than the largest program used by the application to a maximum of 63KB.

Default 'PS'=0

'PT' System Parameter Obsolete
Description Deprecated. Use the 'QT' System Parameter, p.683.

'PU' System Parameter 'PU ' Up per -Case PrefixUpper-Case Prefix
Description Converts any filenames in an OPEN statement to upper case when scanning a prefix

file for a key matching the filename. Use this to simplify SQL migrations where all
filenames must be in upper case.

Default Off. ProvideX does not convert case when scanning a prefix file for a match.
Normally, the keys in a prefix file are case-sensitive.

'PW'= System Parameter ' PW' Password Char acter f or Mult i- LinePassword Character for Multi-Line
Description Assigns the password character to be displayed in multi-lines to mask input denoted as

a password. Use the ASCII value of your character; e.g., SET_PARAM 'PW'=42 will set
the password character to "*".

Default 'PW'=36 or 'PW'=ASC("$").

'PZ' System Parameter 'PZ' Suppress Progr am Size WarningSuppress Program Size Warning
Description Stops warnings from ProvideX regarding programs larger than 64K.

Default Off. Warning will be sent when attempting to SAVE a program larger than 64K.

6. System Parameters 'Q_'=

ProvideX Language Reference V8.30 Back 682

'Q_'= System Parameter 'Q_', ' Q̂ ' and 'QF' Task Prior it iesLowest Task Priority
Description PVX Windows/WindX Only. Assigns the lowest task priority level. When an

application exceeds the value of the parameter 'WI' Windows Instruction Count,
p.694, its priority level is decremented until it reaches the value of the 'Q_'
parameter.

Default 'Q_'=2.

'Q^'= System Parameter Highest Task Priority
Description PVX Windows/WindX Only. Assigns the highest task/thread priority level. The

priority level is always reset to the 'Q^' value anytime a WAIT is executed or when
terminal input is requested.

Default 'Q^'=2

'QD'= System Parameter Windows Queue Display
Description Controls amount of time (in seconds) a session waits before forcing a check of the

Windows Message Queue for keyboard/mouse activity. This parameter is only in affect
when '!W' (WindX keyboard synchronization) is enabled and only while a task is
executing code that does not issue an INPUT or OBTAIN within the delay period.

The 'QD' parameter is a client-side setting that must be set after a WindX connection
has been established via: EXECUTE "[wdx]SET_PARAM 'QD'=nnn".

Default 'QD'=4

Note: Three parameters ('Q_', 'Q^', and 'QF') control the priority of a task, primarily to
balance the load in a client-server environment. PVXWIN32.EXE supports five levels
(range: lowest 0 to highest 4). The current priority level is stored in TCB(91). Refer to the
TCB() Function, p.534.

Note: During the delay period, ProvideX will not respond to - or process
mouse events, which could be perceived as the application being non-responsive.

Ctrl Break

6. System Parameters 'QF'=

ProvideX Language Reference V8.30 Back 683

'QF'= System Parameter Task Priority Factor
Description PVX Windows/WindX Only. Controls how frequently the priority level is

decremented. Setting 'QF' to a higher value will force the application to run for a
longer duration at the given priority level before switching to the next lower priority
level or until the 'Q_' value is reached.

Default 'QF'=1

'QK' System Parameter 'QK' Quick Key LookupQuick Key Lookup
Description Activates an improved algorithm for scanning the key tree in Keyed and EFF files.

Default On.

'QS' System Parameter 'QS' STA RT, Not InitializedSTART, Not Initialized
Description Assists in conversions. A START command which includes the name of a program to

run at startup will only clear local variables (same as a BEGIN) and start the specified
program. ProvideX will only re-initialize on a simple START issued from the console.

Default Off. A START command to re-initialize ProvideX will close all files and clear all
variables.

See Also START Directive, p.328.

'QT' System Parameter 'QT' No Prompt in Command ModeNo Prompt in Command Mode
Description Suppresses the prompt in Command mode.

Default Off. Generates a prompt in Command mode.

'RI' System Parameter 'RI' Round Mult i- Line Input sRound Multi-Line Inputs
Description PVX Windows/WindX Only. Rounds data in formatted input fields (multi-lines).

When this parameter is set, data that has more than the allowed number of decimals
will be rounded when placed into a field.

Default Off. Data is truncated.

6. System Parameters 'RN'=

ProvideX Language Reference V8.30 Back 684

'RN'= System Parameter ' RN' Rounding Cont rolRounding Control
Description Controls when and how rounding will occur. Valid settings for 'RN' are as follows:

These values are additive; e.g., to set 4 + 128 + 512, use SET_PARAM 'RN'=644.

Default 'RN'=1 (on any assignment).

See Also 'RS' Round STR(), p.684.

'RP' System Parameter 'RP' Raw Pr int for *W INDEV*Raw Print for *WINDEV*
Description PVX Windows/WindX Only.

On. To use the direct-to-spooler interface for*WINDEV* Raw Print Mode, p.756.

Off. To use the old pass through method of printing with *WINDEV*.

Default On.

'RR' System Parameter 'RR' Reset on RU NReset on RUN
Description Issues a RESET command whenever a RUN statement is executed.

Default Off. See normal behaviour for the RESET Directive, p.288, and the RUN Directive, p.294.

'RS' System Parameter 'RS' Round STR()Round STR()
Description Sets rounding for the STR() function.

Default Off. See normal behaviour for the STR() Function, p.525.

1 - On any assignment
2 - On any Add, Subtract
4 - On any Multiply, Divide, Power, or Modulus
8 - On any math function (SIN(), COS(), LOG(), etc.)

64 - On all intermediate values in an expression
128 - Before any numeric data is written to file
256 - At the end of any expression
512 - Before all numeric compares

Warning: We recommend that you return to old *WINDEV* mode only if your client
has problems printing to *WINDEV*.

6. System Parameters 'SB'

ProvideX Language Reference V8.30 Back 685

'SB' System Parameter ' SB' Self-Block Extr act sSelf-Block Extracts
Description PVX UNIX/Linux Only. Prevents a ProvideX process from extracting a record from a

file if it already has that record extracted on another channel.

Default Off. Extracts are not blocked by other extracts within the same process.

'SC' System Parameter 'SC' Show CursorShow Cursor
Description On. To keep the cursor visible during processing.

Off. The cursor is hidden during processing. The cursor is restored for any user input.

Default On. For legacy DOS systems, the default is Off.)

'SD' System Parameter ' SD' Su bdirect ory SlashSubdirectory Slash
Description Appends a trailing slash to the name of a subdirectory entry returned when reading

a directory.

Default Off. No trailing slash is returned with the subdirectory entry.

'SF' System Parameter ' SF' Short For m VariablesShort Form Variables
Description Sets the compiler to restrict variable names to a single letter or a letter followed by a

number. The SHORT_FORM Directive, p.325, can also be used to set 'SF'. Use either
SET_PARAM -'SF' or the LONG_FORM Directive, p.201, to cancel 'SF'.

Default Off. The compiler allows long variable names. Spaces are required between
directives and variable names.

Note: Under Windows, this behaviour is the standard and is unchangeable. Extracts
always block within the same process.

Note: System parameters 'LF' and 'SF' have reciprocal values and are directly related.
Any change to 'SF' results in an opposite change to 'LF' and vice-versa.

6. System Parameters 'SK'

ProvideX Language Reference V8.30 Back 686

'SK' System Parameter 'SK' Shrink Keyed FilesShrink Keyed Files
Description Shrinks Keyed files when executing the directives PURGE or REFILE. ProvideX

returns the freed space to the OS.

Default Off. By default, ProvideX simply re-initializes the file header information when it
encounters a PURGE/REFILE directive for a data file (Keyed or Direct). This means
that if you accidentally PURGE/REFILE such a data file, the ProvideX Keyed/Direct
file key reconstruction utility (*UFAR) can salvage most, if not all, of the information
originally stored in the file.

See Also PURGE Directive, p.263,
REFILE Directive, p.278.

'SL'= System Parameter 'SL' Save Command LinesSave Command Lines
Description Assigns the number of command input lines to preserve internally. Range: 4 to 100.

Default 'SL'=32

'SP' System Parameter ' SP' Set Printer D efaultSet Printer Default
Description Sets the ProvideX default printer to serial printer mode. For overstrike data, overlay

characters will print on top of existing characters at their positions on the print line.

Default Off. Sets the printer to line printer mode. For overstrike data, overlay characters
replace existing characters on the print line.

'SR' System Parameter ' SR' Small Read sSmall Reads
Description Attempts to optimize performance when reading fixed length record files over

slower networks by reading smaller portions of the data record rather than the
defined record size. If the first "short read" is unable to read the entire record then a
second read is performed to retrieve the remaining portion of the record.

Default Off. Reads the entire record in one read operation.

Note: This is used to improve performance in peer-to-peer networks where records are
not filled to their maximum size.

6. System Parameters 'SS'

ProvideX Language Reference V8.30 Back 687

'SS' System Parameter 'SS' Check Str uct ure on SaveCheck Structure on Save
Description Checks modified programs for the logical integrity of some decision/loop structures

and warns about any errors before saving (SAVE Directive, p.295).

Default Off.

'SV'= System Parameter 'SV' Generate f or Old Ver sionGenerate for Older Version
Description Generates object code for compatibility with SBB.

Default 'SV'=1, the current program's object-version level.

'SW'= System Parameter 'SV' Generate f or Old Ver sionScroll Wheel
Description Sets default scroll wheel behaviour.

Default 'SW'=1

'SZ'= System Parameter 'SZ' Maximum M emor y Size for SessionMaximum Memory Size for Session
Description Defines the maximum memory (in kilobytes) that the session is allowed to use. This

value can also be changed via the START Directive, p.328.

Default 'SZ'=32000. For older Windows versions of ProvideX, this value is 1024 or the
maximum memory available, whichever is less. For older UNIX/Linux versions, this
value is 512.

0 - Scroll wheel support (all events go to parent window)
1 - Scroll only if the control has focus (mouse can hover on or off control)
2 - Scroll only if the control has focus (mouse must be hovered over control)
3 - If control does not have focus, then scroll when mouse hovers over this

control (otherwise, follow #1)
4 - If control does not have focus, then scroll when mouse hovers over this

control (otherwise, follow #2)

Note: Under Windows, the maximum setting is 32000. Under UNIX / Linux the
limit has been increased from 512 to 32000. If the 'IZ' parameter is set, the 'SZ' parameter is
ignored; see 'IZ'=, p.670.

6. System Parameters 'TA'=

ProvideX Language Reference V8.30 Back 688

'TA'= System Parameter ' TA' Turbo Mod e A cknowledgementTurbo Mode Acknowledgement
Description Defines the amount of data (in Kilobytes) that will be sent to the thin-client before

forcing turbo mode acknowledgement. This has been shown to help slower speed
connections; e.g., when printing across WANs.

Default 'TA'=0. No forced acknowledgement.

See Also 'TU' System Parameter, p.691.

'TB' System Parameter ' TB' Toolbar SizeToolbar Size
Description Calculates toolbar width/coordinates based on the number of columns in the window.

The toolbar size will be the actual number of columns found in the window, which is
equal to the value returned by MXC(0).

Default Off. Toolbar width and coordinates are calculated based on 80 columns, regardless
of the number of columns in the window.

'TC'= System Parameter 'TC' Tip ColourTip Colour
Description Assigns the fill colour for the "Tip" window. If the colour code is in the range from 0

to 7 then the respective colour is used as fill. If the colour code is in the range from 8
to15, then 50% of the colour is used. Supported options include:

0 - Current 8 - Dark Gray
1 - Light Red 9 - Dark Red
2 - Light Green 10 - Dark green
3 - Light Yellow 11 - Dark Yellow
4 - Light Blue 12 - Dark Blue
5 - Light Magenta 13 - Dark Magenta
6 - Light Cyan 14 - Dark Cyan
7 - White 15 - Gray

Default 'TC'=0. Current Windows default tip colour, specified in the user's desktop. This will
match other Windows applications on the user's system.

Note: In earlier versions, 0 was the colour code for Black and the default setting was 11 for
Yellow.

6. System Parameters 'TH'=

ProvideX Language Reference V8.30 Back 689

'TH'= System Parameter ' TH' Thou sands Separat orThousands Separator
Description Assigns the thousands separator/character for use in formatted numeric data IO.

Use the ASCII value of the character. For WindX environments, this parameter must
be set on both the client and the server.In order for this format to be applied in
numeric masking, the mask must be identified as numeric using the # character (see
Numeric Format Masks, p.814).

Default 'TH'=44 or 'TH'=ASC(",") for the comma.

'TL' System Parameter 'TL' LIKE Emulates Thoro ughbredLIKE Emulates Thoroughbred
Description Sets the LIKE Operator to use a simplified pattern match which emulates the behaviour

of LIKE in Thoroughbred for conversions from Thoroughbred. This pattern matching is:
• mask character: the complete string on the left must match
• character '*' in the mask stands for any number of characters
• character '?' in the mask stands for any single character

Default Off. LIKE uses the same pattern matching as MSK(), p.486.

Example "ABCDEF" matches "*DEF", "ABC???", "*CD*" but not "ABC" or "?".

'TN' System Parameter ' TN ' Str ip Trailing NullsStrip Trailing Nulls
Description Strips trailing nulls from the end of READ RECORDs. This parameter only applies to

FLR-formatted (fixed-length record) KEYED files.

Default Off. Trailing nulls are not stripped.

Note: 'TH' is used if I/O is formatted in INPUT, OBTAIN, PRINT and the STR() function
(and ignored for unformatted I/O). It is always ignored by the NUM() function and
when using WRITE, READ, FIND or EXTRACT directives in converting numeric data.

6. System Parameters 'TT'=

ProvideX Language Reference V8.30 Back 690

'TT'= System Parameter 'TT' Timed Tr aceTimed Trace
Description Sets trace output prefixed by the current time (in seconds). Parameter codes allow

control over where a line wraps based on the record size of the output file, output of the
full program path name, and output of the line number only (no code). Valid settings for
'TT' are as follows:

These values are additive; e.g., to set 2 and 4, use SET_PARAM 'TT'=2+4.

Default 'TT'=0. No output.

'TU' System Parameter ' TU' WindX Tur bo ModeThin-Client Turbo Mode
Description Gains efficiency of throughput by not requiring the thin-client to acknowledge messages

for directives/functions that have no return value (e.g., a WRITE for a graphical control).
This improves speed in NOMADS.

Default Off. Each tokenized message sent by the server to the client is acknowledged and
errors are reported to your server, guaranteeing that your application and thin-client
are fully synchronized (but at some cost to overall transmission speed).

See Also 'TA'= System Parameter, p.689.

'TX' System Parameter 'TX' Default BBX String-Tem plat e Separat orDefault String-Template Field Separator
Description Sets BBx-style string templates that use the (*) format to default to the line feed character

($0A$) as a separator rather than $8A$.

Default Off. BBx-style string templates default to $8A$ as the separator.

0 - No output
1 - Trace line prefixed with time value followed by a space.
2 - Trace line prefixed with full program path. Delimiter becomes pipe, “|”
4 - Only the statement number is output (Program line is suppressed).
8 - Trace line prefixed with stack depth (Parameter 'B0' adjusted)

Note: This parameter is set on the host/server. Also, when 'TU' is on, you lose error
detection capability at the host end — errors are reported locally (e.g., on the WindX
client). Trouble-shoot by changing the application logic or by turning 'TU' off.

6. System Parameters 'UL'

ProvideX Language Reference V8.30 Back 691

'UL' System Parameter 'U L' Un-Numbered Line A ss ignmentUn-Numbered Line Assignment
Description Automatically assigns line numbers to statements when loading external

ASCII-based program files into ProvideX. This parameter simplifies the use of
external editors for writing programs. When 'UL' is turned off, the line numbers
assigned will be based on the 'AI'= parameter setting.

Default On. Assigns numbers based on the line sequence of the source file (starting at 0001).

'UM' System Parameter 'U M' U pper Memory BlocksUpper Memory Blocks
Description Included for completeness only. Sets ProvideX to use Upper Memory Blocks to

increase memory space (legacy DOS systems).

Default On, if UMBs exist on the machine.

'VC' System Parameter 'VC' VT100 Cursor Mode Line WrapVT100 Cursor Mode Line Wrap
Description Holds the cursor at column 80 until subsequent print data follows. This resolves an issue

with wrapping at column 80 on VT100-type terminals such as a Linux console.

Default Off. Assumes terminal wraps when printing at column 80.

'VM' System Parameter 'VM' Dir ect Memor y A ddress ingDirect Memory Addressing
Description Included for completeness only. Sets all screen I/O to use direct memory addressing

(legacy DOS systems).

Default Off. Screen I/O uses BIOS calls

'VP'= System Parameter 'VP' Var iab le PitchVariable Pitch
Description Assigns the average character width for PRINT @(x,y) positioning with proportional

fonts. Use the ASCII value of your character.

Default 'VP'=48 or 'VP'=ASC("0") for zero.

6. System Parameters 'VR'=

ProvideX Language Reference V8.30 Back 692

'VR'= System Parameter 'V R' Verif y ReadVerify Read
Description Verifies all data file reads by re-reading and comparing. The values set in 'VR' define

the number of retries before a data read error is generated.

Default 'VR'=0

See Also TCB() Return Task Information, p.534.

'VW'= System Parameter 'V W' Ver if y W riteVerify Write
Description Verifies all data file writes by re-reading after a write to check data integrity. The

value set in 'VW' defines the number of retries before a data write error is generated.

Default 'VW'=0

See Also TCB() Return Task Information, p.534.

'WB' System Parameter 'WB' W indX BREAK RecognitionWindX BREAK Recognition
Description On. Enables WindX BREAK recognition.

Off. Disables WindX BREAK recognition.

Default On.

Note: 'VR' can be helpful in tracking down hardware-related data corruption problems.
(There is some impact on system performance.) TCB() returns the following values for this
parameter:
TCB(63)- Number of reads verified
TCB(65)- Number of reads mis-compares.

Note: 'VW' can be helpful in tracking down hardware-related data corruption problems.
(There is some impact on system performance.) TCB() returns the following values for this
parameter:
TCB(63)- Number of writes verified
TCB(65)- Number of writes mis-compares.

6. System Parameters 'WD'=

ProvideX Language Reference V8.30 Back 693

'WD'= System Parameter 'V W' Ver if y W rite'WD' Def er File Writ esDefer File Writes
Description Defers all file writes until nnn updates have been done, the file is closed, or an

INPUT is requested from channel #0 (terminal). The ‘WD' parameter only affects
Keyed file I/O. Performance can be improved in single user environments if the 'WD'
parameter is set high.

Default 'WD'=10000 in a single user environment under Windows; otherwise, 'WD'=100.

Example SET_PARAM 'WD'=10000

'WF' System Parameter 'WF' Force W in dows Screen U pdateForce Windows Screen Update
Description PVX Windows/WindX Only. Forces an update of the Windows screen whenever a

change is made by the program.

Default Off. The screen is updated on INPUT, WAIT, or after processing the number of
instructions set by the 'WI' parameter.

'WH'= System Parameter 'WH' Delay Ret ry: Lo cking File H eader sDelay Retry: Locking File Headers
Description All Platforms Except UNIX. Defines the number of tenths of a second to delay between

retries in locking file headers.

Default 'WH'=0 (zero tenths of second).

'WI'= System Parameter 'WI' Windows Instruction C ountWindows Instruction Count
Description PVX Windows/WindX Only. Sets the number of instructions to be executed before

passing control to the operating system.

Default 'WI'=1000

See Also TCB() Return Task Information, p.534; i.e., TCB(91).

Note: The overall number of instructions between priority level switching is based on an
exponential formula using the values of the 'WI' and 'QF' parameters. See system
parameters 'Q_', 'Q^' and 'QF' Task Priorities, p.682, which control task priority.

6. System Parameters 'WK'

ProvideX Language Reference V8.30 Back 694

'WK' System Parameter 'WK Keep WindowKeep Window
Description Prevents 'WINDOW' and 'DIALOGUE' boxes from being automatically dropped when

you use a BEGIN (or END in Command mode) or a CLOSE.

Default Off.

'WL' System Parameter 'WL' U se Writ e LocksUse Write Locks
Description PVX UNIX/Linux Only. Temporarily blocks all other access for both READ and WRITE

directives to a Keyed data file. (For that split second, only one access will be allowed.).

Default Off. ProvideX allows multiple simultaneous READ accesses to a Keyed file but only
one WRITE access.

See Also WRITE Add/Update Data in File, p.383 and READ Read Data from File, p.271.

'WP' System Parameter 'W P' Wait fo r Pipe on CloseWait for Pipe on Close
Description Determines whether or not to wait until a child process completes. When 'WP' is on, and

a pipe is closed, ProvideX will wait until the child process has terminated.

When 'WP' is off, and a pipe is closed, ProvideX will not wait for the child to complete.
This canresult in a child process that has not had its exit status checked (shown as
"defunct"). ProvideX will automatically check and clear out these defunct processes
whenever A) it opens another pipe, B) a WAIT directive is encountered, or C) the current
ProvideX session is terminated.

Default Off.

'WT'= System Parameter 'WT' Number of Retr iesNumber of Retries
Description Assigns the number of retries ProvideX makes internally for busy records/ files. The

retries are performed at one second intervals.

Default 'WT'=2

Note: If 'WP' is on, and the operation that the child was started for does not complete, then
ProvideX will not return. A - may terminate the child, depending on the child's
processing of a BREAK.

Ctrl Break

6. System Parameters 'WZ'=

ProvideX Language Reference V8.30 Back 695

'WZ'= System Parameter 'WZ' WindX ZLib C ompressionWindX ZLib Compression
Description Sets the minimum packet size (in bytes) for compression during WindX transmission.

Values can range from 0 to 32767. Setting the value to 0 disables ZLib compression
completely. This parameter must be set on the host/server.

Default 'WZ'=512

'XC' System Parameter 'XC ' WindX Continues A fter TCP Err orWindX Continues After TCP Error
Description Sets ProvideX to ignore TCP write errors to WindX. This allows a process to continue

running and outputting to WindX, even while the WindX client is no longer connected.
The process should continue until a READ/INPUT request; then, the error is reported
and ProvideX terminates

Default Off. WindX generates the error and cancels the process.

'XF' System Parameter 'XF' Extended File channelsExtended File Channels
Description Sets extended file mode where the channels range from 1-32767 for local files and

32768-65000 for global files. Channel 0 zero is the console or terminal.

Default Off. Channels 1 to 63 are used for local files and 64 to 127 are used for global files.

'XI' System Parameter 'XI' Ext ract IgnoreExtract Ignore
Description Allows extracted records to be read by other ProvideX processes. The blocking of the

extracted record is limited to EXTRACT, WRITE and REMOVE.

Default Off. The EXTRACT of a record blocks all other file I/O on that record, including READ.

See Also EXTRACT Read and Lock Data, p.126 and WRITE Add/Update Data in File, p.383.

'XL' System Parameter Obsolete
Description Deprecated. Use the 'XI' System Parameter, p.696.

Note: Before you turn the 'XF' parameter off, make sure that none of your currently open
files have extended file numbers (which are inaccessible when you SET_PARAM -'XF').

6. System Parameters 'XS'=

ProvideX Language Reference V8.30 Back 696

'XS'= System Parameter 'XS' Ext end ed M emo ry (KB)Extended Memory (KB)
Description Included for completeness only. Assigns the amount of extended memory used as

program swap space (legacy DOS systems). If the value exceeds the available extended
memory, it will be adjusted to the maximum allowed.

Default 'XS'=0

'XT' System Parameter 'XT' ProvideX Exits t o OSProvideX Exits to OS
Description On. To terminate ProvideX and return to the OS when your application returns to

Command mode (on end of program, a detected error, or an Escape).

Off. To return and stay in Command mode on end of program, error, or Escape.
Default On, if there is a lead program on the startup ProvideX command. Otherwise, it is off.

'ZP' System Parameter ' ZP' Accept Zer o-Len gth Progr am sAccept Zero-Length Programs
Description Ignores Error #18: Program not loaded/Invalid program format. As of

Version. 4.20, empty program files are considered to be valid.

Default Off. RUN, CALL, LOAD or PERFORM commands with an empty program file
generate an Error #18.

'!9' System Parameter ' !9' Sage MA S 90 D ate For matSage MAS 90 Date Format
Description Sage MAS 90 Only. Converts incoming and outgoing dates for an ODBC connection to

Sage MAS 90 format automatically.

Default Off. No automatic conversion is performed.

'!B'= System Parameter ' !B' Set Break CharacterSet Break Character
Description PVX UNIX/Linux Only. Assigns the break character.

Default '!B'=3

Note: If the ESCAPE directive is used in a program, this system parameter will be
automatically reset to prevent session termination.

6. System Parameters '!D'

ProvideX Language Reference V8.30 Back 697

'!D' System Parameter ' !D ' D ecimal/Thousands Separ at or: Legacy ModeNumeric Separators: Legacy Mode
Description Resets to the original method for handling the decimal point and the thousands

separator prior to ProvideX 4.12.

Default Off. See the 'DP'= System Parameter, p.662, and the 'TH'= System Parameter,
p.690, for the current method of handling these values.

'!F' System Parameter Obsolete
Description Included here for completeness only.

'!I' System Parameter ' !I' NOMADS Input QueueNOMADS Input Queue
Description Activates the NOMADS input queue for macro playback.

Default Off. To de-activate the queue.

'!K' System Parameter ' !K' Descending Key Logic (Legacy)Descending Key Logic (Legacy)
Description To use legacy descending key logic. This is included in ProvideX only to help

programmers who relied on the legacy logic's incorrect behaviour. Issue on
READ(c,KEY=) for primary key with descending segments (resolved Version 4.11).

Default Off. ProvideX standard logic is used.

'!Q'= System Parameter '! Q' ODB C SQL Disp layODBC SQL Display
Description Displays SQL statements to assist in the troubleshooting of external database related

problems. If using the WindX client, then the SQL statement will appear on the client.
Valid values are as follows:

'!R'= System Parameter For Internal Use Only
Reserved Included here for completeness only.

0 - Off. Hidden. Default.
1 - Message box appears with generated SQL statement.
2 - SQL statement is sent to program trace window (if open).

6. System Parameters '!S'

ProvideX Language Reference V8.30 Back 698

'!S' System Parameter '! S'Suppress Err or Flag s on Serial SaveSuppress Error Flags on Serial Save
Description Will not flag lines with errors when saving to serial files. Enabling '!S' removes the

question mark immediately following the line number on statements with errors.

Default Off. Errors are flagged.

'!T' System Parameter ' !T' Accept 'DP' and/or Decimal for Numerics'DP' or Decimal for Numerics
Description Accepts either 'DP' or the true decimal point character (".") as a decimal point for numeric

data input.

Default Off. Hidden.

'!U'= System Parameter For Internal Use Only
Reserved Included here for completeness only.

'!V' System Parameter 'WK Keep WindowI’m a Service
Description PVX Windows/WindX Only. When enabled, ProvideX will quietly process any

Windows termination signals received from the operating system as if it were running as
a background service.

Default Off.

'!W' System Parameter ' !W ' WindX Keyboard SynchronizationWindX Keyboard Synchronization
Description Forces ProvideX and WindX to maintain keyboard synchronization in order to prevent

type-ahead buffer loss.

Default Off.

Note: Users of *NTHost/*NTSlave will need to upgrade both the server side and WindX
clients to properly utilize the WindX type ahead improvements controlled with '!W'.
Also: Only set this parameter on the server side of a client-server connection.

6. System Parameters '!X'

ProvideX Language Reference V8.30 Back 699

'!X' System Parameter '! X' I/O CrossoverI/O Crossover
Description Map READ and WRITE requests to channel 0 internally to INPUT and PRINT

respectively (to assist with BBx conversion).

Default Off.

'*K' System Parameter Obsolete
Description Included here for completeness only.

'*L' System Parameter Obsolete
Description Included here for completeness only.

6. System Parameters '*L'

ProvideX Language Reference V8.30 Back 700

ProvideX Language Reference V8.30 Back 701

Language Reference 7
Control Object Properties

Over viewOverview
Various properties of Graphical Control Objects in ProvideX (button, drop box,
scrollbar ...) can be referenced and modified dynamically using a control’s assigned
CTL value (ctl_id) followed by the apostrophe operator and one of the associated
property names (listed above). This chapter describes the various properties and
discusses how they are used to define controls in ProvideX.

Align
Align$
Auto
AutoComplete$
AutoCTL
AutoScale
AutoSequence
AutoState
AutoTrack
AutoValue$
BackColour$
BackHilight1$
BackHilight2$
BigJump
Bitmap$
BitmapPosition
BitmapPosition$
BottomBorder
BottomLeftTick$
Calendar$
CascadeState
CellFormat$
CellHiLight
CellImpliedDecimal
CellLeft
CellTag$
CellTbl$
CellTblWidth
CellTip$
CellTop
CellType$
CellTypeList$
Children
Col
Cols
Column
Column$
ColumnClicked
ColumnNames$

ColumnPixels
ColumnSizeLock
ColumnsWide
ColumnWidth
CurrentCellColour$
CurrentColumn
CurrentItem
CurrentPoint
CurrentRow
CurrentSet
CtlName$
DraggedColumn
DraggedRow
DroppedOn
DroppedOnColumn
DroppedOnRow
Edit
Enabled
EnterMode
Eom$
ExcelStyle
Expanded
FaceColourBack$
FaceColourBottom$
FaceColourLeft$
FillColour$
Fmt$
Focus
Font$
Footer$
GenerateScrollEom
Height
HoverColour$
hWnd
Id
ImageCount
ImpliedDecimal
IndexMode
InsDelEnabled
Item

ItemCount
ItemNeededCtl
ItemNeededFrom
ItemNeededTo
ItemState
ItemTag$
ItemText$
JoinColumns
JoinRows
Key$
LabelLocation$
Left
LeftBorder
LegendLocation$
LegendText$
Len
Line
LineColour$
Lines
LoadIOLIST$
LoadList$
Lock
LockColumns
LockRows
MarginBottom
MarginLeft
MarginRight
Margins$
MarginTop
MaxValue
MenuColumn
MenuCtl
MenuRow
MouseOver
Msg$
MultiSelect
NotifyExpand
Nul$
NumPoints
NumSets

OnFocusCols
OnFocusLines
OnFocusCtl
OverlapEnabled
Parent
PointText$
PrefixData
Proportions2M
ProportionDW
ProportionHW
RangeMax
RangeMin
RangeText$
Resizable
RightBorder
Row
RowData$
RowHeight
RowHiLight
RowPixels
RowsHigh
Scroll
ScrollWheel
SelectColumn
SelectCount
SelectedChildren
SelectIndex
SelectItem
SelectLength
SelectOffset
SelectRow
SelectStateMask
SelectText$
SelectValue$
Sep$
SepLoad$
SignalOnExit
SignalOnly
SkipLockedCells
SmallJump

Sort
Sort$
SortCaseSensitive
SortColFmt$
SortOnHdrClick
SortStyle
StateBitmaps$
SwapEnabled
TabMode
Tbl$
TblWidth
Text$
TextColour$
TickPerUnit
TickPixels
Tip$
Title1$
Title2$
Top
TopBorder
TopLeftTick$
TrackColour$
Uppercase
Value
Value$
Visible
Width
XAxisLocation$
XAxisTitle$
YAxisLocation$
YAxisTitle$
ZAxisLocation$
ZAxisTitle$
_PropList$
_PropSep$
_PropValues$

7. Control Object Properties Overview

ProvideX Language Reference V8.30 Back 702

For a complete list of graphical control objects and their properties, see Graphical
Control Objects, p.703. The Properties List, p.709, provides a complete
alphabetically- arranged list of valid property names and their definitions. Special
property groupings (for extended GUI functionality) are described in the section
Compound Properties, p.728.

Using Property Names

As mentioned earlier, access to control object properties is provided via the
apostrophe operator. (For syntax, refer to the Apostrophe Operator, p.823).

For example, a button’s location, size, text, and colour would be represented by the
properties Height, Font$, Text$, TextColour$, etc. If the variable MyButton contained
the CTL value associated with a button, you could change its text as follows:

MyButton'Text$ = "Hit me now"

Other common properties include:

'Col Column
'Line Line
'Cols Width of the control
'Lines Height of the control
'Tip$ Tip for the control
'Msg$ Message line for the control
'Fmt$ Format mask for control
'TextColour$ Text Colour
'Value$ Current value/state of control.

Generally, numeric properties are type insensitive; i.e., a property such as 'Line
returns (or receives) a number. If desired, you can access the same value using the
property 'Line$. This is also true for string properties, assuming that they only
return numeric values.

Some properties return different values based on the type of reference you make. For
example, most colour properties return a text description of the RGB colour when
accessed as a string, or a 24-bit colour number when accessed as a numeric.

ProvideX also supports objects that are external to ProvideX this chapter does not deal
with the properties (and methods) that apply to them. COM and OOP objects/controls
are described under the Apostrophe Operator, p.823.

Note: In this reference, some properties are denoted with $ dollar signs to indicate that
they represent string values; e.g., 'Msg$ or 'Tip$.

Note: While programs can access or update property values, properties cannot be
specified as the target for any file I/O or CALL parameter lists.

7. Control Object Properties Graphical Control Objects

ProvideX Language Reference V8.30 Back 703

Graphical Control Objects Graphical Control Objects

Graphical control objects are used in ProvideX applications to display information,
input data, and handle event processing. These controls can be created using specific
directives or designed/produced in NOMADS, the ProvideX GUI-based application
development system. Refer to the ProvideX NOMADS Reference for further
information.

The following control object types are supported in ProvideX:

This section provides cross-references to corresponding directives and lists all of the
properties used to define and manipulate each of the specific object types. The list
supplied immediately below each object heading is linked to descriptions under the
full Properties List, p.709.

Properties that define extended attributes are shown in italics. They represent a
category of attributes that cannot be accessed within a directive (via FMT= or
OPT=); for example, the majority of cell attributes for grids are defined/set using
properties. See also Compound Properties, p.728.

BUTTON

A button object is usually designed to send a signal to the application when selected
by a mouse click. The signal typically indicates that the user wants to end a function
or initiate a new function. For more information on BUTTON controls, refer to the
BUTTON Directive, p.34.

BUTTON
CHART
CHECK_BOX
DROP_BOX

GRID
LIST_BOX
LIST_VIEW
MULTI_LINE

RADIO_BUTTON
TREE_VIEW
TRISTATE_BOX
VARDROP_BOX

VARLIST_BOX
V_SCROLLBAR
H_SCROLLBAR

BackColour$
BitmapPosition
Col
Cols
CtlName$
Enabled
Eom$

Focus
Font$
Height
HoverColour$
ImageCount
hWnd
Key$

Left
Line
Lines
MenuCtl
Msg$
OnFocusCtl
Parent

SignalOnly
Text$
TextColour$
Tip$
Top
Visible
Width

_PropList$
_PropSep$
_PropValues$

7. Control Object Properties Graphical Control Objects

ProvideX Language Reference V8.30 Back 704

CHART

The chart control is used to create illustrations for an application. A chart is usually
designed to be a display only object that requires no user interaction. For more
information on this control, refer to the CHART Directive, p.43. For information on
applying properties to individual chart elements (labels, legends), see Chart Label
Reference, p.734.

CHECK_BOX

A check box object is designed to be toggled between two states: ON to check the
option or OFF to uncheck it. For more information on the CHECK_BOX control, refer
to the CHECK_BOX Directive, p.47.

DROP_BOX

This control is used to provide a drop-down list of elements from which users can
make a selection. A drop box takes a smaller amount of space on the screen than a
comparable list box. For more information on this control, refer to the DROP_BOX
Directive, p.96.

AutoScale
BackColour$
Bitmap$
BitmapPosition$
Col
Cols
CurrentPoint
CurrentSet
CtlName$
Enabled
Eom$
FaceColourBack$
FaceColourBottom$

FaceColourLeft$
Fmt$
Font$
Footer$
Height
hWnd
IndexMode
LabelLocation$
Left
LegendLocation$
LegendText$
Line
Lines

MarginBottom
MarginLeft
MarginRight
Margins$
MarginTop
MenuCtl
NumPoints
NumSets
Parent
PointText$
Proportions2M
ProportionDW
ProportionHW

RangeMax
RangeMin
RangeText$
SelectIndex
Sep$
SepLoad$
TextColour$
Tip$
Title1$
Title2$
Top
Value
Value$

Visible
Width
XAxisLocation$
XAxisTitle$
YAxisLocation$
YAxisTitle$
YAxisLocation$
ZAxisTitle$
_PropList$
_PropSep$
_PropValues$

BackColour$
BitmapPosition
Col
Cols
CtlName$
Enabled
Eom$

Focus
Font$
Height
HoverColour$
ImageCount
hWnd
Key$

Left
Line
Lines
MenuCtl
Msg$
OnFocusCtl
Parent

SignalOnly
Tbl$
Text$
TextColour$
Tip$
Top
Value

Value$
Visible
Width
_PropList$
_PropSep$
_PropValues$

Auto
BackColour$
Col
Cols
CurrentItem
CtlName$
DroppedOn
Enabled

Eom$
Focus
Font$
Height
hWnd
Item
ItemCount
ItemText$

Key$
Left
Line
Lines
MenuCtl
Msg$
OnFocusCtl
Parent

ScrollWheel
Sep$
SepLoad$
SignalOnExit
Tbl$
TblWidth
TextColour$
Tip$

Top
Value
Value$
Visible
Width
_PropList$
_PropSep$
_PropValues$

7. Control Object Properties Graphical Control Objects

ProvideX Language Reference V8.30 Back 705

GRID

The GRID control is used to create a table of cells in columns and rows; i.e., a
spreadsheet input format. For more information, refer to the GRID Directive, p.143.
See also Grid Property Access, p.734, Multiple Selections, p.730, Drag and Drop,
p.733, and Loading/Accessing by Row, p.733.

LIST_BOX

A list box displays a list of elements from which the users can make a selection.
ProvideX supports different list box types: Standard and Formatted (see the LIST_BOX
Directive, p.178), LIST_VIEW (described below), and TREE_VIEW (described below).
See also Multiple Selections, p.730 and Load on Demand, p.729.

Align
Align$
Auto
AutoSequence
AutoTrack
BackColour$
Bitmap$
BottomBorder
BottomLeftTick$
CellFormat$
CellHiLight
CellImpliedDecimal
CellLeft
CellTag$
CellTbl
CellTblWidth
CellTip$
CellTop
CellType$
CellTypeList$
Col
Cols
Column

Column$
ColumnNames$
ColumnPixels
ColumnSizeLock
ColumnsWide
ColumnWidth
CurrentColumn
CurrentCellColour$
CurrentRow
CtlName$
DraggedColumn
DraggedRow
DroppedOnColumn
DroppedOnRow
Enabled
EnterMode
Eom$
ExcelStyle
FillColour$
Fmt$
Focus
Font$
Height

hWnd
ImpliedDecimal
InsDelEnabled
JoinColumns
JoinRows
Key$
Left
LeftBorder
Len
Line
Lines
LoadIOLIST$
LoadList$
Lock
LockColumns
LockRows
MenuColumn
MenuCtl
MenuRow
Msg$
MultiSelect
Nul$
OnFocusCtl

OverlapEnabled
Parent
Resizable
RightBorder
Row
RowData$
RowHeight
RowHiLight
RowPixels
RowsHigh
SelectColumn
SelectCount
SelectIndex
SelectRow
SelectText$
SelectValue$
ScrollWheel
Sep$
SepLoad$
SignalOnExit
SkipLockedCells
Sort
Sort$

SortCaseSensitive
SortOnHdrClick
SortColFmt$
SortStyle
SwapEnabled
TabMode
Text$
TextColour$
TickPerUnit
TickPixels
Tip$
Top
TopBorder
TopLeftTick$
TrackColour$
Uppercase
Value$
Value
Visible
Width
_PropList$
_PropSep$
_PropValues$

Auto
BackColour$
BackHilight1$
BackHilight2$
Col
Cols
CurrentItem
CtlName$
DroppedOn
Enabled
Eom$

Fmt$
Focus
Font$
Height
HoverColour$
hWnd
Item
ItemCount
ItemNeededCtl
ItemNeededFrom
ItemNeededTo

ItemText$
Key$
Left
Line
Lines
MenuCtl
MouseOver
Msg$
OnFocusCtl
Parent
ScrollWheel

SelectCount
SelectIndex
SelectItem
Sep$
SepLoad$
SignalOnExit
Tbl$
TblWidth
TextColour$
Tip$
Top

Value
Value$
Visible
Width
_PropList$
_PropSep$
_PropValues$

7. Control Object Properties Graphical Control Objects

ProvideX Language Reference V8.30 Back 706

LIST_VIEW

This control operates like a standard list box but provides for columnar lists with
optional bitmaps. The format appears similar to the right-side pane of “classic”
Windows Explorer. Details on the list view control are provided under the LIST_BOX
Directive, p.189. See also Load on Demand, p.729, and Multiple Selections, p.730.

MULTI_LINE

Multi-lines provide a standard input field to display and enter one or more lines of
text. For more information on the MULTI_LINE control, refer to the MULTI_LINE
Directive, p.215.

RADIO_BUTTON

Radio buttons are used to control a variable between a series of preset states, offering
one choice from a group of options. When one radio button is selected, it becomes
activated (on) and all other related radio buttons are automatically reset (off). For
more information on the RADIO_BUTTON control, refer to the RADIO_BUTTON
Directive, p.265

Auto
BackColour$
BackHilight1$
BackHilight2$
Col
Cols
Column
ColumnClicked
ColumnsWide
ColumnWidth
CurrentItem
CtlName$

DroppedOn
Enabled
Eom$
Fmt$
Focus
Font$
Height
HoverColour$
hWnd
Item
ItemCount
ItemNeededCtl

ItemNeededFrom
ItemNeededTo
ItemText$
Key$
Left
Line
Lines
MenuCtl
MouseOver
Msg$
OnFocusCtl
Parent

ScrollWheel
SelectCount
SelectIndex
SelectItem
Sep$
SepLoad$
SignalOnExit
Sort
SortOnHdrClick
Tbl$
TblWidth
TextColour$

Tip$
Top
Value
Value$
Visible
Width
_PropList$
_PropSep$
_PropValues$

Auto
AutoComplete$
BackColour$
Calendar$
Col
Cols
CtlName$
Enabled
Eom$
Fmt$

Focus
Font$
GenerateScrollEom
Height
hWnd
ImpliedDecimal
Key$
Left
Len
Line

Lines
Lock
MenuCtl
Msg$
Nul$
OnFocusCtl
OnFocusCols
OnFocusLines
Parent
Scroll

ScrollWheel
SelectLength
SelectOffset
SelectText$
Sep$
SignalOnExit
TextColour$
Tip$
Top
Uppercase

Value
Value$
Visible
Width
_PropList$
_PropSep$
_PropValues$

BackColour$
BitmapPosition
Col
Cols
CtlName$
Enabled
Eom$

Focus
Font$
Height
HoverColour$
hWnd
ImageCount
Id

Key$
Left
Line
Lines
MenuCtl
Msg$
OnFocusCtl

Parent
SignalOnly
Tbl$
Text$
TextColour$
Tip$
Top

Value
Value$
Visible
Width
_PropList$
_PropSep$
_PropValues$

7. Control Object Properties Graphical Control Objects

ProvideX Language Reference V8.30 Back 707

TREE_VIEW

This control operates like a standard list box but appears as a tree-like structure with
optional bitmaps. Each entry in a tree view consists of a series of strings or values
separated by a delimiter like a directory structure. Details on the tree view list box
control are provided under the LIST_BOX Directive, p.192. See also State Indicators
and Multiple Selections, p.730.

TRISTATE_BOX

A tristate box is a check box in which the user can toggle between three states: On,
Off, and a third choice. For more information, refer to the TRISTATE_BOX Directive,
p.344.

VARDROP_BOX

The VARDROP_BOX control operates like a standard drop box but will allow
variable input. That is, the user can select any element from a list of items associated
with the drop box but can also enter any other value. For more information on this
control, refer to the VARDROP_BOX Directive, p.354.

Auto
AutoState
BackColour$
CascadeState
Children
Col
Cols
CurrentItem
CtlName$
DroppedOn
Edit
Enabled

Eom$
Expanded
Fmt$
Focus
Font$
Height
hWnd
Item
ItemCount
ItemState
ItemTag$
ItemText$

Key$
Left
Line
LineColour$
Lines
MenuCtl
MouseOver
Msg$
NotifyExpand
OnFocusCtl
Parent
PrefixData

ScrollWheel
SelectCount
SelectedChildren
SelectIndex
SelectItem
SelectStateMask
Sep$
SepLoad$
SignalOnExit
Sort
StateBitmaps$
TextColour$

Tip$
Top
Value
Value$
Visible
Width
_PropList$
_PropSep$
_PropValues$

BackColour$
BitmapPosition
Col
Cols
CtlName$
Enabled
Eom$

Focus
Font$
Height
HoverColour$
hWnd
ImageCount
Key$

Left
Line
Lines
MenuCtl
Msg$
OnFocusCtl
Parent

SignalOnly
Tbl$
Text$
TextColour$
Tip$
Top
Value

Value$
Visible
Width
_PropList$
_PropSep$
_PropValues$

Auto
BackColour$
Col
Cols
CtlName$
DroppedOn
Enabled
Eom$
Focus

Font$
Height
hWnd
Item
ItemCount
ItemText$
Key$
Left
Len

Line
Lines
MenuCtl
Msg$
OnFocusCtl
Parent
ScrollWheel
SelectLength
SelectOffset

SelectText$
Sep$
SepLoad$
SignalOnExit
TextColour$
Tip$
Top
Value
Value$

Visible
Width
_PropList$
_PropSep$
_PropValues$

7. Control Object Properties Graphical Control Objects

ProvideX Language Reference V8.30 Back 708

VARLIST_BOX

The VARLIST_BOX control operates like a standard list box but will allow variable
input. That is, the user can select any element from a list of items associated with the
list box but can also enter any other value. For more information on this control,
refer to the VARLIST_BOX Directive, p.360.

V_SCROLLBAR and H_SCROLLBAR

The V_SCROLLBAR and H_SCROLLBAR controls are designed to create and
manipulate vertical and horizontal scrollbars on the screen. For more information on
this control, refer to the V_SCROLLBAR Directive, p.365, and the H_SCROLLBAR
Directive, p.153.

Auto
BackColour$
Col
Cols
CtlName$
DroppedOn
Enabled
Eom$
Focus

Font$
Height
hWnd
Item
ItemCount
ItemText$
Key$
Left
Len

Line
Lines
MenuCtl
Msg$
OnFocusCtl
Parent
ScrollWheel
SelectLength
SelectOffset

SelectText$
Sep$
SepLoad$
SignalOnExit
TextColour$
Tip$
Top
Value
Value$

Visible
Width
_PropList$
_PropSep$
_PropValues$

Auto
BigJump
Col
Cols
CtlName$

Enabled
Height
hWnd
Key$
Left

Line
Lines
MaxValue
Parent
SmallJump

ScrollWheel
Top
Value
Value$
Visible

Width
_PropList$
_PropSep$
_PropValues$

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 709

Properties List List of Propert ies

The various properties available for defining ProvideX common control objects are
described below. Each property name cross-references to one or more control
object(s), which are described in the section Graphical Control Objects, p.703.

Text alignment. Valid numeric values include 1 (top-right), 2 (top-centre), 3 (top-left), 4
(right), 5 (centre), 6 (left), 7 (bottom-right), 8 (bottom-centre), 9 (bottom-left). Default: 4.

Text alignment. Valid text values include "TR" (top-right), "TC" (top-centre), "TL"
(top-left), "R" (right), "C" (centre), "L" (left), BR (bottom-right), "BC"
(bottom-centre), "BL" (bottom-left). Default: "TL".

Signal on all changes: 1=True, 0=False. Default: 0.

Automatic Completion of User Entries. For parameters, see AutoComplete, p.218.

Generates ctl_id to signal Auto-Complete. ctl_id to be generated by a MULTI_LINE
to signal that the list of entries for the AutoComplete dropbox is to be loaded via the
AutoValue$ property. .

Auto-scaling for text elements. 0=Off; 1=On. When set to On, chart text elements
(labels, legends) are automatically resized to fit the given area. Default: 1. For more
information on applying this property, see Chart Label Reference, p.734.

Automatic row sequence. Assigns a column number that contains a row sequence
number. ProvideX automatically fills in values of the cells with the appropriate row
number. When rows are changed, the column containing the sequence number is
automatically updated. (Changing this property forces full redraw of the grid). Default: 0.

Control automatic toggling of states. See State Indicators, p.731.

Automatic Scrolling Control. Assigns horizontal-vertical scrolling modes normal (N),
scrolltracking (S), and joystick (J) . Codes include: 0=N-N; 1=N-S; 2=S-N; 3=S-S; 4=N-J;
5=S-J . Default: 0. See Scroll Modes under the GRID Directive, p.147.

List of entries to be loaded into auto-complete dropbox. See AutoCTL.

Align GRID

Align$ GRID

Auto DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW MULTI_LINE TREE_VIEW
VARDROP_BOX VARLIST_BOX V_SCROLLBAR

AutoComplete$ MULTI_LINE

AutoCTL MULTI_LINE

AutoScale CHART

AutoSequence GRID

AutoState TREE_VIEW

AutoTrack GRID

AutoValue$ MULTI_LINE

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 710

Background colour. Valid colour names are listed under Colour Properties, p.727.
Default: "DEFAULT".

Background colour, alternating lines. Valid colour names are listed under Colour
Properties, p.727. Default: "DEFAULT".

Background colour, alternating three lines. Valid colour names are listed under
Colour Properties, p.727. Default: "DEFAULT".

Scrollbar big jump value. Default: 0.

Bitmap to be used as chart background, or in grid cell. Specify embedded (e.g.,!Stop) or
external (e.g., C:\windows\clouds.bmp). For available images, see Images and
Icons, p.153 in the User’s Guide. Transparency indicators can also be applied to GRID
bitmaps, where T=use upper left most pixel colour and G=use RGB:192,192,192; e.g.,
X'BITMAP$="C:\pvxdev\resource\stop.bmp,t"
X'BITMAP$="!Stop,g"

Bitmap position: 1=Left of text; 2=Right of text; 3=Above text; 4=Below text.

Bitmap position/appearance of chart. Predefined positions include: TOPLEFT, LEFT,
BOTTOMLEFT, TOPRIGHT, RIGHT, BOTTOMRIGHT. These preserve bitmap size and
proportions. Use STRETCH parameter to force the bitmap to be stretched within the
chart's window. The TILE paramter creates a "tile" effect multiplying the original bitmap
to cover the entire chart's window. Default: "TOPLEFT".

A custom position may be defined using syntax: "x:y:column:line". With this syntax,
the bitmap is positioned within the given rectangle. Proportions and the size of the
bitmap are altered to fit the rectangle.

Bottom border of cell (thickness): 0 to 3 pixels. Default: 0.

BackColour$ BUTTON CHART CHECK_BOX DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE
RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX

BackColor$ Background colour – US spelling. See above.

BackHilight1$ LIST_BOX LIST_VIEW

BackHilight2$ LIST_BOX LIST_VIEW

BigJump H_SCROLLBAR V_SCROLLBAR

Bitmap$ CHART GRID

BitmapPosition BUTTON CHECK_BOX RADIO_BUTTON TRISTATE_BOX

BitmapPosition$ CHART

BottomBorder GRID

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 711

Bottom left tick. When set to a colour, this displays a tick in the bottom left corner of the
cell. Colour names are listed under Colour Properties, p.727. Default: "DEFAULT".

Invoke Month Calendar Control. For parameters, see Calendar, p.219.

Control cascading of states. See State Indicators, p.731.

Cell format mask. Default: null. See FMT= option, MULTI_LINE Directive, p.215.

Cell selection highlight: 0=Cell not highlighted; 1=Focus rectangle on cell; 2=Cell
highlighted (selected); 3=Cell highlighted and has focus rectangle. Default: 1.

Cell Implied Decimal: Controls implied decimal input on cell by cell basis.

Cell Left Position: Relative X position for cell.

Maintain hidden tag string on cell. This tag can hold internal user-defined
information about the cell.

Translation table: Returns table of multi-character values representing selections.

Translation table width: Sets length of each item in the 'CellTbl property. Positive
values only. Default is 1. Zero indicates that 'CellTbl$ contains a delimited string,
with the last character being the delimiter. Setting a translation table on column
default (i.e., entire column) or on an individual cell in the column is not supported.

Tip for Cell: Tip message.

Cell Top Position: Relative Y position for cell.

Grid cell type. For a list of available cell type values, see Cell Types under the GRID
Directive, p.146. Default: "Normal".

BottomLeftTick$ GRID

Calendar$ MULTI_LINE

CascadeState TREE_VIEW

CellFormat$ GRID

CellHiLight GRID

CellImpliedDecimalGRID

CellLeft GRID

CellTag$ GRID

CellTbl$ GRID

CellTblWidth GRID

CellTip$ GRID

CellTop GRID

CellType$ GRID

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 712

List of supported cell types (described above). Delimited list where last character is
delimiter.

Number of direct descendant children for current item set by 'Item.

Screen position (column) of control.

Width of control in column units.

Column number of grid or list view.

Column Selected selected by the user. Indicates if column is selected by the user. If a
column was not clicked on, or the selected item changes by means other than the
mouse then the property will return zero.

Grid column name.

Comma-separated list of Grid column names.

Width of column in pixels.

Column resizing by user: 0=Off; 1=On. Valid only when ’Resizable < > 0. Default: = 0.

Number of columns. If a grid's dimensions have been changed using this property,
the default settings must be re-set.

Width of column in column units.

Background Colour for current cell. Valid colour names are listed under Colour
Properties, p.727. Default: "DEFAULT".

Current column with focus.

CellTypeList$ GRID

Children TREE_VIEW

Col BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

Cols BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

Column GRID LIST_VIEW

ColumnClicked LIST_VIEW

Column$ GRID

ColumnNames$ GRID

ColumnPixels GRID

ColumnSizeLock GRID

ColumnsWide GRID LIST_VIEW

ColumnWidth GRID LIST_VIEW

CurrentCellColour$ GRID

CurrentCellColor$ Background Colour for current cell – US spelling. See above.

CurrentColumn GRID

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 713

Current item with focus/selected. Default: 1 (0, if no data).

Current data point. Default: 1 (0, if no data).

Current row with focus. Default: 1.

Current dataset. Default: 1 (0, if no data).

Control type. This value can be one of the following:
"MULTI_LINE" (see MULTI_LINE Directive, p.215)
"LIST_BOX" (see LIST_BOX Directive, p.178)
"LIST_VIEW" (see LIST_BOX Directive, p.189)
"TREE_VIEW" (see LIST_BOX Directive, p.192)
"DROP_BOX" (see DROP_BOX Directive, p.96)
"VARLIST_BOX" (see VARLIST_BOX Directive, p.360)
"VARDROP_BOX" (see VARDROP_BOX Directive, p.354)
"BUTTON" (see BUTTON Directive, p.34)
"CHECK_BOX" (see CHECK_BOX Directive, p.47)
"TRISTATE_BOX" (see TRISTATE_BOX Directive, p.344)
"RADIO_BUTTON" (see RADIO_BUTTON Directive, p.265)
"V_SCROLLBAR" (see V_SCROLLBAR Directive, p.365)
"H_SCROLLBAR" (see H_SCROLLBAR Directive, p.153)
"GRID" (see GRID Directive, p.143)
"CHART" (see CHART Directive, p.43).

Column number dragged from. This indicates the column number (cell) where dragging
started. Default: 0.See Drag and Drop, p.733.

Row number dragged from. This indicates the row number (cell) where dragging
started. Default: 0.See Drag and Drop, p.733.

Index number in list box. This indicates the index number that dragged items were
dropped on to; if items are not dropped on to a specific line, 0 is returned.

CurrentItem DROP_BOX LIST_BOX LIST_VIEW TREE_VIEW

CurrentPoint CHART

CurrentRow GRID

CurrentSet CHART

CtlName$ BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

DraggedColumn GRID

DraggedRow GRID

DroppedOn DROP_BOX LIST_BOX LIST_VIEW TREE_VIEW VARDROP_BOX VARLIST_BOX

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 714

Column number where dropped. This indicates the column number (cell) where the
mouse was released/items dropped. See Drag and Drop, p.733.

Row number where dropped. This indicates the row number (cell) where the mouse is
released/items dropped. See Drag and Drop, p.733.

Control direct editing by user. This enables the automatic editing of item text; i.e., the
user can double click on an item to change its value. (See OPT="E" under Tree View,
p.192) 1=allow editing, 0=no editing, -1=force current item into edit mode. Default: 0.

Enabled indicator: 1=On, 0=Off. Default: 1.

Set movement for key: 0=Normal Processing (edits cell); 1=Move right across a
grid by column, exit on last column; 2=Move right across a grid by column, wrap to
first column; 3=Move down by row, hold on last row; 4=Move down by row, return
to column 1, hold on last row. Default: 0.

Using , with these key modes reverses the direction. The TabMode value is
automatically applied to if the '+E' mnemonic has been set; however, EnterMode
can be changed to a different value, if needed.

Last change terminator. Refer to each control directive for specific eom$ character value.

Excel type grid: 0=No grid lines, 1=Lines. Default: 1.

Node expanded: -2=Collapse selected level and all subordinates, -1/0=Collapsed,
1=Expanded, 2=Expand selected level and all sub-ordinates. Default: 0.

Colour for background face. Valid colour names are listed under Colour Properties,
p.727. Default: "DEFAULT".

DroppedOnColumn GRID

DroppedOnRow GRID

Edit TREE_VIEW

Enabled BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

EnterMode GRID

Enter

Shift
Enter

Eom$ BUTTON CHART CHECK_BOX DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE
RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX

ExcelStyle GRID

Expanded TREE_VIEW

FaceColourBack$ CHART

FaceColorBack$ Colour for background face – US spelling. See above.

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 715

Colour for bottom face (3D chart). Valid colour names are listed under Colour
Properties, p.727. Default: "DEFAULT"

Colour for left face (3D chart). Valid colour names are listed under Colour
Properties, p.727. Default: "DEFAULT"

Fill colour. Defines the background colour for unused regions. Valid colour names
are listed under Colour Properties, p.727. Default: "DEFAULT".

Control format definition. For more information, refer to the FMT= option as
described for use with a specific control directive; e.g., CHART Directive, p.43.

Focus indicator: 1=Control has focus. Default: 0.

Font for text element/cell. Indicates font name, size, and optional properties. Refer to
the 'FONT' Mnemonic, p.609 for details. CHART supports B, I, and U options only.

Chart footer.

Generate EOM value for scroll wheel actions. 0=Off, 1=On. Default: 0. This enables
generation of EOM values (scroll up=0x26, down=0x28, left=0x25, right=0x27).

Height of control in pixels.

FaceColourBottom$ CHART

FaceColorBottom$ Colour for bottom face (3D chart) – US spelling. See above.

FaceColourLeft$ CHART

FaceColorLeft$ Colour for left face (3D chart) – US spelling. See above.

FillColour$ GRID

FillColor$ Fill colour – US spelling. See above.

Fmt$ CHART GRID LIST_BOX LIST_VIEW MULTI_LINE TREE_VIEW

Focus BUTTON CHECK_BOX DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE
RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX

Font$ BUTTON CHART CHECK_BOX DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE
RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX

Footer$ CHART

GenerateScrollEom MULTI_LINE

Height BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 716

Hover colour. Highlights text when the mouse moves over its location. Valid colour
names are listed under Colour Properties, p.727. Default: "DEFAULT".

Windows handle for control.

Radio button index to reference.

Number of images contained in a bitmap button. 1 to 4. Default: 0.

Implied Decimal: Controls implied decimal input in grids and multi-lines.

Set Index Mode. This allows additional views of existing chart types to be opened; e.g., for a
2D column chart, setting IndexMode to 1 creates a clustered column chart. 1=Natural
number (1 .. n) indexing; 2=Integer (0 .. i) indexing; 3=Arbitrary x value indexing.

Cell editing keys. 0=Off, 1=On. Default: 0. This enables use of to begin cell
editing and for clearing the contents of a cell.

Index number of item in list.

Number of items in list. See Load on Demand, p.729.

Signal/CTL event number to generate when items are requested from the list box.
This property must be set prior to pre-declaring the number of items the list box is to
have by setting the ItemCount property. See Load on Demand, p.729.

Index number of the items requested. The 'ItemNeededFrom and 'ItemNeededTo
properties are set once the user scrolls the list box to request more items to be loaded.
See Load on Demand, p.729.

HoverColour$ BUTTON CHECK_BOX LIST_BOX LIST_VIEW RADIO_BUTTON TRISTATE_BOX

HoverColor$ Hover colour – US spelling. See above.

hWnd BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

Id RADIO_BUTTON

ImageCount BUTTON CHECK_BOX RADIO_BUTTON TRISTATE_BOX

ImpliedDecimal GRID MULTI_LINE

IndexMode CHART

InsDelEnabled GRID

Insert

Delete

Item DROP_BOX LIST_BOX LIST_VIEW TREE_VIEW VARDROP_BOX VARLIST_BOX

ItemCount DROP_BOX LIST_BOX LIST_VIEW TREE_VIEW VARDROP_BOX VARLIST_BOX

ItemNeededCtl LIST_BOX LIST_VIEW

ItemNeededFrom LIST_BOX LIST_VIEW

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 717

Index number of the items requested. See Load on Demand, p.729.

Numeric value indicating the state of the item. 1-based, 0=No state indicator. There is a
maximum of 15 states. This property is used in conjunction with 'StateBitmaps$. See
State Indicators, p.731.

Maintain hidden tag string on item set by 'Item. This tag can hold internal
user-defined information about the item such a file key, etc.

Value of the current item set by 'Item.

Merge two or more columns (left to right). Set this property in the column that starts
the join (leftmost) to the total number of joined columns - that number of columns
will be merged into one. For columns belonging to an existing join, this property
returns a negative integer indicating the column’s current position within the join.

Merge two or more rows (downward). Set this property in the row that starts the join
(uppermost) to the total number of joined rows - that number of rows will be merged
into one. For rows belonging to an existing join, this property returns a negative
integer indicating the row’s current position within the join.

Hot key to jump to control.

Custom positioning of chart labels. Use syntax: "column:line" or "AUTOMATIC" (to
set label locations to the default mode); e.g., x'LabelLocation$="10:15". For
more information on applying this property, see Chart Label Reference, p.734.

Left margin for control in pixels.

Left border of cell (thickness): 0 to 3 pixels. Default: 0.

ItemNeededTo LIST_BOX LIST_VIEW

ItemState TREE_VIEW

ItemTag$ TREE_VIEW

ItemText$ DROP_BOX LIST_BOX LIST_VIEW TREE_VIEW VARDROP_BOX VARLIST_BOX

JoinColumns GRID

JoinRows GRID

Key$ BUTTON CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

LabelLocation$ CHART

Left BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

LeftBorder GRID

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 718

Location of chart legend. Values include: TopLeft, Left, BottomLeft, TopRight,
Right, and BottomRight.

Legend text for a data set.

Input length of cell or line.

Screen position of control.

Colour of connecting lines in a tree view. Valid colour names are listed under Colour
Properties, p.727. Default: "DEFAULT".

Height of control in number of lines.

'LoadList$ in compiled IOList format. See Loading/Accessing by Row, p.733.

List of columns loaded. Lists column names in the order they appear physically in
the grid. Loading/Accessing by Row, p.733.

Lock status. 1=Lock, 0=Unlock. Default: 0.

Number of columns to lock into position, starting from column 1.

Number of rows to lock into position, starting from row 1.

Set line number for bottom chart margin.

LegendLocation$ CHART

LegendText$ CHART

Len GRID MULTI_LINE VARDROP_BOX VARLIST_BOX

Line BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

LineColour$ TREE_VIEW

LineColor$ Colour of connecting lines in a tree view. – US spelling. See above.

Lines BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

LoadIOLIST$ GRID

LoadList$ GRID

Lock GRID MULTI_LINE

LockColumns GRID

LockRows GRID

MarginBottom CHART

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 719

Set column number for left chart margin.

Set column number for right chart margin.

Set all chart margins. Use syntax: "top:bottom:left:right" or "AUTOMATIC" to set
margins to the automatic (default) mode; e.g., X'MARGINS$="10:10:20:10".

Set line number for top chart margin.

Maximum scroll bar value.

Column number on right-click. This property indicates the column number of a
selected cell on a right-click of the mouse. .

CTL value on right-click. This property reports/sets the CTL value to generate when
an object is selected on a right-click of the mouse.

Row number on right-click. This property indicates the row number of a selected cell
on a right-click of the mouse.

Item number on mouse-over. This property returns the item number of an object
when the mouse pointer is over it. If the mouse is not over an object, -1 is returned. 0
is returned if the cursor is over an area in the control with no data.

Message line text for the control.

Select multiple cells: 1=On; 0=Off. Default: 1.

Detect expand/collapse requests. When set to non-zero value, this causes a tree view
expand/collapse to generate an event with EOM code "+" (expand) or "-" (collapse).

Null input display text. Replacement text/value in place of null; e.g., G'NUL$="asis".

MarginLeft CHART

MarginRight CHART

Margins$ CHART

MarginTop CHART

MaxValue H_SCROLLBAR V_SCROLLBAR

MenuColumn GRID

MenuCtl BUTTON CHART CHECK_BOX DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE
RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX

MenuRow GRID

MouseOver LIST_BOX LIST_VIEW TREE_VIEW

Msg$ BUTTON CHECK_BOX DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE
RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX

MultiSelect GRID

NotifyExpand TREE_VIEW

Nul$ GRID MULTI_LINE

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 720

Largest number of data points within data set.

Total number of data sets.

On focus, resize columns. Returns to defined size when focus leaves. Assign 0 to reset.

On focus, resize lines. Returns to defined size when focus leaves. Assign 0 to reset.

On focus CTL event. 0 is returned if no on focus CTL value is set up for the control.

Allow cells to overlap: 1=Yes, 0=No. Default: 1.

Parent window handle.

Point label values. Single string of point label values where last character is delimiter.

Control prefix on data loaded into tree view. 0=No prefix on the data - data has
bitmap option off; 1=Data loaded in the tree view can be prefixed with curly braces
containing a bitmap, state value, and tag value (separated with semi-colons) - data
has bitmap option on; 2=Returns same prefix with curly braces when data is read,
and can be supplied when the data is written (as above).

Proportions to margins. 0=Off; 1=On. Sets the chart to the variable-proportion mode,
which means that it is proportional to the current height-to-width ratio of the
chart-window that contains the chart. Default: 0.

Depth to width. Sets percentage of chart-depth to chart-width for altering depth
proportions of three-dimensional charts. Assigning a 0 zero forces default values
according to chart type. Default is ProportionDW=100 for pie chart,
ProportionDW=50 for other chart types.

NumPoints CHART

NumSets CHART

OnFocusCols MULTI_LINE

OnFocusLines MULTI_LINE

OnFocusCtl BUTTON CHECK_BOX DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE
RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX

OverlapEnabled GRID

Parent BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

PointText$ CHART

PrefixData TREE_VIEW

Proportions2M CHART

ProportionDW CHART

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 721

Height to width. Sets percentage of chart-height to chart-width for altering
proportions of two-dimensional charts. Assigning a 0 zero forces default values
according to chart type. Default is ProportionHW=5 for pie charts,
ProportionHW=100 for other chart types.

Set ceiling value of the Y-axis. The chart view will be adjusted according to
RangeMin and RangeMax values.

Set floor value of the Y-axis. The chart view will be adjusted according to
RangeMin and RangeMax values.

Text of custom label for Stack Chart (one point per dataset). Labels are placed on the right
side. Labels must be added sequentially, starting from 1, up to the number of sets; e.g.,
X'CURRENTSET=1, X'CURRENTPOINT=1, X'RANGETEXT$="Label One".

Enable grid resize by user: 0=Neither row or columns are resizable; 1=Both columns
and rows are resizable; 2=Columns are resizable, rows are not; 3=Rows are resizable,
columns are not. Default: 1.

Right border of cell (thickness): 0 to 3 pixels.

Grid row reference.

Row data based on. ’LoadList$. See Loading/Accessing by Row, p.733.

Height of current row in lines.

Row selection highlight: 1=Row Highlight; 0=Cell Highlight. This enables selection
of a full row rather than limited to cells. Only locked cells are highlighted. One side
effect is that when the cells are locked the grid becomes a fancy list view.

Height of row in pixels.

Number of rows defined in Grid. If a grid's dimensions have been changed using this
property, the default settings must be re-set.

ProportionHW CHART

RangeMax CHART

RangeMin CHART

RangeText$ CHART

Resizable GRID

RightBorder GRID

Row GRID

RowData$ GRID

RowHeight GRID

RowHiLight GRID

RowPixels GRID

RowsHigh GRID

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 722

Set scroll bar types. 0=No scroll bars, 1=Vertical scroll bars, 2=Horizontial scroll
bars, 3=Both scroll bars.

Set mouse scroll wheel support. 0=Scroll wheel support (all events go to parent
window), 1=Scroll only if the control has focus (mouse can hover on or off control)
2=Scroll only if the control has focus (mouse must be hovered over control), 3=If
control does not have focus, then scroll when mouse hovers over this control
(otherwise, same as 1), 4=If control does not have focus, then scroll when mouse
hovers over this control (otherwise, same as 2).

Column number of selected cell. (Read Only) See Multiple Selections, p.730.

Number of items/cells selected. Set this property to zero to de-select all items. See
Multiple Selections, p.730.

Number Of Child Items. Used in conjunction with 'SelectStateMask to return the
number of child items with the desired state. (Children being entries on the tree that
have no sub-ordinates). See Multiple Selections, p.730.

Index to 'SelectItem. Set this property to point to a selected element; e.g., 1 points to
the first item selected, 2 points to the second item selected, etc. See Multiple
Selections, p.730.

Item number in list selected. This returns the sequential location within the list of the item
being pointed to by 'SelectIndex property. It can also be used to select items; e.g., a
bj'selectitem=2 would select a list item whose index is 2. To deselect an item, use a
minus sign; e.g., bj'selectitem=-2. An obj'selectitem=0 selects all list items if
multi-select functionality (OPT=’#’) is being used.

Length of selected item. This reports the number of characters currently highlighted.
This allows for cut, copy, and paste within a GUI input region.

Position where highlight/cursor begins. This indicates where the highlight begins
within the data or, if nothing is highlighted, the current cursor location.This allows for
cut, copy, and paste within a GUI input region.

Scroll MULTI_LINE

ScrollWheel DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW MULTI_LINE TREE_VIEW
V_SCROLLBAR VARDROP_BOX VARLIST_BOX

SelectColumn GRID

SelectCount GRID LIST_BOX LIST_VIEW TREE_VIEW

SelectedChildren TREE_VIEW

SelectIndex CHART GRID LIST_BOX LIST_VIEW TREE_VIEW

SelectItem LIST_BOX LIST_VIEW TREE_VIEW

SelectLength MULTI_LINE VARDROP_BOX VARLIST_BOX

SelectOffset MULTI_LINE VARDROP_BOX VARLIST_BOX

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 723

Row number of selected cell. (Read Only) See Multiple Selections, p.730.

State filter to apply. See State Indicators, p.731.

Text contained within the highlight. This allows for cut, copy, and paste within a GUI
input region. See Multiple Selections, p.730.

Value within selected field. Requires setting the 'SelectIndex property. See Multiple
Selections, p.730.

Separator character between each field, column, or data point.

Separator character for each row or data set.

Signal event on exit: 0=No signal on exit; 1=Signal on exit; 2=Grid only, signal when
changing row or on exit (sets column value to 0 and row value to last row exited; 3=Grid
only, signal when changing row or on exit (sets column and row values to zero).

Signal only-do not get focus: 0=Off; 1=On. This property can also be read, returning
1 or 0 to indicate if the control is to signal only and not get focus. Default: 0.

Skip over locked cells: 1=On; 0=Off. Default: 1.

Scroll bar small jump value.

Column sorting. For list view and GRID controls, this sets the column number to sort
by. (Locked rows are included in the sort.) Negative integers indicate descending
order. In tree views, sorting values indicate the following: 1=Automatically sort data
in ascending order; 0=Reset sort indicators; -1= cause current 'Item to be sorted; -2
cause the current 'Item and its descendants to be sorted. Default: 1.

SelectRow GRID

SelectStateMask TREE_VIEW

SelectText$ GRID MULTI_LINE VARDROP_BOX VARLIST_BOX

SelectValue$ GRID

Sep$ CHART DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE TREE_VIEW
VARDROP_BOX VARLIST_BOX

SepLoad$ CHART DROP_BOX GRID LIST_BOX LIST_VIEW TREE_VIEW VARDROP_BOX
VARLIST_BOX

SignalOnExit DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE TREE_VIEW VARDROP_BOX
VARLIST_BOX

SignalOnly BUTTON CHECK_BOX RADIO_BUTTON TRISTATE_BOX

SkipLockedCells GRID

SmallJump H_SCROLLBAR V_SCROLLBAR

Sort GRID LIST_VIEW TREE_VIEW

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 724

Sort by Column Name. This sets a column name (inside quotes) to sort by. A minus
sign indicates descending order; e.g., x'Sort$ = "- col_name". (Locked rows
are included in the sort.)

Sort With Case Sensitivity. 1=On; 0=Off. Default: 1.

Sort by Date Format. Controls format for sorting columns based on date values
rather than standard numeric/string data. Year, Month and Day code combinations of
1 to 3 characters. (e.g., Y, MY, DMY, MDY, YMD ...) Case insensitive. Use in
conjunction with 'Column to determine where date sorting will be applied.

Sort on Header Click. Controls how columns are sorted when the column header is
clicked. For grids, use the 'Column property to set the column number ('Column set
to 0 affects entire grid). Property values are: 0=Disable sorting when column header
clicked (default); 1=Enable sorting when column header clicked; -1=Use grid default
setting (for single column mode only).

For a Report-style list view control, property values enable/disable column sorting:
0=Disable sorting when column header clicked (default); 1=Enable sorting when
column header clicked. If the list view was created with sorting disabled (OPT="q"),
then the default is 0; otherwise, the default is 1.

Sort without Nulls. Determines if cells with null values are to included in the sort.
Sortstyle values indicate the following: 0=Null values are sorted; 1=Null values are
excluded and cells will remain at the bottom of the grid (Excel-like style).

List of images used to display states. Separated by vertical bars; e.g.,
"!Stop|!Print". A maximum of 15 images can be applied to this property. See
State Indicators, p.731.

Column swap enabled: 1=Yes, 0=No. Default: 0.

Movement setting for key: 0=Normal Processing (exits grid); 1=Move right
across a grid by column, exit on last column; 2=Move right across a grid by column,
wrap to first column; 3=Move down by row, hold on last row; 4=Move down by row,
return to column 1, hold on last row. Default: 0.

Sort$ GRID

SortCaseSensitive GRID

SortColFmt$ GRID

SortOnHdrClick GRID LIST_VIEW

SortStyle GRID

StateBitmaps$ TREE_VIEW

SwapEnabled GRID

TabMode GRID
Tab

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 725

Translation table. Returns table of values representing selections. Single-character
values are returned by default; however, multi-character translations are supported
for DROP_BOX and LIST_BOX when length is set via the 'TblWidth property.

Table width. Sets length of each of the items in the 'Tbl$ property. It can be set to any
positive value (default is 1). Setting to zero indicates that 'Tbl$ contains a delimited
string, with the last character of the string being the delimiter character.

Text of item or label. In a grid, this property applies to "Button" cell types only.

Foreground text colour. Valid colour names are listed under Colour Properties,
p.727. Default: "DEFAULT".

Display units in grid "ruler". Sets the number of ruler-style "ticks" between numbers
(units) displayed in the header cells (row and column) of the grid; e.g.,
'TickPerUnit=8 will display a number every 8 ticks on the ruler and causes median
points (at 'TickPerUnit/2) to appear slightly larger. Ruler numbers begin at zero and
count upwards by whole numbers, but will be reset to zero again if the header cell
contains a 'Value$ greater than null. Default: 0.

Pixels between ticks in grid "ruler". This sets the space in pixels between ruler-style
"ticks" (marker lines) displayed in the header cells of the grid.

Tip message for control.

Primary chart title.

Secondary chart title.

Top of control in pixels.

Tbl$ CHECK_BOX DROP_BOX LIST_BOX LIST_VIEW RADIO_BUTTON TRISTATE_BOX

TblWidth DROP_BOX LIST_BOX LIST_VIEW

Text$ BUTTON CHECK_BOX GRID RADIO_BUTTON TRISTATE_BOX

TextColour$ BUTTON CHART CHECK_BOX DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE
RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX

TextColor$ Foreground text colour – US spelling. See above.

TickPerUnit GRID

TickPixels GRID

Tip$ BUTTON CHART CHECK_BOX DROP_BOX GRID LIST_BOX LIST_VIEW MULTI_LINE
RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX

Title1$ CHART

Title2$ CHART

Top BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 726

Top border of cell (thickness): 0 to 3 pixels. Default: 0.

Top left tick. When set to a colour, this displays a tick in the top left corner of the cell.
Valid colour names are listed under Colour Properties, p.727. Default: "DEFAULT".

Cell tracking colour. Header cells corresponding to a cell that currently has focus are
switched to colour set by this property as the user moves around the grid. This
provides a visual cue to the user for which column and row they are currently on.
Only header cells that use their default colour will change to the tracking colour.
Valid colour names are listed under Colour Properties, p.727. Default: "DEFAULT".

Force text to uppercase. 1=On, 0=Off. Default: 0.

Current numeric item/value assigned. For grid controls, cell value. For chart controls,
data value (based on ’CurrentPoint and ’CurrentSet).

Current string item/value. For grid controls, cell value. For chart controls, data value
(based on ’CurrentPoint and ’CurrentSet).

Control visible flag: 1=Yes, 0=No. Default: 1.

Width of control in pixels.

X-Axis location. ("Back" or "Bottom"). Default: "Bottom"

X-Axis title.

TopBorder GRID

TopLeftTick$ GRID

TrackColour$ GRID

TrackColor$ Cell tracking colour – US spelling. See above.

Uppercase GRID MULTI_LINE

Value CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

Value$ CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

Visible BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

Width BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

XAxisLocation$ CHART

XAxisTitle$ CHART

7. Control Object Properties Properties List

ProvideX Language Reference V8.30 Back 727

Y-Axis location. ("Back" or "Left"). Default: "Left"

Y-Axis title.

Z-Axis location. ("Bottom" or "Left"). Default: "Left"

Z-Axis title.

Contains list of Properties. See Multi-Property Access, p.728.

Separator between values. See Multi-Property Access, p.728.

Accesses property values. See Multi-Property Access, p.728.

Colour Properties
The properties used to define colour attributes in various graphical control objects
include the following:

To apply a colour to these properties, use one of the following valid colour names:
"DEFAULT" "Dark Gray"
"Black" "Dark Red"
"Light Red" "Dark Green"
"Light Green" "Dark Yellow"
"Light Yellow" "Dark Blue"
"Light Blue" "Dark Magenta"
"Light Magenta" "Dark Cyan"
"Light Cyan" "Light Gray"
"White"

... or use a RGB code (RGB:n n n where n=0-255) or user-defined colour (refer to the
'COLOUR' & '_COLOUR' Mnemonics, p.596).

YAxisLocation$ CHART

YAxisTitle$ CHART

ZAxisLocation$ CHART

ZAxisTitle$ CHART

_PropList$ BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

_PropSep$ BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

_PropValues$ BUTTON CHART CHECK_BOX DROP_BOX GRID H_SCROLLBAR LIST_BOX LIST_VIEW
MULTI_LINE RADIO_BUTTON TREE_VIEW TRISTATE_BOX VARDROP_BOX VARLIST_BOX
V_SCROLLBAR

BackColour$
BackHilight1$
BackHilight2$
BottomLeftTick$

CurrentCellColour$
FaceColourBack$
FaceColourBottom$
FaceColourLeft$

FillColour$
HoverColour$
LineColour$
TopLeftTick$

TextColour$
TrackColour$

7. Control Object Properties Compound Properties

ProvideX Language Reference V8.30 Back 728

Compound Properties Co mpound Propert ies

Initially, control object properties were introduced to provide dynamic access to the
basic attributes of a control object in ProvideX. The original list of properties covered
obvious features (Height, Font$, Text$) in graphical control objects, but as this list
continues to expand with each new release of ProvideX, so does the variety of
features that can be defined via properties.

Many of the latest properties are designed to provide characteristics and behaviour
that go way beyond what can be defined by directives alone. Most attributes are
defined using individual properties; however, some extended functionality is
contingent on sets of two or more (compound) properties and require more complex
manipulation. The following sections identify and describe these groupings.

Multi-Property Access, p.728
Load on Demand, p.729
Multiple Selections, p.730
State Indicators, p.731
Drag and Drop, p.733
Loading/Accessing by Row, p.733
Grid Property Access, p.734
Chart Label Reference, p.734

Multi-Property Access
Multi-Prop er ty AccessThe following properties allow an application to set/get values for more than one

property for a control in a single command:

The ability to handle multiple reads is useful for accessing properties across a
WindX/JavX connection, particularly when dealing with an object that has a large
number of properties such as a grid. This can boost performance and reduce the
amount of network traffic.

To retrieve the value of multiple properties, first set '_PropList$, then read
'_PropValues$; e.g.,

G1'_PropList$="CurrentColumn,CurrentRow,Value$"
x$ = G1'_PropValues$

In this example, x$ receives a string containing the values of CurrentColumn,
CurrentRow, and Value$, with each field separated by either the standard SEP
field separator, or with the '_PropSep$ character.

Topics

'_PropList$ Comma separated list of property names to read/write.
'_PropValues$ String that contains values for each of the properties in

'_PropList$.
'_PropSep$ Character used as a field separator between values.

7. Control Object Properties Compound Properties

ProvideX Language Reference V8.30 Back 729

Data can then be extracted using READ DATA; e.g.,

READ DATA FROM G1'_PropValues$ TO IOL=MYIOL
MYIOL: IOLIST Col, Row, Value$

To set values, first set '_PropList$ (if not already set), then set '_PropValues$; e.g.,

G1'_PropValues$ = "1"+SEP+"2"+SEP+"Data"
or G1'_PropValues$ = REC(IOL=MYIOL)

The advantage is that only one packet need be sent to WindX / JavX to either SET or
RETRIEVE the values of multiple properties. Do not constantly read fields
'_PropList$ and '_PropSep$ from the control in order to parse the data returned by
'_PropValues$. This would defeat the purpose; e.g.,

READ DATA FROM G1'_PropValues$,SEP=G1'_PropSep$
TO IOL=CPL("IOLIST "+G1'_PropList$)

The above example actually results in three exchanges with WindX: one to get
'_PropSep$, the second for '_PropList$, and the third for '_PropValues$. The
separator character and list should be maintained within the application code and
should not be retrieved from the control.

Load on Demand (List Box, List View)
Load on DemandThe following properties are used to improve list box load times:

On-demand loading allows an application to load a list box with only those items
the user actually scrolls into view. This reduces network traffic and file access since a
list box is only loaded with those items required by the user. Also, it assures proper
function of the scrollbar and its relationship to the list.

This feature requires the developer to pre-declare the number of items that the list
box is to have (by setting the 'ItemCount property). When the user scrolls items into
view, the system generates a CTL event.

Upon receiving the CTL event (set by 'ItemNeededCtl), the application queries
‘ItemNeededFrom and ‘ItemNeededTo to determine the index number and the
number of items. The application then loads the list box with the contents of the
specified items by setting 'Item and 'ItemText$. If no elements are needed then
'ItemNeededFrom and 'ItemNeededTo will be zero. Once the value has been
loaded into the 'ItemNeededTo, ProvideX checks if further items are required and if
so, it generates another CTL event.

In the case of a Report style list view, should the user request the list be sorted or
attempt to auto-size the width of a column, the system will force a load of all list box
elements before processing the request.

‘Itemcount Defines number of items.
‘ItemNeededCtl CTL issued when data needed.
‘ItemNeededFrom Lowest item needed.
‘ItemNeededTo Highest item needed.

7. Control Object Properties Compound Properties

ProvideX Language Reference V8.30 Back 730

In some instances the contents of the list box may need to be shown prior to the contents
being loaded, in which case the system will display 5 dots in place of the data.

For more information, refer to the LIST_BOX Directive, p.178.

Multiple Selections (Grid, List Box, List View, Tree View)
Multiple Select ion sThe following properties are used to process multiple selections in lists and grids:

The following property applies to lists only:

Refer to the LIST_BOX Directive, p.183 or the GRID Directive, p.143 for more
information on the controls described.

Example:

FOR I = 1 TO LB1'SelectCount
LB1'SelectIndex = I; PRINT LB1'SelectItem; NEXT

In Tree Views
In addition to the above properties, tree view controls support the following:

Use 'SelectedChildren in conjunction with 'SelectedStateMask to return the
number of child items with the desired state.

When 'SelectedStateMask is set, the 'SelectCount, 'SelectIndex, and ’SelectItem
properties will reflect only those items that have the specified state; e.g., to find all
items that have a state of one, set 'SelectStateMask to 1. 'SelectCount will then
indicate the number of items that have this state and sequencing through
'SelectIndex and 'SelectItem will return their item numbers.

In Grids
The following properties can be applied to grids for access to selected items based on
the location defined by 'SelectIndex:

'SelectCount Number of items/cells selected. (Set this property to zero to
de-select all.)

'SelectIndex Index to 'SelectItem. Set this to point to a selected element;
e.g., set to 1 to point at the first item selected, 2 to point at the
second item selected, etc.

'SelectItem Item number in list selected. This returns the sequential
location within the list of the item being pointed at by the
'SelectIndex property.

'SelectedChildren Number Of Child Items.
'SelectStateMask State filter to apply.

'SelectRow Row number of selected cell.
'SelectColumn Column number of selected cell.
'SelectValue$ Value within selected field.

7. Control Object Properties Compound Properties

ProvideX Language Reference V8.30 Back 731

Example:

6000 ! 6000 - Example using multiple selection properties for a Grid
control

6010 CELL_SELECTIONS:
6020 TOTAL_SELECTED=G1'SELECTCOUNT
6030 IF G1'ROWSHIGH<1 OR TOTAL_SELECTED=0 THEN EXIT
6040 FOR T=1 TO TOTAL_SELECTED
6050 LET G1'SELECTINDEX=T
6060 LET SL_VAL$=G1'SELECTVALUE$
6070 LET SL_COL=G1'SELECTCOLUMN
6080 LET SL_ROW=G1'SELECTROW
6090 LET G1'ROW=-1
6100 LET G1'COLUMN=SL_COL
6110 LET SL_COL_TITLE$=G1'VALUE$
6150 MSGBOX "Cell Value: "+PAD(SL_VAL$,50)+SEP+"Column:

"+STR(SL_COL)+SEP+"Row: "+STR(SL_ROW)+SEP+"Column Title:
"+PAD(SL_COL_T

6150:ITLE$,50),"Selection Item "+STR(T)+" of "+STR(TOTAL_SELECTED)
6160 NEXT T
6170 EXIT

State Indicators (Tree Views)
Stat e Indicator sThe following properties are used to create and process state indicators:

State indicators are basically images that will appear in front of a list box entry that
can be used to indicate whether the item has been selected or not. State indicators are
currently supported for tree view list boxes and can set up during the definition of a
list box control. For more information, refer to the LIST_BOX Directive, p.189.

Assigning Images
The application must set the 'StateBitmaps$ property in order to define the number
of images that will used in the display of state indicators. A maximum of 15 images
can be assigned. All images must be of the same size/format and may specify
transparency options. These images can be external or internal (see Images and
Icons, p.153 in the User’s Guide.).

'SelectText$ Text contained within the highlight.

'ItemState State of ‘Item.
'StateBitmaps$ List of images used to display states.
'AutoState Control auto toggling of state.
'CascadeState Control cascading of states.

7. Control Object Properties Compound Properties

ProvideX Language Reference V8.30 Back 732

Toggling Between States
Once the bitmaps are set, each item/row/entry may set its 'ItemState property to
determines what image is to appear next to the row text depending on the state. A
maximum of 15 states can be assigned for each image. A state of 0 zero causes no
state indicator to be displayed.

For example, assuming the list box is defined with 3 images. The first image will
appear if the item state is 1, the second image will appear if the item state is 2 and
the third image will appear if the item state is 3.

A CTL event will return EOM="S" if the property is set to a non-zero value. This is
used to identify that the user clicked over the indicator state portion of the line, as
opposed to elsewhere in the item. Applications that add state indicators to their
existing logic should add a check for this EOM code.

Auto Toggling Of States
'AutoState is a numeric property that controls auto toggling of states. If this
property is set, state indicators can automatically be toggled without generation of a
CTL event with EOM="S".

The number of states that the system will toggle through is determined by the value
set in this property or, if the property is set to 1, the number of bitmaps assigned to
the tree view. In addition, when the user toggles a state indicator while holding
down the , all entries between the current entry and the last will be toggled to
the new state of the current entry (in effect allowing for group select/deselect).

Cascading States
If the 'CascadeState property is set to non-zero, the system automatically cascades
parent states to their children and correspondingly makes parent states
representative of all of their children. Setting a parent state, either under program
control or using the 'AutoState property in the tree view definition, will result in all
subordinate children being set to the same state.

When a child state is set, its parent state will be set according to the state of all of the
child's siblings; i.e., if all children are in a consistent state, the parent will be set to the
same state. If a parent has children of various states (some on, some off), the parents
state will be set to the value set in the 'CascadeState property.

For example, you could have three state indicators - Off (state 1), On (state 2), and
Partial (state 3). You would set 'AutoState to 2 and 'CascadeState to 3 to have
children that automatically toggle off/on and parents that will be On if all children
are on, Off if all children are off, and Partial (state 3) if the children are not in a
consistent state.

When cascading, only items with states will be affected. In addition, items without
states will not affect their parents states, nor will changing the parent of an item
without a state affect the children of that item.

Shift

7. Control Object Properties Compound Properties

ProvideX Language Reference V8.30 Back 733

Drag and Drop (Grid)
Drag and D ropThe following properties are associated with drag and drop functionality in grids:

When dragging off of a grid, the starting point must be a column or row header. If a
column header is used and column swapping is enabled using the 'SwapEnabled
property, then the drop target must be a control other than the grid itself. This is
because dragging a column header within the grid is how columns are swapped.

Example:

1600 ! 1600 - Drag and drop rows from g1 (grid 1) to g2 (grid 2)
1610 ROW_DROP:
1620 LET R=G1'DRAGGEDROW; IF R<1 THEN RETURN
1630 LET G1'ROW=R
1640 READ DATA FROM G1'ROWDATA$ TO IOL=G1'LOADIOLIST$
1650 GRID DELETE G1,0,R
1660 LET R=MAX(1,MIN(G2'DROPPEDONROW,G2'ROWSHIGH))
1670 GRID ADD G2,0,R; LET G2'ROW=R
1680 LET G2'ROWDATA$=REC(G2'LOADIOLIST$)
1690 RETURN

For more information, refer to the GRID Directive, p.143.

Loading/Accessing by Row (Grid)
Loading/Accessing by Row

The following properties are used to load and access a grid by row:

'LoadList$ returns a list of column names in the order in which they physically
appear within the grid object. When a grid is defined using FMT= in the GRID
directive, or columns names are assigned to columns in a grid, 'LoadList$ returns a
list of those column names in their current display order. The compiled version,
'LoadIOLIST$ simplifies the loading of grid rows from direct file contents or other
IOList-based items; e.g.,

myGrid.ctl'RowData$=rec(myGrid.ctl'LoadIOLIST$)
GRID LOAD myGrid.ctl,1,row,rec(myGrid.ctl'LoadIOLIST$)

'DraggedColumn Column where the drag started from.
'DraggedRow Row where the drag started from.
'DroppedOnColumn Column dropped on..
'DroppedOnRow Row dropped on.

'LoadList$ Lists column names in the order they appear physically in the grid.
'LoadIOLIST$$ Same list of variables as 'LoadList$, but in compiled IOList

format.
'RowData$ Returns or sets a complete row of data corresponding to the

names defined in the 'LoadList$. Each cell value is separated by
the defined column separator character, 'Sep$.

7. Control Object Properties Compound Properties

ProvideX Language Reference V8.30 Back 734

The 'RowData$ property returns or sets a complete row of data in accordance to the
names defined in 'LoadList$ or 'LoadIOLIST$. The data returned is for the row
currently identified by the 'Row property, e.g.,

READ DATA FROM X'ROWDATA$ TO IOL=X'LoadIOLIST$

or

X'ROWDATA$=REC(X'LoadIOLIST$)

Because the properties 'LoadList$, 'LoadIOLIST$ and 'RowData$ use logical column
names, column swapping has no impact.

For more information, refer to the GRID Directive, p.143.

Grid Column-Row Reference
Grid Prop er ty AccessThe following are used to identify specific cells in order to access a variety of grid

properties:

To access an entire row, set ‘Column to 0. To access an entire column, set ‘Row to 0.
The entire grid can be access by setting both ‘Column and ‘Row to 0. For more
information, refer to the GRID Directive, p.143.

Chart Label Reference
C hart Label Ref er ence

The following are used to identify specific labels (datasets and data points) in which to
apply a variety of CHART properties:

To reference legend labels for a specific dataset, set 'CurrentPoint to 0. To reference a
label for a specific point, set 'CurrentSet to 0. For example,

C'CurrentSet=1,C'CurrentPoint=0,C'TextColour$="Light Magenta"

... changes the bar colour for dataset 1.

C'CurrentSet=0,C'CurrentPoint=2,C'Value$="ABC"

... changes the second point label.

‘Row Grid row reference.
‘Column Grid column reference number.
‘Column$ Grid column name.

‘CurrentSet Current data set.
‘CurrentPoint Current data point.

7. Control Object Properties Compound Properties

ProvideX Language Reference V8.30 Back 735

’CurrentSet and ’CurrentPoint combinations are also used to identify specific text
elements (labels) on the chart to apply certain format properties. The value
combinations for applying ’AutoScale, ’Font$, ’TextColour$, ’LabelLocation$, are
listed in the table below:

Text Element Set Point

Title 1 -1 -1

Title 2 -1 -2

Footer -2 -1

X-Axis Title -3 -1

Y-Axis Title -3 -2

Z-Axis Title -3 -3

Legend 1 0

All Labels 0 0

X-Axis Text (’TextColour$ only) 0 -1

Y-Axis Text (’TextColour only) 0 -2

Z-Axis Text (’TextColour only) 0 -3

7. Control Object Properties Compound Properties

ProvideX Language Reference V8.30 Back 736

ProvideX Language Reference V8.30 Back 737

Language Reference 8
Special Files and Devices

Over view

Overview B MK

ProvideX syntax also includes a set of special names that are used to access built-in
virtual files, devices, and interfaces. These names are recognized and processed
internally in the language at run time. The following ProvideX virtual files and
output interfaces are covered in this chapter:

BITMAP Generates a 24-bit colour bitmap image in memory. This is for use in
WindX or Windows only. See *BITMAP* Virtual Bitmap, p.738.

HTML Generates an HTML-formatted output file. See *HTML* Print to
HTML, p.740.

MEMORY Establishes a memory-resident logical file. See *MEMORY* Create
& Use Memory File, p.741.

PDF Generates a PDF-compatible output file. See *PDF* PDF Print
Interface, p.744.

*SYSTEM ProvideX internal event handling. See *SYSTEM Event handling
Object, p.751.

VIEWER Sends output to the ProvideX Print Preview facility. This is for use
in WindX or Windows only. See *VIEWER* Print Preview, p.752.

WINDEV Sends hardcopy output to the Windows print subsystem in raw or
pass through mode. This is for use in WindX or Windows only. See
WINDEV Raw Print Mode, p.756

WINPRT Sends hardcopy output to the Windows print subsystem using
standard API access. This is for use in WindX or Windows only. See
WINPRT Windows Printing, p.760.

*XML Interface for accessing, parsing and serializing XML documents
based on the XML DOM (Document Object Model). See *XML
ProvideX XML Interface, p.764.

8. Special Files and Devices *BITMAP*

ProvideX Language Reference V8.30 Back 738

BITMAP *B ITMA P* Vir tual BitmapVirtual Bitmap
Format OPEN (chan)"*BITMAP*"[;options]

Where:

Description *BITMAP* is a logical filename that can be used to capture graphical output (24-bit
colour bitmap image) in memory. *BITMAP* can be opened and sent output, in
much the same way as the *WINPRT* print interface. Once an image is generated in
BITMAP, it can then be sent to either the screen or printer via the 'PICTURE'
mnemonic. It could also be saved to a bitmap file (.bmp) via the SAVE FILE directive.

See Also 'PICTURE' Mnemonic, p.631
SAVE FILE Directive, p.298
Logical Printers, User’s Guide

Examples To display a generated image using the 'PICTURE' mnemonic, specify the channel
number associated with the *BITMAP* file preceded by a '#'.

chan Channel or logical file number; e.g., OPEN (1)"*BITMAP*"

options The following options are supported in the *BITMAP* syntax:

DPI=nnn Image resolution in dots per inch. The value given must be
greater than 0. If not specified, the default is 120.

LENGTH=nnn.nn Image height in inches (to 2 decimal places). If not
specified, the default is 11.

FORCE6X10=YES | NO Automatically adjusts the column width to
60% of the line height defined in font size specifications. This setting
solves some minor alignment issues when printing proportional fonts
to a graphical print device.

MARGINS=left:top:right:bottom Defines margins. Refer to the
Margin Settings listed under *PDF*.

ORIENTATION={LANDSCAPE | PORTRAIT} Swaps the width and
length (rotates the image). If not specified, the default is PORTRAIT.

WIDTH=nnn.nn Image width in inches (to 2 decimal places). If not
specified, the default is 8.5.

BITMAP Keyword, not case-sensitive. Special interface, enclosed in quotation
marks within OPEN directive. (Include asterisks in syntax.)

Warning: 24-bit colour at high DPI (resolution) can use very large amounts of memory.
If there are insufficient operating system resources available, the result will be an
Error #15: Operating system command failed.

8. Special Files and Devices *BITMAP*

ProvideX Language Reference V8.30 Back 739

0010 BEGIN ; OPEN (12)"*bitmap*"; PRINT 'CS',
0020 PRINT (12)'RECTANGLE'(@X(1),@Y(1),@X(10),@Y(5)),
0030 PRINT (12)'TEXT'(@X(12),@Y(2),"Howdy"),
0050 PRINT 'PICTURE'(@X(40),@Y(0),@X(79),@Y(24),"#12",0),

The following version of this example includes syntax that allows it to be used in a
client-server application.

0010 BEGIN ; OPEN (12)"[wdx]*bitmap*"; PRINT 'CS',
0011 CALL "[wdx]*windx.utl;get_num","LFO",F
0020 PRINT (12)'RECTANGLE'(@X(1),@Y(1),@X(10),@Y(5)),
0030 PRINT (12)'TEXT'(@X(12),@Y(2),"Howdy"),
0050 PRINT 'PICTURE'(@X(40),@Y(0),@X(79),@Y(24),"#"+STR(F),0),

For more information, refer to the ProvideX Client-Server Reference.

8. Special Files and Devices *HTML*

ProvideX Language Reference V8.30 Back 740

HTML *HTML* Pr in t to H TMLPrint to HTML
Format OPEN (chan)"*HTML*[;options]"

Where:

Description *HTML* is a logical print file that can be used with ProvideX. It allows printed
reports, using normal fixed fonts, to be formatted for use with an HTML viewer such
as a browser.

The system will prompt for an output filename to store the resulting HTML
document.

See Also Logical Printers, User’s Guide

Examples OPEN (1,OPT="FILE=Sample.htm;SHOW;FONT=Courier New;TITLE=Sample
;BACK=FFFFFF;TEXT=000000")"*HTML*"

OPEN (1)"*HTML*;FILE=Sample.htm;SHOW;FONT=Courier New;TITLE=Sample
;BACK=FFFFFF;TEXT=000000"

The above examples create an HTML file called Sample.htm with the title
"Sample". Courier New font is used with a white background and black text. The
SHOW option causes the default browser to be invoked to display the file.

chan Channel or logical file number; e.g., OPEN (1)"*html*"

options The following are supported in the "*HTML*" syntax or as OPT=string$
(file open options):

BACK=nnnnnn Background colour using standard HTML RGB colour
representation.

FONT=fontname Default fixed-pitched font (e.g., Courier).

FILE=path Output filename. If omitted, prompt is issued at runtime.

SHOW Causes the file to be passed to default browser
(Windows only)

TEXT=nnnnnn Text colour using standard HTML RGB colour
representation.

TITLE=name Document title. The default is the program name.

HTML Keyword, not case-sensitive. Special interface, enclosed in quotation
marks within OPEN directive. (Include asterisks in syntax.)

8. Special Files and Devices *MEMORY*

ProvideX Language Reference V8.30 Back 741

MEMORY *MEMORY* Cr eat e & Use Mem ory FileCreate & Use Memory File
Format 1. Create Memory-Resident Queue of Records: OPEN (chan[,fileopt])"*MEMORY*

2. Create Multi-Key File: OPEN (chan[,fileopt])"*MEMORY* [;KEYDEF=key_def$]"

Where:

Description ProvideX supports a memory-resident logical file called *MEMORY*. This file may
consist of a queue of records that can be accessed by index or by single key, or it
may be a multi-key file accessed by key, depending on the format used to create it.
Create the memory-queue file and assign the given logical file number (channel) via
the OPEN directive.

Use CLOSE (chan) to delete a *MEMORY* file and return memory to the system.

Format 1: Create Memory-Resident Queue of Records
OPEN (chan[,fileopt])"*MEMORY*

Use this format to create a memory-resident queue of records. ProvideX recognizes
MEMORY at run time and deals with it internally. Once *MEMORY* is open, you
can gain I/O access to memory-resident records in the same manner as you can to
Direct files (by record index or by key) using the following I/O directives:

READ Read Data from File, p.271,
READ RECORD Read Record from File, p.275,
WRITE Add/Update Data in File, p.383,
WRITE RECORD Write Record, p.386,
CLOSE Close File, p.56,
MERGE Read/Append Lines from File, p.206,
REMOVE Delete Record from File, p.281.

The first WRITE determines the file access method; i.e., the IND= option specifies
Indexed file handling, and KEY= specifies Direct file handling (externally-keyed
files). The maximum key size for *MEMORY* files is 8192 characters. Adding records
to a *MEMORY* file by IND(), pushes all the records at that index down one, and
inserts a new record. To modify a record in an index file, remove the old record and

chan Channel or logical file number.
fileopt BSZ=num File option for specifying record size (number of bytes). The

default is 1,024 bytes unless it is overridden via BSZ= .
key_def$ String expression defining the key. The key definition can be single-

or multi-keyed and may contain up to 96 segments for a total of 16
keys. Key names and the various attributes supported on VLR/FLR
files may also be included in the key definition.

MEMORY Keyword, not case-sensitive. Logical filename, enclosed in quotation
marks within OPEN directive. (Include asterisks in syntax.)

8. Special Files and Devices *MEMORY*

ProvideX Language Reference V8.30 Back 742

then insert the new one. The functions IND(), p.457, KEF(), p.466, KEL(), p.467,
KEN(), p.468, KEP(), p.469, KEY(), p.470, and RNO(), p.514 can be used with
memory-queue files.

Format 2: Create Memory-Resident Multi-Key File

OPEN (chan[,fileopt])"*MEMORY* [;KEYDEF=key_def$]"

Use this format to create a memory-resident multi-key file similar to regular Keyed
files. I/O directives and functions supported by Keyed files are also supported by
this type of memory file. Due to the way this format is processed, performance is
generally better than using Format #1 with key access.

Files are limited to 2GB in size. The current size, or amount of memory being used
can be determined by querying NUM(FIN(chan,"FILELENGTH")) or
DEC(00+MID(FIN(chan),1,4)). Extended records are supported by
indicating a record size in excess of 31,000 byte; e.g., BSZ=32000 (the BSZ= value, if
specified, must be a positive value).

See Also DIRECT Directive, p.89
KEYED Directive, p.166

Examples The following example illustrates how to open and use *MEMORY* using Format 1:

00010 mmf=hfn
00020 open (mmf)"*memory*"
00030 print 'CS'
00040 input "Name (Press F4 to end):",name$
00050 if ctl=4 then goto 0100
00060 input "Address:",addr$
00070 input "Position:",pos$
00080 write (mmf,key=name$)iol=mmfLst
00090 goto 0030
00100 print 'CS'
00110 select iol=mmfLst from mmf begin "" end "z"
00120 print "Name:",name$
00130 print "Address:",addr$
00140 print "Position:",pos$
00150 print "----------"
00160 next record
00170 end
00180 mmfLst: iolist name$,addr$,pos$

Note: The ability to access a memory file in a mixed mode (by KEY= and/or IND=) is
not supported.

8. Special Files and Devices *MEMORY*

ProvideX Language Reference V8.30 Back 743

The following example illustrates how to open and use *MEMORY* using Format 2:

0010 mmf=HFN
0020 OPEN (mmf)"*memory*;keydef=[1:1:20],[2:1:60],[3:1:20]"
0030 PRINT 'CS'
0040 INPUT "Name (Press F4 to end):",name$
0050 IF CTL=4 THEN GOTO 0100
0060 INPUT "Address:",addr$
0070 INPUT "Position:",pos$
0080 WRITE (mmf)IOL=mmfLst
0090 GOTO 0030
0100 PRINT 'CS'
0110 SELECT IOL=mmfLst FROM mmf,KNO=1 BEGIN "" END "z"
0120 PRINT "Name:",name$
0130 PRINT "Address:",addr$
0140 PRINT "Position:",pos$
0150 PRINT "----------"
0160 NEXT RECORD
0170 END
0180 mmfLst: IOLIST name$,addr$,pos$

8. Special Files and Devices *PDF*

ProvideX Language Reference V8.30 Back 744

PDF *PDF* PD F Pr int Interf acePDF Print Interface
Formats 1. Open PDF File: OPEN (chan[,fileopt])"*PDF*[;option][;option] [...]"

2. PDF via WindX: OPEN [INPUT] (chan[,fileopt])"[WDX]*PDF*[;option][;option] [...]"

Where:

Description Use *PDF* for directing output to a PDF (Postscript Document Format) compatible
file. This interface operates in a similar manner to *WINPRT*. If the output file name
is omitted, a dialogue appears at run time for users to specify the path, PDF name
and properties.

An OPEN may specify a number of semicolon separated options for the PDF. These
may be included as part of the path, or within an OPT= clause:

OPEN(chan)”*PDF* [;option] [;option] […]”

OPEN(chan,OPT=”option;option;…”)”*PDF*”

PDF Output Parameters
The following options can be used to define PDF output.

chan Channel or logical file number.

fileopt File options. Supported options for opening *PDF* include:
ERR=stmtref Error transfer.
OPT=option PDF output parameters (described below).
To obtain the current OPT= value, use the OPT() Function, p.495.

option Supported parameters for defining the PDF output. (See *PDF*
Output Parameters described below.)

PDF Keyword, not case-sensitive. Special device filename, enclosed in
quotation marks within OPEN directive. (Include asterisks in syntax.)

[WDX] File tag for directing output to a PDF on a WindX client machine
instead of the server.

ASIS Uses last defined settings and does not present the user with
a window to enter parameters. If the output file already
exists, it will be overwritten.

DISPLAY Brings up an input window for the user to enter information
regardless if it is needed.

OVERWRITE Indicates that overwriting the output file is OK, no need to
verify with the user.

FILE=name Specifies the output (pdf) file pathname. If omitted, a
dialogue appears at run time for users to specify the path,
file name, and properties.

8. Special Files and Devices *PDF*

ProvideX Language Reference V8.30 Back 745

Margin Settings
Values for margin settings are typically given in 1000ths of an inch; however, the
following also applies.

If the value contains the letter I, it is considered inches. If the value contains the letter
M, it is considered millimetres. If the value contains a decimal point, or the value is
less than 25, then it is not considered 1/1000th but as either inches or millimetres.

Example:

MARGINS="250:250:250:250" All 4 margins are 250/1000's (1/4 inch)
MARGINS="1:1:1:1" all margins are 1 inch
MARGINS="1i:1i:1i:1i" all margins are 1 inch
MARGINS="1.25:1.25:1.25:1.25" all margins are 1-1/4 inches
MARGINS="20m:20m:20m:20m" all margins are 20 millimeters.

FORCE6X10=YES|NO Automatically adjusts the column width to 60% of the line
height defined in font size specifications. This setting solves
some minor alignment issues when printing proportional
fonts to a graphical print device. Historically, most
fixed-width fonts adhered to a 6x10 ratio of 6 lines to the
inch and 10 characters per inch; i.e., for a character width
that is 60% of the line height.

FORM=FormName Allows specification of forms names (see Forms Handling).

PAPERSIZE=FormNumber

Allows specification of form given internal form number
(see Forms Handling).

ORIENTATION=LANDSCAPE | PORTRAIT

Defines how the report is intended to print.

MARGINS=left:top:right:bottom

Defines margins (See Margin Settings).

TITLE=string Adds a Title tag to the PDF Document.

SUBJECT=string Adds a Subject tag to the PDF Document.

AUTHOR=string Adds an Author tag to the PDF Document.

PRODUCER=string Adds a Producer tag to the PDF Document.

CREATOR=string Adds a Creator tag to the PDF Document.

KEYWORDS=string Adds a Keywords tag to the PDF Document.

8. Special Files and Devices *PDF*

ProvideX Language Reference V8.30 Back 746

General Information

If neither the FORM= or PAPERSIZE= is given, or the value for either of these two
parameters cannot be found in the Forms Library, then the default LETTER size (8.5" x
11") size is assumed. If both FORM= and PAPERSIZE= are given, the FORM= option
has priority.

For further details, see Forms Handling, p.748.

If the ASIS or DISPLAY options are not specified and no FILE= is given, then the
system prompts the user for the file. If ASIS is specified, but no FILE= has been
defined by a prior open to *PDF*, then ProvideX will generate an Error #12:
File does not exist (or already exists).

The filename specified by FILE= cannot have a [WDX] prefix. If the user wants
output to go to a remote file they should issue the open as follows:

OPEN (nnn) "[WDX]*PDF*…".

In order to simplify the logic behind this process and allow for developer
customization, whenever *PDF* is opened, the input pathname is forwarded for
processing to the user-defined program *ext/pdf (if it exists) or the
ProvideX-supplied program *ext/system/pdf. It determines if the selection window
should be presented and validates the FORM= and PAPERSIZE= options.

These options passed may be retrieved via PTH() and OPT().

Example:

OPEN (1) "*pdf*;FILE=/tmp/pvx.pdf; FORM=Letter:8.5in:11in"

Font Support
PDF supports the use of all TrueType and Type 1 fonts, in addition to the following
basic PDF fonts:

"Courier", "Courier-Bold", "Courier-BoldOblique",
"Courier-Oblique", "Helvetica", "Helvetica-Bold",
"Helvetica-BoldOblique", "Helvetica-Oblique", "Times-Roman",
"Times-Bold", "Times-Italic", "Times-BoldItalic","Symbol",
"ZapfDingbats"

To enable TrueType and Type 1 font support, *PDF* uses Libharu, an open-sourced
library for generating PDF. TCB(191) will return 1 if ProvideX is compiled with
LibHaru.

8. Special Files and Devices *PDF*

ProvideX Language Reference V8.30 Back 747

Supported Mnemonics and Functions
The following mnemonics are supported with *PDF*: 'TEXT', 'FONT', 'PEN', 'FILL',
'PICTURE', 'PIE', 'POLYGON', 'ARC', 'RECTANGLE', 'LINE', 'CIRCLE', 'OFFSET', 'LPI', 'CPI',
'MODE', 'Fn' and 'Bn', 'LF', 'CR', 'FF', 'CP', 'EP', 'SP', 'COLOUR' and 'COLOR, and named
colours (e.g., 'WHITE').

The following language functions are supported: FIB(), FIN(), FID(), PTH(), OPT(),
MXC(), MXL(), etc.

Creating Bookmarks
Bookmark pointers can be inserted into a generated PDF so that when the bookmark
is selected in the document, it will display a specified page/line/column; e.g.,

PRINT (pdf_channel) 'OPTION'("BOOKMARK", "bookmark_txt"),

The bookmark_txt defines the text and hierarchy of the bookmark, with each level in
the tree being separated by a character in the range of 00 to $1F$ (less than a
space). The bookmark tree is output in the order the bookmarks are issued. The
maximum length for the complete bookmark text is 254 characters (including all
levels and separators).

If a duplicate bookmark is issued, then the last occurrence will take precedence. This
process enables the generation of a list of bookmarks whose order does not match
that of the output document.

While bookmarks are rendered in the current text colour, they can be bolded by
surrounding the 'OPTION' with 'BB'/'EB' mnemonics, or italicized using 'BR'/'ER'
mnemonics. Both options can be specified together; e.g.,

PRINT (pdf_chan)'BB','OPTION'("BOOKMARK",
"Company$+$01$+Division$+01+Manager$+$01$"),'EB',

When a PDF file is created with a bookmark, the system automatically sets the PDF
file to display bookmarks upon opening. The location to which a bookmark
refers/points is determined based on the last output printed to the PDF channel, i.e.,

• Normal Text, @(c), @(c,l), 'CR', 'LF', 'FF' - position on the page as of the end of
printing the output.

• 'LINE', 'RECTANGLE', 'CIRCLE', 'TEXT', 'ARC' - starting point as defined by the
mnemonic.

Text Mode Printing
PDF accepts character mode text:

PRINT (chan) "This is a sentence to output."

Limitations
The following are known limitations that control options under the ProvideX PDF
interface:

• Invalid mnemonics are ignored.

8. Special Files and Devices *PDF*

ProvideX Language Reference V8.30 Back 748

• 'BO' & 'EO' and user-defined mnemonics are ignored.

• Only 'PEN' solid, dashed, or no pen style options are supported.

• Only 'FILL' solid and no fill options are supported (no gradient fills, lines, or hashes).

• 'PICTURE' is supported on the Windows platforms only (not on UNIX or Linux);
however, any image format supported by the 'PICTURE' mnemonic may be used
(bmp, jpg etc).

• 'RECTANGLE’ rounded options are not supported.

• Compression is not supported for PDF files.

• Output element skipping is applied instead of truncate; i.e., PDF documents skip the
processing of output elements that exist outside the page borders, or flow over a
page border. *WINPRT* displays as much of the element as possible while
truncating the portion that flows over a border.

Forms Handling

The ProvideX-supplied utility program *ext/system/pdf is embedded with a forms
handling mechanism that validates and displays dialogues to the end user. To
provide consistency with Windows forms handling, the PDF output paper size is
determined via form name rather than by the physical dimensions of the paper.

For the purposes of the PDF handler, the FORM= option provides a form name
followed by a colon, and include the paper size in terms of width and height. The
paper size values are assumed to be in thousandths of an inch unless followed by the
letter I (for inches) or the letter M (for millimetres).

The PDF processor within ProvideX will only utilize the width and height portions
of the FORM= option. The form name is provided strictly as a reference for the
display.

The Form Library is a keyed file. The PDF utility program will search for
*ext/forms.xx then for *ext/system/forms.xx, where xx is a language code.

The properties for this file are:

The *ext/system/forms.en file is pre-loaded with standard form sizes. The PDF
selector window allows for additional forms to be added to the file. When the first
form is added to this file by the end user, a copy of the file *ext/system/forms.xx is
made in *ext/forms.xx, which is then used.

Field
Form Number Primary key, 3 digits. Explained below.
Name of Form Alternate key, 24 characters
Width
Height
Units of Measure (I or M)
Priority Alternate key, Priority$+ Form number

8. Special Files and Devices *PDF*

ProvideX Language Reference V8.30 Back 749

To simplify installation of applications with custom forms, when the selection
window is presented and a FORM= is specified, the form name will be automatically
added if it does not already exist in the Forms Library. This allows applications to be
created with hard-coded FORM= clauses in their OPEN command–the system
automatically creates the required form entry.

Form numbers are based on pre-defined form numbers used by MS Windows. As
user-defined forms are added, new numbers will be assigned sequentially starting
no lower than 256 (form numbers 0 to 255 are reserved).

Should the OPEN include a PAPERSIZE= option but no FORM= specification, the
system will look up the form using the PAPERSIZE= value to determine what the
proper form is. If there is neither a FORM= specification nor a valid PAPERSIZE=
value, LETTER (8.5x11 inch) will be assumed. The PAPERSIZE= is ignored when a
FORM= option is present.

The priority field is used to determine the load sequence for lists used to display the
available forms in the system. By default, Letter, Legal, A4, A5, and a number of
other standard form sizes are priority "0". All other forms have a priority of "5". User
forms are added with a priority of "1" and appear near the top of the list when
displayed–just below the standard form sizes.

Utility for Processing PDF Options

ProvideX includes PDF utility programs for processing options on an OPEN:

*ext/system/pdf ProvideX-supplied program.
*ext/pdf User-defined program.

Both utility programs have the following format:

ENTER NewParameters$, OldParameters$, ERR=*next

The utility will handle most PDF option string validation and forms processing
internally. It ensures that the string that it gets passed to process has a valid FORM=
option before it is returned to the actual PDF interface. It is basically a pre-processor
for the PDF string.

Once the PDF string is accepted, the utility program returns it to ProvideX, which
saves it as the default setting. In order to allow for application designers to access
this default setting, the OPEN logic for *PDF* files allows the programmer to issue

OPEN INPUT (chan) "*PDF*;ASIS"

then query the PTH() and OPT() of the PDF file in order to obtain the settings. The
INPUT clause prevents the system from erasing the output file. Optionally, to set
default settings, the developer can issue:

OPEN INPUT (chan) "*PDF*;new settings"

8. Special Files and Devices *PDF*

ProvideX Language Reference V8.30 Back 750

PDF Message Selection Box (Graphical)
The user will be presented with a dialogue box to allow for selection of the output
file, form, and orientation. When a file pathname has been given, the system checks
to see if the file exists–if so, the user is asked if they wish to overwrite the output file.

The Form drop box contains the list of all the known form size in the system with the
currently selected form name highlighted/selected (the default being Letter). The
dialogue also has a New button for adding a new form description.

Pressing the ACCEPT button in the message box results in the form description being
saved/added to the form library and the identified form being set as the output
form type.

PDF Message Selection Box (Text Mode)
The user will be presented with a character-mode window. When a file pathname
has been given, the system checks to see if the file exists–if so, the user is asked if
they wish to overwrite the output file.

Once the file has been given, a drop list of the potential forms is displayed. The
currently selected item is highlighted. After selecting the form, the user must select
the orientation from a drop list with choices Portrait or Landscape.

Once all the selections are made, the user can select OK or Cancel to confirm the
input.

Capturing Output to *WINPRT* as PDF Output

Output to *WINPRT* can be automatically intercepted for PDF using the 'AP' system
parameter. When 'AP' is set, if the user selects Output To File and includes a filename
ending in.PDF, ProvideX looks at the options selected during the *WINPRT* Printer
Selection dialogue and processes the output through *PDF* instead of *WINPRT*.

'AP' may be set on in one of 3 ways:

1. Via SET_PARAM 'AP'.

2. In an INI file [Config] section as AutoEnablePDF=1.

3. From the System Menu on a dialogue (drop-down menu from clicking the Icon in
a window title bar), as Use Internal PDF Driver.

By setting the AutoEnablePDF= -1 in the [Config] section of your INI file, you
can remove the entry from the dialogue system drop down menu. However, you are
still be able to turn the parameter 'AP' on and off programmatically.

See Also 'AP' System Parameter, p.656
'FONT' Mnemonic, p.609
WINPRT Windows Printing, p.760
[WDX] Tag, p.801
Logical Printers, User’s Guide

8. Special Files and Devices *SYSTEM

ProvideX Language Reference V8.30 Back 751

*SYSTEM *SYSTEM Event handling ObjectEvent Handling Object
Formats Initializes Event Handling Object: DEF OBJECT obj_id,"*SYSTEM"

Where:

Description This object simplifies event handling in ProvideX. Use this object to turn event
handling on and off and to isolate any syntax changes from your programs. To
prevent an application from looping endlessly, a limit of 64 nested events has been
imposed. The interface supports the following syntax options:

SETTIMER (secs)
Method Call. Fires a "timeout" event in ProvideX on intervals the number of seconds
indicated by secs. The timer will continue to fire timeout events until a SETTIMER(0) is
issued. The handling method will not receive any value when the event occurs.
(Windows Only).

SIGNALONDATA(chan, 0|1)
Method Call. Fires a "data available" event on the channel number given. A 1 indicates
that the function is enabled; a 0 indicates that it is not. The channel number (chan) must
refer to only certain kinds of files: console, TCP, serial connection, pipes and I/O
redirection. The handling method will receive the channel number when the event
occurs.

SIGNALONCLOSE(chan, 0|1)
Method Call. Fires a "file close" event for the channel number given. A 1 indicates that
the function is enabled; a 0 indicates that it is not. The handling method will receive the
channel number

SIGNALONOPEN(0|1)
Method Call. Fires a "file close" event for the channel number given. A 1 indicates
that the function is enabled; a 0 indicates that it is not. The handling method will
receive the channel number.

SIGNALLOADCLASS(0|1)
Method Call. Fires a "load class" event whenever a class definition needs to be loaded
into the system either through a NEW or LIKE directive. The handling method will be
passed the name of the class required.

Once the event is serviced the system will re-check to see if the desired class is now
present if not (or no event service provided) the standard load of a ".pvc" file will
occur.

*SYSTEM Keyword used in defining ProvideX Event Handling Object.

obj_id Numeric variable that will be used to save the object reference.

8. Special Files and Devices *VIEWER*

ProvideX Language Reference V8.30 Back 752

VIEWER *V IEW ER* Print PreviewPrint Preview
Formats 1. Open Viewer for Preview: OPEN (chan[,fileopt])”*VIEWER*[;option][;option] [...]"

2. Stand-Alone Viewer: path\PVXWIN32.EXE "*VIEWER/VIEWER [-XT=1 -ARG filename DELETE]"

3. Via WindX: CALL "*WindX.utl;SPAWN","*VIEWER/VIEWER [-XT=1 -ARG filename DELETE]"

Where:

Description The *VIEWER* (graphical print preview) is a special device file for previewing reports
exactly as they would appear when output via *WINPRT*. This invokes the Viewer user
interface, which is able to display currently-spooling print jobs, copy to the clipboard,
and print jobs stored on the disk. Other features of this interface include:

• Handling of reports from 0 to 50,000 pages in size.
• View options 1 page, 2 pages, 2-page book style, and 4 pages at a time.
• Zooms from 10% to 400% in increments or custom levels with fit-to-width and

fit-to-window zoom options,
• Portrait and landscape modes.

The different methods for starting and using the Viewer user interface are described below.

chan Channel or logical file number; e.g., OPEN (1)"*viewer*"
DELETE Optional keyword to erase the file when the viewer closes.
fileopt File options. Supported options include:

ERR=stmtref Error transfer.
OPT=option Output parameters (described below). To
obtain current OPT= value, use the OPT() Function, p.495.

filename Name of the file that the print job is stored in or being
spooled to. The file must be a serial file and not locked. See
the SERIAL Directive, p.302. To override the normal
requirement that a serial file be locked, use 'LU' System
Parameter, p.673.

option Supported parameters for defining the PDF output. (See
VIEWER Output Parameters described below.)

*VIEWER/VIEWER Program name for launching Viewer as stand-alone application.
VIEWER Keyword, not case-sensitive. Special interface, enclosed in

quotation marks within OPEN directive.
*WINDX.UTL;SPAWN ProvideX utility;function. See also: Format 10: [WDX] and

*WindX.utl, p.806.

Note: For use in WindX or Windows only.

8. Special Files and Devices *VIEWER*

ProvideX Language Reference V8.30 Back 753

Format 1: Open Viewer for Print Preview
OPEN(chan)"*VIEWER* [;option] [;option] […]"

An OPEN may specify a number of semicolon separated options for invoking the
Viewer interface. These may be included as part of the path, or within the OPT=
clause; e.g., OPEN(chan,OPT="option;option;…")"*VIEWER*".

Two special options (INLINE and ONCLOSE) can be used to control how the preview is
created at run-time. These and other options are described below.

VIEWER Output Parameters
The following options can be used to define PDF output.

INLINE Does not invoke a new instance of ProvideX to run the Viewer,
but uses the current instance (implies ONCLOSE). The Viewer
takes control of the ProvideX session currently running, just as
a called program would. This option enables the Viewer
interface to be used as a top window that must be closed before
the user can continue. Also, if you wish to maintain the current
communications channel, you will be able to run the Viewer
without spawning a new session; e.g., via WindX.

ONCLOSE Invokes a new instance of the Viewer interface when the
printer channel is closed.

TITLE=string Add Title tag to preview. Can also be used to complete the
information in the Windows Print Job window.

PRINTER=string Associated printer name.

PAPERSIZE= num Define paper size.

ORIENTATION=LANDSCAPE | PORTRAIT

Swap output width for length, and vice versa.

SOURCE= num Set specific paper source.

QUALITY= num Specifies DPI, 0 (or unspecified) = printer default (printer
output only).

COLLATE= YES | NO Collate paper (printer output only).

COLOUR= YES | NO Coloured print (printer output only).

COPIES= num Set number of copies (printer output only).

RANGE= num |from:to

Select only specific page number, or range to print.

MARGINS= left:top:right:bottom

Define margins in 1/1000ths of an inch

COLUMNS= num Minimum number of columns (text based reports only).

8. Special Files and Devices *VIEWER*

ProvideX Language Reference V8.30 Back 754

Format 2: Stand-Alone Viewer Application
path\PVXWIN32.EXE "*VIEWER/VIEWER -XT=1 -ARG filename[DELETE]"

This format launches the Viewer as a standalone application (with or without opening a
report file for previewing).

See Also Logical Printers, User’s Guide.

Rows= num Minimum number of rows (text based reports only).

PAGINATIONAT= num Auto form feed at row.

SCALETOFIT Resize report to fit paper size (text based reports only).

FONT=fontspec Default font for reports. Defaults to "Courier New, -10".

FONTSIZE=num Default font size for reports.

SUPPRESSFIRSTBLANKPAGE

SUPPRESSALLBLANKPAGES

WATERMARKTEXT= string

WATERMARKTEXTLOCATION= num

0=centered, 1=tiled, 2=top left, 3=top right, 4=bottom left,
5=bottom right

WATERMARKTEXTFONT= fontspec

WATERMARKTEXTROTATION= num

Text rotation, angle in degrees.

WATERMARKIMAGE= string

Image name, assumes 100 pixels to the inch.

WATERMARKIMAGELOCATION= num

0=centered, 1=tiled, 2=top left, 3=top right, 4=bottom left,
5=bottom right

The following 6 items are used only if 'SP','CP','EP' mnemonics are encountered in the
report. If not set, then the viewer will attempt to set correct values for each. It is not
necessary to set all of these items. Simply setting SPCols is enough. The values for 'CP'
/ 'EP' are calculated and the Rows= will all default to the same value.

SPCols=num 0 to 255, number of columns when in 'SP'.

SPRows=num 0 to 255, number of rows when in 'SP'.

CPCols=num 0 to 255, number of columns when in 'CP'.

CPRows=num 0 to 255, number of rows when in 'CP'.

EPCols=num 0 to 255, number of columns when in 'EP'.

EPRows=num 0 to 255, number of rows when in 'EP'.

8. Special Files and Devices *VIEWER*

ProvideX Language Reference V8.30 Back 755

Examples The following example illustrates how to open and use the *VIEWER* for print
preview:

0010 LET CHAN=UNT; OPEN (CHAN)"*VIEWER*"
0020 PRINT (CHAN)'FONT'("Courier New",-10),'DF',
0030 PRINT (CHAN)'FONT'("Arial",2),'TEXT'(@X(2),@Y(2),"Fonted Text"),
0040 PRINT (CHAN)'PICTURE'(@X(3),@Y(5),@X(43),@Y(30),"*win/nomads2"),

The *VIEWER* does not return values for maximum column / line; i.e., in MXC()
and MXL() functions. The following example illustrates how to approximate the
number of columns:

CHAN=UNT; OPEN (CHAN)"*WINPRT*"
POINTSZ=-10
LOOP:
PRINT (CHAN)'FONT'("Courier New",POINTSZ),'DF',
IF MXC(CHAN)<132 THEN POINTSZ+=2; GOTO LOOP
LINES=MXL(CHAN),COLS=MXC(CHAN)
PRINT (CHAN)'AB', ! <--- aborts print job
CLOSE (CHAN)
OPEN (CHAN)"*VIEWER*"
PRINT 'FONT'("Courier New",POINTSZ),'DF',mn/line

Note: Set the 'BM' Mnemonic, p.591, to ON to have the *VIEWER* send all data directly
to the print file without interpretation. This allows you to send print jobs to any Windows
printer that is available on the client PC. The *VIEWER* filters out the first and/or last
page if either is blank.

8. Special Files and Devices *WINDEV*

ProvideX Language Reference V8.30 Back 756

WINDEV *WINDEV* Raw Pr int ModeRaw Print Mode
Formats 1. Open Device File: OPEN (chan[,fileopt])"*WINDEV*[;Q_name]"

2. Open for Read-Only Mode: OPEN INPUT (chan[,fileopt])"*WINDEV*[;Q_name]"

3. Open for [WDX]: OPEN [INPUT] (chan[,fileopt])"[WDX]*WINDEV*[;Q_name]"

Where:

chan Channel or logical file number; e.g., OPEN (1)"*windev*"

fileopt File options. Supported options for opening *WINDEV* include:
ERR=stmtref Error transfer.
OPT=string$ File open options. See File OPEN Options, p.233.
To obtain the current OPT= value, use the OPT() Function, p.495.

Q_name Print queue to open. If this information is omitted, the standard
Windows printer dialogue appears at run time (users can select from a
list of printers and properties.) Valid Q_name options include:
• OS name of an existing physical print queue on the local Windows

machine; e.g., open(14)"*WINDEV*;HP LaserJet".

• OS name of a print queue ON actual resource (via UNC path
\\machine\resource for shared printers, or LPT# for direct access to a
local port); e.g.,
OPEN (14)"*WINDEV*;HP LaserJet ON \\Main_Server\HP Laser"
OPEN (14)"*WINDEV*;LP ON LPT1"

• One of the following queue selection keywords:
ASIS Most recently selected printer and properties.
DEFAULT Printer currently "Set As Default" in the system; e.g.,
 OPEN (30,ERR=9900)"*WINDEV*;DEFAULT".
NORMAL Normal dialogue with page range (no paper size, source tray).
SETUP Setup dialogue with paper size, source tray (no page range).

The Q_name is optional. *WINDEV* does not t support queue option
settings (graphical printer properties in the Windows Printer dialogue
box such as: orientation=landscape;copies=3). See also Printing
in Windows, User’s Guide.

[WDX] *WINDEV* is specific to Windows operating systems. Under UNIX,
ProvideX automatically directs *WINDEV* access to the WindX client; e.g.,
OPEN (14)"*windev*" ! For the PC client from UNIX host.
In a Windows Server environment, the *WINDEV* printer is opened
relative to the host unless you prefix the printer name with [WDX]; e.g.,
OPEN (14)"*winprt*" ! For Windows Server
OPEN (14)"[WDX]*winprt*" ! For client workstation

WINDEV Keyword, not case-sensitive. Special device filename, enclosed in
quotation marks within OPEN directive. (Include asterisks in syntax.)

8. Special Files and Devices *WINDEV*

ProvideX Language Reference V8.30 Back 757

Description Use *WINDEV* with your OPEN and/or OPEN INPUT directives to gain access to the
Windows print subsystem in raw or pass-through mode. For standard API access,
use *WINPRT* Windows Printing, p.760.

You can identify the LPT for direct local access to the port or use UNCs (Universal
Naming Conventions) for transmissions to a shared resource. For both LPT and
UNC use, note that you can use raw escape sequences but graphical printing is not
supported. LPT identification is not recommended under Windows Server.

Normally, you can take advantage of *WINDEV* to send data to the printer without
having the driver strip out escape codes (for instance, to pass PCL code to the
printer). That is, you can use escape sequences with *WINDEV*, but these must be
both valid and supported by your given printer and print driver.

ProvideX recognizes *WINDEV* as a special device file in your OPEN [INPUT]
directive and deals with it internally in the language at run time. ProvideX returns
an Error #12: File does not exist (or already exists) on the OPEN
if no printers are installed or if the user presses the Cancel button in a printer
selection dialogue. (This error can also occur if no printer is "Set As Default".)

Raw Printing Behaviour
ProvideX supports raw mode to send raw data to a Windows printer. You can
control raw printing mode using the 'RP' System Parameter, p.684. This parameter's
default is ON. When you turn it OFF, ProvideX uses the old pass through mode.

The printer drivers shouldn't (but might) strip escape sequences from the data you
send to *WINDEV*. Support for raw mode is printer and driver-dependent. Some
drivers can destroy certain escape sequences (removing them from the data stream).
If escape sequences disappear from your *WINDEV* print jobs, check the sequences
for validity and check printer/driver appetites with their manufacturers.

Format 1: Open Device File
OPEN (chan[,fileopt])"*WINDEV*[;Q_name]"

Use this format to open the *WINDEV* device file to pass print jobs through in raw
mode to the given queue on your open channel. See Printing in Windows, User’s
Guide.

Note: For use in WindX or Windows only.

Note: Some device drivers issue an extra blank page (some even hang) if an open channel
is closed too quickly or if nothing is printed to the channel before it's closed. Use the OPEN
INPUT directive (described next) to bypass problems of this nature.

8. Special Files and Devices *WINDEV*

ProvideX Language Reference V8.30 Back 758

Format 2: Open for Read-Only Mode

OPEN INPUT (chan[,fileopt])"*WINDEV*[;Q_name]"

Use the OPEN INPUT directive to open *WINDEV* in read-only mode when you only
want to determine the name and properties of a printer without sending a physical
job. With an OPEN INPUT directive, you can open the printer, query the printer's
properties, and close the channel without starting a physical job.

Example:

Use the WINPRT_SETUP READ PROPERTIES directive or MXC() and MXL()
functions without generating a FormFeed:

IF WDX%<>00 THEN OPEN INPUT (30)"*WINDEV*;ASIS"
C=MXC(30)+1 ! Zero-based. For this printer MXC(30)=79, C=80 (0-79 columns)
L=MXL(30)+1 ! Also zero-based.
WINPRT_SETUP READ PROPERTIES WHAT_PROP$
! WHAT_PROP$ returns printer-specific list (items such as COPIES=1,OFFSET=0:0)

Format 3: Open for [WDX]
OPEN [INPUT] (chan[,fileopt])"[WDX]*WINDEV*[;Q_name]"

On a Windows Server, if you include [WDX] in your OPEN [INPUT] directive (e.g.,
OPEN (30)"[WDX]*WINDEV*"), then that signals ProvideX to direct any print jobs
and dialogues to the WindX client PC, which will in turn use its Windows print
subsystem to send jobs to the given printer.

If you are using *WINDEV* on an Windows Server and do not use [WDX] in your
OPEN directive, then the printer selection dialogue will appear on the server console,
and any print queue you name directly must exist on the Windows Server in the
Control Panel printers folder.

[WDX]*WINDEV* Escape Sequences
If you are opening [WDX]*WINDEV* and defining/creating mnemonics that will
send escape sequences to the printer channel, you must send the mnemonic
definitions to the WindX client instead of defining them on the server.

Note: The 'FONT' mnemonic does not work with text-mode printers. To control fonts on
a text mode device, send raw escape sequences to the printer using *WINDEV*, UNC
(Universal Naming Conventions), or direct access to LPT ports. Your choice of fonts via
WINDEV, UNC, or LPT is limited to the fonts supported by the given printer.

Reminder: You must install and use WindX to use *WINDEV* in a UNIX environment;
however, you do not need the [WDX] tag on a UNIX server because ProvideX
automatically directs *WINDEV* access to your WindX client PC.

8. Special Files and Devices *WINDEV*

ProvideX Language Reference V8.30 Back 759

This is because internally there are actually two channels open: one ProvideX is
using to route printing to WindX and one WindX opens, connected to the actual port
on the client. Your mnemonic is run locally on the server's channel and is not sent to
WindX for the remote client.

To send the mnemonic to the client in older versions of ProvideX/WindX, you can
either:

• Create a device driver containing mnemonic definitions on the WindX client PC
and then use a CALL directive; e.g., CALL [WDX]*dev/your_driver_name , or

• Use an EXECUTE directive from the server side for mnemonic definitions on the
client; e.g., EXECUTE "[WDX]MNEMONIC (LFO)'XX'=....".

For further information, refer to the MNEMONIC Directive, p.210 and the [WDX]
Tag, p.801.

See Also WINPRT_SETUP Directive, p.376
MXC() / MXL() Functions, p.488
Printing, User’s Guide
[WDX] Tag, p.801

8. Special Files and Devices *WINPRT*

ProvideX Language Reference V8.30 Back 760

WINPRT *WINPRT* Windows Pr intingWindows Printing
Formats 1. Open Device File: OPEN (chan[,fileopt])"*WINPRT*[;Q_name[Q_options]"

2. Open for Read-Only: OPEN INPUT (chan[,fileopt])"*WINPRT*[;Q_name[Q_options]"

3. Open for [WDX]: OPEN [INPUT] (chan[,fileopt])"[WDX]*WINPRT*[;Q_name[Q_options]"

Where:

chan Channel or logical file number; e.g., OPEN (1)"*winprt*"

fileopt File options. Supported options for opening *WINPRT* include:
ERR=stmtref Error transfer.
OPT=string$ File open options. See File OPEN Options, p.233.
To obtain the current OPT= value, use the OPT() Function, p.495.

Q_name Print queue to open. If this information is omitted, the standard
Windows printer dialogue appears at run time (users can select from a
list of printers and properties.) Valid Q_name options include:
• OS name of an existing physical print queue on the local Windows

machine; e.g., open(14)"*WINPRT*;HP LaserJet".

• OS name of a print queue ON actual resource (via UNC path
\\machine\resource for shared printers, or LPT# for direct access to a
local port); e.g.,
OPEN (14)"*WINPRT*;HP LaserJet ON \\Main_Server\HP Laser"
OPEN (14)"*WINPRT*;LP ON LPT1"

• One of the following queue selection keywords:
ASIS Most recently selected printer and properties.
DEFAULT Printer currently "Set As Default" in the system; e.g.,
 OPEN (30,ERR=9900)"*WINPRT*;DEFAULT".
NORMAL Normal dialogue with page range (no paper size, source tray).
SETUP Setup dialogue with paper size, source tray (no page range).

Q_name may be optional, but it is required in order to override queue
properties (see Q_options, below). See also Printing in Windows, User’s
Guide.

Q_options Override printer properties. String expressions. You can override
printer- and driver-specific values by assigning a new value to the
queue (e.g., copies=2 instead of copies=1). Use semicolons to
separate items if you have a list.

Q_options must be preceded by a Q_name; i.e., HP LaserJet in the
example below, or a queue keyword like DEFAULT).

Specific properties are listed under WINPRT_SETUP Properties, p.376.
See also Printing in Windows, User’s Guide.

Example:

OPEN(30)"*WINPRT*;HP LaserJet;orientation=landscape;copies=3"

8. Special Files and Devices *WINPRT*

ProvideX Language Reference V8.30 Back 761

Description Use *WINPRT* with your OPEN and/or OPEN INPUT directives to gain standard
API access to the Windows print subsystem. For raw or pass-through mode, use
WINDEV Raw Print Mode, p.756.

The device driver for your given printer interprets the data you send to the
WINPRT channel, then sends the output to the Windows spooling subsystem for
transmission to its destination. You can identify the LPT for direct local access to the
port or use UNCs (Universal Naming Conventions) for transmissions to a shared
resourc; however, LPT identification is not recommended under Windows Server.

ProvideX recognizes *WINPRT* as a special device file in your OPEN [INPUT]
directive and deals with it internally in the language at run time. ProvideX returns
an Error #12: File does not exist (or already exists) on the OPEN
if no printers are installed or if the user presses the Cancel button in a printer
selection dialogue. (This error can also occur if no printer is "Set As Default".)

Some printer device drivers are unable to handle invalid Q_options; i.e., unknown
property assignments and/or syntax errors (like range=1,5 instead of the correct
range=1:5). The result can be unpredictable. The driver can even cause your
ProvideX session to hang during the open. If you encounter unexpected problems,
invalid Q_options for the given driver are the likely cause.

[WDX] *WINPRT* is specific to Windows operating systems. Under UNIX,
ProvideX automatically directs *WINPRT* access to the WindX client; e.g.,
OPEN (14)"*winprt*" ! For the PC client from UNIX host.
In a Windows Server environment, you are opening the *WINPRT*
printer relative to the host unless you prefix the printer name with the
[WDX] tag; e.g.,
OPEN (14)"*winprt*" ! For Windows Server
OPEN (14)"[WDX]*winprt*" ! For client workstation

WINPRT Keyword, not case-sensitive. Special device filename, enclosed in
quotation marks within OPEN directive. (Include asterisks in syntax.)

Note: For use in WindX or Windows only.

Note: Escape sequences are not allowed with *WINPRT* and may have an unpredictable
effect on the device and/or printer driver. If you need access to the print subsystem to send
PCL, escape sequences, etc., use *WINDEV* Raw Print Mode, p.756.

8. Special Files and Devices *WINPRT*

ProvideX Language Reference V8.30 Back 762

Format 1: Open Device File

OPEN (chan[,fileopt])"*WINPRT*[;Q_name[Q_options]"

Use this format to open the *WINPRT* device file. ProvideX will recognize and deal
with this special device file at run time to give you access to the Windows print
subsystem. Then you can send print jobs to the given queue on your open channel.
See Printing in Windows, User’s Guide.

Format 2: Open for Read-Only Mode
OPEN INPUT (chan[,fileopt])"*WINPRT*[;Q_name[Q_options]"

Use the OPEN INPUT directive to open *WINPRT* in read-only mode when you only
want to determine the properties (Q_options) of a printer without sending a physical
job. With an OPEN INPUT directive, you can open the printer, process your queries,
and close the channel without starting a physical job.

Example:

Use the WINPRT_SETUP READ PROPERTIES directive, a 'FONT'(LIST) graphics
mnemonic or the MXC() and MXL() functions without generating a FormFeed:

IF WDX%<>00 THEN OPEN INPUT (30)"*WINPRT*;ASIS"
X$='FONT'(LIST*,30) ! Get font list
-:?X$
System,Fixedsys,Terminal,MS Serif,MS Sans Serif,Courier,Symbol,Small Fonts,
Modern,FrameMakerSmallFont,Marlett,Arial,Courier New,Times New Roman, ... etc.

Maximum column and line values are zero-based. In the following example, the
MXC() value returned is 79, for 0-79 = 80 columns:

C=MXC(30)+1 ! For this printer MXC(30) returns 79, C=80 (0-79)
L=MXL(30)+1 ! For this printer MXL(30) returns 55, L=56 (0-55)

Your string variable in reading properties returns a printer-specific list (here, for the
ASIS printer):

WINPRT_SETUP READ PROPERTIES WHAT_PROP$
-:?what_prop$
RANGE=ALL;COLLATE=NO;COPIES=1;ORIENTATION=PORTRAIT;PAPERSIZE=1;SOURCE=1;R
ESOLUTION=300:300;OFFSET=0:0;TRUETYPE=2;DRIVER=WINSPOOL
-:close (30)

Note: Some device drivers issue an extra blank page (some even hang) if an open channel
is closed too quickly or if nothing is printed to the channel before it's closed. Use the OPEN
INPUT directive (described next) to bypass problems of this nature.

Note: The 'FONT' mnemonic works with *WINPRT*, but not with any of the text-mode
printers.

8. Special Files and Devices *WINPRT*

ProvideX Language Reference V8.30 Back 763

Format 3: Open for [WDX]
OPEN [INPUT] (chan[,fileopt])"[WDX]*WINPRT*[;Q_name[Q_options]"

On anWindows Server, if you include [WDX] in your OPEN [INPUT] directive (e.g.,
OPEN (30)"[WDX]*WINPRT*"), that signals ProvideX to direct any print jobs and
dialogues to the WindX client PC, which will in turn use its Windows print
subsystem to send jobs to the given printer.

If you are using *WINPRT* on an Windows Server and do not use [WDX] in your
OPEN directive, then the printer selection dialogue will appear on the server console,
and any print queue you name directly must exist on the Windows Server in the
Control Panel printers folder.

See Also WINPRT_SETUP Directive, p.376
MXC() / MXL() Functions, p.488
'FONT' Mnemonic, p.609
Printing, User’s Guide
[WDX] Tag, p.801.

Reminder: You must install and use WindX to use *WINPRT* in a UNIX environment;
however, you do not need the [WDX] tag on a UNIX server because ProvideX
automatically directs *WINPRT* access to your WindX client PC.

8. Special Files and Devices *XML

ProvideX Language Reference V8.30 Back 764

*XML *XML ProvideX XML Interf aceXML Interface
Formats Initializes XML Object: DEF OBJECT obj_id,"*XML"

Where:

Description Use this interface for accessing, parsing and serializing XML documents based on
the XML DOM (Document Object Model).

This also requires installation of the Xerces XML Library as well as libraries
pvxxml.dll (for Windows) and pvxxml.so (on UNIX/Linux). TCB(193) can be
used to determine the availability of XML support on a system.

In addition, the following directives are supported for use with XML objects:

DROP OBJECT obj_id

DELETE OBJECT obj_id

The interface supports the following syntax options for accessing and manipulating
XML documents:

XML'CREATE (filename$, options$[,ERR=stmtref])
Creates and opens an XML document with a given file name and document root.
Where:

The document is created with ISO-8859-1 encoding. If an error occurs on executing XML
functions, PRINT MSG(-1) can be used to view a detailed error message. Generates
the following return codes:

*XML Keyword used in defining an XML object.

obj_id Numeric variable that will be used to save the object reference.

Note: This implementation requires activation of ProvideX XML support. Refer to
the ProvideX website for licensing information.

filename$ XML document file name
options$ Control options for operation of the interface. Case-insensitive,

semi-colon delimitated, formatted string. Options include:

API={DOM|SAX} - default is DOM (SAX interface not implemented).
SOURCE={FILE|STRING} - default is FILE.
DOC_ROOT=root_node$ - for creating a new XML document.
OVERWRITE=[0|1] - for overwriting an XML document, default is 0.

1 - Opened successfully
0 - General error
-1 - Warning occurs when parsing XML document
-2 - Error occurs when parsing XML document
-3 - Fatal error occurs when parsing XML documents

8. Special Files and Devices *XML

ProvideX Language Reference V8.30 Back 765

XML'OPEN (text$, options$[,ERR=stmtref])
Opens an XML documents. When creating a new XML document, if DOC_ROOT is not
specified, an error will return. If OVERWRITE is set and DOC_ROOT is set, an existing
XML document will be cleared.

Where:

Generates the same return codes as XML'CREATE.

XML'SET_ELEMENT (name$, value$, valueType, setMode, matchValue[,ERR=stmtref])
Sets the current element for reading and writing.

Where:

Generates return codes:

XML'READ_ELEMENT$ (returnfield[,ERR=stmtref])
Sets the current element for reading and writing. Returns the value string.
Where:

XML'NEXT_SIBLING ()
Sets the current element to the next sibling. Generates return codes:

XML'PREVIOUS_SIBLING ()
Sets the current element to the previous sibling. Generates return codes:

text$ String variable containing either the XML document file name or the
XML text. If DOC_ROOT is set, and file does not exist, a new XML
document will be created with the specified filename.

options$ Control options for operation of the interface (same as XML'CREATE).

name$ Element tag name or attribute name.
value$ Element value or attribute value.
valueType 1 for attribute, 2 for element tag.
setMode 1 for set to parent, 2 for set to child in the immediate sub level, or 3

for set to sibling.
matchValue 0 to ignore both name$ and value$, 1 to match name$ only, 2 to

match both name$ and value$, 3 to match only the value$.

1 - Set element successful
0 - Set element failed

returnfield 1 for value of current element (default), 2 for name of current element .

1 - Set element successful
0 - Set element failed

1 - Set element successful
0 - Set element failed

8. Special Files and Devices *XML

ProvideX Language Reference V8.30 Back 766

XML'READ_CHILDELEMENT$ (tag_name$[,ERR=stmtref])
Read the value of the child element specified by tag_name$ (sub-element tag). This
returns the value string, or empty string if it is not found.

XML'READ_ATTRIBUTE$ (attribute_name$[,ERR=stmtref])
Read the value of the attribute in current element specified by attribute_name$. This
returns the value string, or empty string if it is not found.

XML'BUILD (parent_tag$, value$[,ERR=stmtref])
Initializes output buffer for a new data block with the specified parent tag as a child
element of the current element.

Where:

If XML'BUILD is called before XML'COMMIT is performed, all previous data is lost.

XML'ADD_CHILDELEMENT (tag_name$, tag_value$[,ERR=stmtref])
Add a new child element to the end of current element block set in the output buffer.

Where:

If output buffer has not been initialized using XML'BUILD(), an error will be reported.

XML'ADD_ATTRUBUTE (attribute_name$, attribute_value$[,ERR=stmtref])
Adds an attribute to the latest node, either created by XML'BUILD() or XML'ADD_
CHILDELEMENT().

Where:

XML'COMMIT()
Commits the output buffer to the XML document file/string. If a buffer has not been
initialized using XML'BUILD(), an error will be reported.

XML'CLOSE()
Closes the XML document, cleans-up workspace and releases any resources that are
used. Generates return codes:

parent_tag$ Name of the parent tag for the new data block.
value$ Value of the parent element.

tag_name$ Name of the child node to be added.
tag_value$ Value of the child node.

attribute_name$ Name of the attribute to be added.
attribute_value$ Value of the attribute.

1 - Close failed
0 - Close successful

8. Special Files and Devices *XML

ProvideX Language Reference V8.30 Back 767

Example Following is an example of the XML object in use for reading/writing XML
documents.

0010 ! ---- CREATE XML DOCUMENT ----
0020 DEF OBJECT X,"*XML"
0030 X'CREATE("ProvideX.xml","DOC_ROOT=products;OVERWRITE=1")
0040 X'BUILD("product","")
0050 X'ADD_ATTRIBUTE("version","8.20")
0060 X'ADD_CHILDELEMENT("name","ProvideX")
0070 X'ADD_CHILDELEMENT("company","Sage Software")
0080 X'COMMIT()
0090 X'CLOSE()
0100 ! ---- OPEN XML DOCUMENT ----
0110 X'OPEN("ProvideX.xml","")
0120 X'SET_ELEMENT("version","8.20",1,2,1)
0130 PRINT "Company name is ",X'READ_CHILDELEMENT$("company")
0140 PRINT "Product name is ",X'READ_CHILDELEMENT$("name")
0150 PRINT "Product version is ",X'READ_ATTRIBUTE$("version")
0160 X'CLOSE()

8. Special Files and Devices *XML

ProvideX Language Reference V8.30 Back 768

ProvideX Language Reference V8.30 Back 769

Language Reference 9
Special Command Tags

Over view

Overview B MK

Special command file tags (enclosed in square brackets) are used to modify paths and
filenames for specific I/O uses in ProvideX. They may include a series of semicolon-
separated parameters to be processed at run time. Some of these tags are supported only
in specific operating environments.

This chapter covers the following special command tags:

WindX, the ProvideX thin-client GUI screen handler, is used to give a Windows GUI
look to character-based applications, optimize a network's use of different platforms,
and provide remote processing through serial and/or TCP/IP communications.

Important: The square brackets enclosing special tags are part of the syntax. Other
square brackets in syntax examples indicate that elements are optional.

[DB2] DB2 Support, p.770 Windows & WindX.

[DDE] Dynamic Data Exchange, p.776 Windows & WindX.

[DLL] Custom File Access, p.778 Windows & WindX.

[LIB] Program Library, p.781 Windows only.

[MYSQL] MySQL InnoDB Support, p.783 All platforms

[OCI] Connect to Oracle Server, p.786 Windows, some UNIX/Linux.

[ODB] Open DataBase, p.791 Windows & WindX.

[RPC] Remote Process Control, p.797 All platforms

[TCP] Transmission Control Protocol, p.799 All platforms

[WDX] Direct Action to Client Machine, p.801 Any platform via WindX.

Note: [WDX] specialty commands can only be used when running under WindX. You can
also prefix some (but not all) of the other specialty command tags with a [WDX] tag to
direct the action to the WindX client machine instead of the server.

9. Special Command Tags [DB2]

ProvideX Language Reference V8.30 Back 770

[DB2] Tag [D B2] DB2 Suppor tDB2 Support
Format OPEN (chan[,fileopt1])"[DB2]database[;table][;fileopt2]"

Where:

Description The [DB2] tag is used as a prefix in an OPEN statement to denote that ProvideX is to
route all file I/O requests to an external DB2 database server. Once you open a channel
for [DB2] use, you can use it just like any other channel (i.e., for file I/O). It remains open
until you close it. Use TCB(198) to check if DB2 is supported on a platform.

[DB2] OPT= Parameters
The following OPEN parameters can be used for connecting via DB2. This list also
indicates which parameters are supported for use in the INI file ([DB2] section).

[DB2] File tag clause to inform ProvideX that it will be opening a DB2
database (not a ProvideX data file).

chan Channel or logical file number to open.

database Name of the DB2 database to connect to.

fileopt1 File options. Supported options include:
BSZ=num Buffer size (in bytes)
ERR=stmtref Error transfer
IOL=iolref Default IOList
OPT=string$ Open parameters (See [DB2] OPT= Parameters)
REC=string$ Record prefix (REC=VIS(string$) can also be used).

fileopt2 OPT=string$ Open parameters (See [DB2] OPT= Parameters)

table Name of the table to open. If the table name is not supplied, then SQL
statements sent to the database must be created by the application and
sent via one of the following commands:

WRITE (chan) SQL$
WRITE RECORD (chan) SQL$
READ (chan, KEY="!", SQL$)

See DB2/ODB Table and Column Information, p.775.

Note: This feature requires activation of ProvideX DB2 support. Refer to the
ProvideX website for licensing information.

"ACCESS=" Determines type of file access required (READ or WRITE). Default is
ACCESS=WRITE. (INI supported)

"AUTOCOMMIT=" Determines auto commit functionality of the database driver
(either ON or OFF). (INI supported) It is applicable only if the
driver supports transactions.

9. Special Command Tags [DB2]

ProvideX Language Reference V8.30 Back 771

"CONCURRENCY=" Determines the type of con-current access control/locking to be
used. (INI supported) READONLY sets the cursor is set to read only
- no updates allowed. LOCK applies low-level record locking.
OPT_VERSION causes optimistic locking with the database version
control to be used. OPT_VALUE causes optimistic locking with
comparing record/column values to be used.

"COMPLETE=" Determines the response to incomplete information by the
following values:

0 (SQL_DRIVER_NOPROMPT). Default. Driver Manager copies the
connection string specified by the application.

1 (SQL_DRIVER_COMPLETE) or
3 (SQL_DRIVER_COMPLETE_REQUIRED). If the connection string
specified by the application includes the DSN keyword, the Driver
Manager copies the connection string specified by the application.
Otherwise, it takes the same actions as SQL_DRIVER_PROMPT.

2 (SQL_DRIVER_PROMPT). If connection string does not contain
either DRIVER, DSN, or FILEDSN keyword, the Driver Manager
displays the Data Sources dialog box. It constructs a connection
string from the data source name returned by the dialog box and
any other keywords passed to it by the application. If the data
source name returned by the dialog box is empty, the Driver
Manager specifies the keyword-value pair DSN=Default. (This
dialog box will not display a data source with the name "Default".)

All options except NOPROMPT require the handle of the parent window,
which will be the handle of the currently active ProvideX window. This
parameter is not used if a connection string is not supplied.

"CONNECT=" Specifies a connection string surrounded by a delimiter character,
enabling use of a "dsn-less" connection. Connection strings are
driver specific. Consult the driver's reference for supported
connection string values. Under UNIX/Linux, this parameter
requires COMPLETE=0 (see above).

If a connection string is supplied the value of the database name is
ignored. If the database name is not null then the value is used only for
determining if a connection should be shared. For example,

Open(1,iol=*,opt="connect='DSN=nomads'")"[DB2]foo;Customer"
Open(2,iol=*,opt="")"[DB2]foo;Customer Classes"
Open(3,iol=*,opt="",err=*next)"[DB2];Customer"
Open(4,iol=*,opt="connect='DSN=foo')"[DB2]foo;Customer"

The table opened on channel 2 will share the connection because of
foo. Channel 3 will error-out because neither a valid database name
nor a valid connect string was supplied. Channel 4 will open the table
Customer using the properties of the "nomads" DSN because foo
matches (the connect string was ignored).

9. Special Command Tags [DB2]

ProvideX Language Reference V8.30 Back 772

If the keywords USER= or PSWD= are supplied on the open then the
values of these attributes will be appended to the connection string.

"CURSOR_TYPE=" Defines the type of cursor that is to be used. FORWARD indicates that
any result sets can be read in a forward only direction. (INI supported)
STATIC indicates that the result set is static. KEYSET forces the cursor to
use/maintain record keys in a Keyset. DYNAMIC indicates that the
cursor is effective in the current Rowset only.

"CURSOR_USE=" Defines the type of cursor to be used. (INI supported) DRIVER
(default) assumes the specific driver’s own cursors. ODBC causes
the ODBC interface to use the “Driver Managers” cursor library that
may provide additional functionality not available within the
database driver. IF_NEEDED tells the system to use the specific
database driver's own cursor functionality unless the additional
functionality is requested specifically.

"DATEFMT=" Date format mask applying to all date fields in table. (INI supported) This
can be a combination of Y M D with any other characters; e.g., to convert
dates to 4-character year, month and day: DATEFMT=YYYYMMDD.Other
characters are inserted as is; e.g., DATEFMT=YY/MM/DD with a date of
March 1, 2004 would be returned as 04/03/01.

Two packed century formats are also supported. The first format, AA, maps
A to 2000. Our example of March 1, 2004 with DATEFMT=AAMMDD would be
returned as A40301. The second format, KK, is similar except K maps to
2000. A DATEFMT=KKMMDD would return K40301 for the example.

"DB=" or
"QUALIFIER="

Qualifies the specific database that you wish to use when using a
driver to service multiple databases. (INI supported)

"DEBUGIT=" String to append to SQL statement along with program name
and line number for debugging purposes. (INI supported) This
must indicate the comment character(s) appropriate to the
database. For example, "--" is the comment identifier for
Microsoft SQL Server; anything after "--" is ignored by SQL
Server when compiling the SQL statement.

"EXEC_SPRNO=" Name of stored procedure used to emulate RNO() function.

"EXTROPT=" Controls the format of the SELECT statement used to process an
EXTRACT. (INI supported) By default, PVX generates a SELECT *
FROM table FOR UPDATE WHERE...

When EXTROPT=text, then text is substituted in place of FOR
UPDATE. In addition, if the first character of text is $, then the
remaining characters of text are placed at the end of the SELECT
statement rather than after the filename. This allows for different
variations of SQL to be supported.

"IND=" Identifies a column that contains a sequential number starting at
0. This is used to emulate an indexed file.

9. Special Command Tags [DB2]

ProvideX Language Reference V8.30 Back 773

"ISOLATION=" Controls the isolation that this connection will have relative to other
processes on the same database. In particular, it controls Dirty reads
(reading data that may be rolled back), Non-Repeatable reads
(reading data after being changed by other transactions), and
Phantom reads (reading data newly added to file). (INI supported)

Settings include: UNCOMMITED (D, R, P possible), COMMITED (D
possible, R & P not possible), REPEATABLE (P possible, D & R not
possible), SERIAL (D, R, & P not possible).

"KEY=" Identifies fields that make up the key(s). For named keys enter
*NAME:keyname; e.g.,

OPEN(chan)"[ODB]dsn;table;KEY=field,field,*NAME:keyname"

Use the :D option to indicate that the key segment is to be sorted
in descending order; e.g., KEY=KeyFld1,KeyFld2:D,KeyFld3.

"KEYDATA=" Identifies a column that represents the key. This is used to emulate
an external key where the data is not duplicated in the data.

"KEYSET_SIZE=" Size of the Keyset for use with the cursor. (INI supported)

"MAS90DATE" Reformats the contents of a date column to and from the Sage
MAS 90 date format.

"MAS90SET" Sets flags for Sage MAS 90 emulation, such as turning on the
MAS90DATE conversion.

"MAXROWS=" Maximum number of rows/records returned. (INI supported)

"NONUMADJ=" Set to 1, Y or y to suppress +3 adjustment for defined length of
numerics. (INI supported).

"NONULLS=" Inserts zero-length strings rather than nulls into the target database, and
does not generate WHERE clauses checking for IS NULL or IS NOT
NULL. (INI supported) Set to 1, Y or y to enable or 0, N or n to
disable. If the application does not work correctly when moving
from Version 5 or lower, then set NONULLS=P to indicate that
keys are handled the same as pre-Version 6.

"NOSTRIP" Keeps trailing spaces (Default)

"NULLPADKEY" Forces keys to be padded to full length with the null character, 00.
When used in an INI file, set NULLPADKEY=1, Y or y.

"POSUPDATE=" Determines use of SqlSetPos functions. (INI supported) Use one of
the following: M (must use positioned update), O (default, optionally
use positioned update), N (never use positioned update).

"PREPARE=" Set to 1, Y or y to use prepared statements. (INI supported) Prepared
statements are pre-compiled SQL that may improve performance.

"PSWD=" Specifies password. (INI supported, but not secure. Anyone with
access to the INI will be able to read this password.)

9. Special Command Tags [DB2]

ProvideX Language Reference V8.30 Back 774

Example To open a connection to a DB2 table using the column names to generate the IOList:

OPEN (14,IOL=*)"[DB2]DB2instance,DB2table"

See Also READ Directive, p.271,
READ RECORD Directive, p.275,
SELECT..FROM..NEXT RECORD Directive, p.299,
WRITE Directive, p.383,
WRITE RECORD Directive, p.386
OPEN Directive, p.232

"REC=" Provides the column names, type, and size. This is typically done to
improve performance. If this information is not provided, then
ProvideX must query the database for this information. For more
information, see ODB/OCI/DB2 Record Processing, p.789.

"RECDATA=" Identifies a column to return as the full record. This can be used
for variant records which use complex rules to identify the
record type.

"ROWSET_SIZE=" Size of the Rowset used by the cursor. (INI supported)

"SHARED" Sets all tables to share a single connection to the Oracle database.
Default.

"STDDATE" Overrides the above formatting on individual columns.

"STRIP" Removes trailing spaces from fields

"TEXTMAX=" Overrides maximum size for text fields (default is 4096 bytes).
(INI supported)

"TIMEOUT=" Defines the time out value for any SQL operation (time before
error 0 returned). (INI supported)

"TOP=" Specifies use of the TOP clause in SELECT statements (limits the
number of rows to return in a result set). (INI supported) If TOP=n is
non-zero , then the KEF() / KEL() functions issue a SELECT TOP
1... SQL statement, which improves system performance. If TOP=n
> 0, then PVX issues SELECT TOP n to reduce the data transferred.
TOP=-1 indicates the driver supports SELECT TOP, but normal
reading should not use it. Default is 0 (TOP not supported).

"TSQL=" Defines a SQL statement that is used to control what data the
logical file returns.

"TYP=" Sets identifier for different variant records. For more information
see ODB/OCI/DB2 Record Processing, p.789.

"UNIQUE" Sets new opens to be on a unique connection to the database.
(INI supported) When used in an INI file, set UNIQUE=1, Y or y.
UNIQUE=0, N or n indicates a shared connection.

"USER=" Specifies login name. (INI supported)

9. Special Command Tags [DB2]

ProvideX Language Reference V8.30 Back 775

DB2/ODB Table and Column Information

When accessing an external database with a raw (no table specified) connection, it is
possible to find out what the table, columns, and indices are. This is achieved using a
READ and the following KEY= values.

KEY="?"

Results in an SQLTables() call with null parameters.

KEY="*Table$"

The asterisk will be stripped and whatever value is in Table$ will be passed as the
table parameter of a SQLColumns() call.

KEY="**Table$"

The asterisks will be stripped and whatever value is in Table$ will be passed as the
table parameter of a SQLStatistics() call with the attribute SQL_INDEX_ALL.

Example:

OPEN (chan)"[DB2]Database;;"
READ (chan,KEY="?")IOL=TableIOList

9. Special Command Tags [DDE]

ProvideX Language Reference V8.30 Back 776

[DDE] Tag [DD E] Dynamic Data ExchangeDynamic Data Exchange
Format OPEN (chan[,fileopt])"[DDE]dde_app;params"

Where:

Description The [DDE] tag is used as a prefix in an OPEN statement to denote that ProvideX is to
route all file I/O requests to an external DDE application; e.g., Excel. ProvideX
recognizes the tag and deals with it internally at run time.

You can associate a CTL value with an item in a DDE application to have ProvideX
generate the CTL value automatically whenever the value of the associated item
changes; e.g,

0010 DEFCTL (dde_fileno)"item"=ctl_event

Troubleshooting
In the event that the DDE server is unavailable, ProvideX will attempt to start the
application and establish a DDE connection to it. The following paths are used to
locate the application:

• Directory from which the application loaded
• Current directory
• Windows system directory
• Windows directory
• All directories listed in the PATH environment variable.

If these search rules cannot locate the application, then an Error #10: Illegal
pathname specified will be reported, and MSG(-1) will contain text similar to
"DdeConnect Failed (err/ret=2/16394)."

[DDE] File tag clause to inform ProvideX that it will be opening an external
Dynamic Data Exchange (DDE) application.

chan Channel or logical file number to open.

dde_app Path and/or name of DDE application; e.g., Excel. String expression.

fileopt File options.

params Optional DDE-specific parameters. Semicolon-separated arguments
and/or variables to receive returned values, etc. (Early implementations
of ProvideX used a vertical bar instead of a semicolon as separator —
both are now acceptable).

Please refer to the documentation supplied with the individual
product or application to determine how to communicate with it
using the [DDE] link.

Note: For use in WindX or Windows only.

9. Special Command Tags [DDE]

ProvideX Language Reference V8.30 Back 777

However, this situation can be prevented:

• By adding the path to the executable to the PATH environment variable
• By pre-launching the application prior to opening the DDE connection; e.g.,
SYSTEM_HELP "Excel.exe".

Example This example illustrates an export to an Excel spreadsheet. Note that the worksheet
name is optional, but the worksheet must exist if you include its name. This example
also demonstrates the use of 09, , as the separator for Excel and makes
selective graphical requests to draw a pie chart, etc.:

0010 OPEN (1)"[WDX][DDE]excel;existing_worksheet.wk1"
! or 0010 OPEN (1)"[wdx][dde]Excel;"
0020 OPEN (2)"SALES"
0030 LET R=0
0040 LOOP:
0050 LET DIV_ID$=KEY(2,END=DRAW_IT)
0060 READ (2,KEY=DIV_ID$)DIV_NAME$,DIV_SALES
0070 LET R=R+1 ! Bump row number
0080 LET K$="R"+STR(R)+"C1:R"+STR(R)+"C2"
0090 WRITE RECORD (1,KEY=K$)DIV_NAME$+09+STR(DIV_SALES)
0100 GOTO LOOP
0110 DRAW_IT:
0120 IF R=0 THEN STOP ! No divisions
0130 LET X$="R"+STR(R)
0140 WRITE RECORD (1)"[select(""R1C1:"+X$+"C2"","""+X$+"C2"")]"
0150 WRITE RECORD (1)"[new(2,1)]"
0160 WRITE RECORD (1)"[gallery.3d.pie(6)]"
0170 WRITE RECORD (1)"[window.maximize()]"
0180 WRITE RECORD (1)"[app.maximize()]"

See Also WRITE RECORD Directive, p.386
OPEN Directive, p.232

Note: SYSTEM_HELP has an advantage over the INVOKE directive because it uses
different Windows API calls that are better for locating the program in question.

Tab

9. Special Command Tags [DLL]

ProvideX Language Reference V8.30 Back 778

[DLL] Tag [D LL] Custom File AccessCustom File Access
Format OPEN (chan,[fileopt])"[DLL:lib_name;fnc_name]params"

Where:

Description The [DLL] tag is used as a prefix in an OPEN statement to denote that ProvideX is to
route all file I/O requests via an external DLL (Dynamic Link Library) file. This is
intended primarily for mapping to customized (user-defined) routines for file access.
For access methods in ProvideX using industry-standard mechanisms, refer to the
sections on the [OCI] and [ODB] tags.

Calling Sequence
This interface uses a single parameter block to handle all communication between
ProvideX and the DLL. Whenever a DLL entry point is called, the parameter block is
passed to it as its argument.

The DLL’s return value determines completion status. A successful completion returns
–1. Any other termination status is assumed to be a ProvideX error code; e.g.,

[DLL ..] File tag clause to inform ProvideX that it will be opening an external
DLL for I/O requests.

chan Channel or logical file number to open.
fileopt File options.
fnc_name Case-sensitive name of the function. It acts as the entry point into the

library. String expression.
lib_name Path and/or name of the DLL file that contains the external function

you want to invoke. String expression.
params DLL-specific parameters. Semicolon-separated arguments and/or

variables to receive returned values, etc.

Note: For use in WindX or Windows only.

0 Record/File Busy

2 End of file

11 Record not found

12 File not found

9. Special Command Tags [DLL]

ProvideX Language Reference V8.30 Back 779

The parameter block is defined as follows:

struct IODLL_PARAM
{ long handle; /* DLL specific handle */
 int nFunction; /* IO Function */
 int nMode; /* Access mode (Next, KEY=, IND=, ...) */
 int lenBuffer; /* Size of buffer */
 char *pBuffer; /* Pointer to buffer */
 int lenRecID; /* Length or key of index/rec# */
 char *pRecID; /* Pointer to KEY buffer*/
 int idxRecID; /* Key Number/Index Number/RNO (base 0) */
 int nKNOValue; /* KNO= Specified on directive/function */
};

Where:

handle Identifies the specific file for the request. On the OPEN, the DLL
returns this value, which is used for all subsequent calls.

nFunction Identifies the type of function being performed (OPEN, CLOSE, …).
Possible values include:
#define IODLL_FNC_OPEN 1
#define IODLL_FNC_CLOSE 2
#define IODLL_FNC_READ 3
#define IODLL_FNC_EXTRACT 4
#define IODLL_FNC_WRITE 5
#define IODLL_FNC_INSERT 6
#define IODLL_FNC_REMOVE 7
#define IODLL_FNC_KEYNEXT 8
#define IODLL_FNC_KEYPREV 9
#define IODLL_FNC_KEYCUR 10
#define IODLL_FNC_KEYFIRST 11
#define IODLL_FNC_KEYLAST 12
#define IODLL_FNC_RNO 13
#define IODLL_FNC_IND 14
#define IODLL_FNC_LOCK 15
#define IODLL_FNC_UNLOCK 16
#define IODLL_FNC_PURGE 17
#define IODLL_FNC_KEN 18

#define IODLL_FNC_LOAD -1
#define IODLL_FNC_FREE -2

nMode Identifies the access method being applied during a READ/WRITE
operation. Possible access values include:
#define IODLL_MODE_NEXT 0
#define IODLL_MODE_BY_KEY 1
#define IODLL_MODE_BY_IND 2
#define IODLL_MODE_BY_RNO 3

lenBuffer Length of the data buffer used for READ/WRITE.
pBuffer Pointer to the data buffer to be used for READ/WRITE operations.

9. Special Command Tags [DLL]

ProvideX Language Reference V8.30 Back 780

Example OPEN (1)"[dll:server.dll;EntryPoint]filename"
OPEN (1)"[dll:dbase2.dll;entry]cust.db"

See Also OPEN Directive, p.232
[OCI] Tag, p.786
[ODB] Tag, p.791
DLL() Function, p.418

lenRecID Length of the key field for READ/WRITE/REMOVE operations when
accessing via key or requesting a key.

pRecID Pointer to the data buffer to hold the key.
idxRecID The record index number when accessing record index, record number,

or the key number.
nKNOValue KNO= specified on a directive/function (-1 if not specified).

9. Special Command Tags [LIB]

ProvideX Language Reference V8.30 Back 781

[LIB] Tag [LIB] Pr ogram LibraryProgram Library
Format 1. Define Search Rules: PREFIX PROGRAM "[LIB:proglib]"

2. Write to File: SAVE "[LIB:proglib]prog"

3. Read into Memory: LOAD "[LIB:proglib]prog"

4. Change Name: RENAME "[LIB:proglib]prog" TO ...

5. Delete from System: ERASE "[LIB:proglib]prog"

Where:

Description The [LIB] tag is used as a prefix to denote that ProvideX is to access programs in a
program library, a single keyed file/library where each record contains the object for
a program stored within.

Saving/loading programs from a single file reduces OS file searching and security
checking, and can improve system performance. Program libraries also make it
easier for application developers to ship and install applications. Fundamentally,
program libraries are transparent to applications and are handled much the same
way as directories.

The pathname for a program library is indicated as part of the prefix tag, following the
colon: [LIB:proglib]. The actual program name follows the prefix. For example, if the
program PROG01 is in the library /usr/myappl/proglib it would be referenced as
[LIB:/usr/myappl/proglib]PROG01.

To simplify access to libraries, they can also be defined in a PREFIX (generally a
program prefix); e.g., PREFIX PROGRAM "[LIB:/usr/myappl/proglib]".

Cached Libraries
The system automatically maintains a list of open program libraries. Libraries are kept
open if any programs within a library are in use. In addition, the system maintains a
cache of opened program libraries. By default the number of cached program libraries
is 10; however, this is alterable by setting the 'PL'= System Parameter, p.679. Program
libraries would be closed on a START, QUIT, or whenever 'PL' is changed.

[LIB: ..] File tag clause informs ProvideX that a file belongs to the program
library, proglib.

prog Name of program.

proglib Path and filename of program library.

Note: For use in Windows only. Program libraries cannot be accessed remotely; i.e., the
[WDX] tag is not supported.

9. Special Command Tags [LIB]

ProvideX Language Reference V8.30 Back 782

Adding, Changing, or Removing Programs
Access to programs within a program library is handled via the standard SAVE,
LOAD, RENAME, and ERASE directives. A SAVE creates a new record in the library.
When addressing an existing program, SAVE replaces the record containing the
program image in the library with new program contents. The LOAD command
reads the records from the library. The ERASE command delete records from the
library.

The RENAME directive can rename a program in a library. It does not allow a
program in a library to be renamed into another library or to a stand-alone program,
or vice-versa. In RENAME syntax, the original (name1) can be defined as a "file
within a program library", the new name2 is assumed to be its new name in the
library.

Creating Program Library Files
The program library file is automatically created the first time you save a program to
it. For example, SAVE "[lib:proglib]myprog" creates a program library called
proglib as a keyed file with the following characteristics:

Maximum record size : 30000 (Variable)
Maximum # of records : (No limit)
Size of key block : 30720 bytes
Record Expansion factor : 10%
Extended attributes : Extended records
External key size : 0
Alt. key 0 : [0:1:32:"C"]

Alternate keys can be defined if desired for program info; e.g.,

0:51:12 Saved user name
0:103:4 Save time in binary
0:115:2 Owner id in binary

The file can be encrypted; however, pre-open the application and provide its
password before trying to use it so that its password can be cached.

The actual keys used in a program library will be subject to the same rules as normal
path names with regards to the 'FU' and 'FL' system parameters. If 'FU' is set then the
file names (key value) will be converted to upper case. If 'FL' is set the file names (key
value) will be converted to lower case.

In addition, the directory delimiters "/" and "\" will both be converted to "/" thus
allowing applications to be portable between operating systems.

9. Special Command Tags [MYSQL]

ProvideX Language Reference V8.30 Back 783

[MYSQL] Tag [MYSQL] MySQL InnoDB Suppor tMySQL InnoDB Support
Format OPEN (chan[,fileopt])"[MYSQL]host;database[;table][;fileopt]"

Where:

Description The [MYSQL] tag is used as a prefix in an OPEN statement to denote that ProvideX is to
route all file I/O requests to an external MySQL database server. Once you open a
channel for use, you can use it just like any other channel (i.e., for file I/O). It remains
open until you close it. Use TCB(194) to check if MySQL is supported on a platform.

[MYSQL] OPT= Parameters
The following OPEN parameters can be used for connecting via MySQL. This list also
indicates which parameters are supported for use in the INI file ([MYSQL] section).

[MYSQL] File tag clause to inform ProvideX that it will be opening a MySQL
database (not a ProvideX data file).

chan Channel or logical file number to open.

host MySQL database host name (IP address or DSN name).

database Name of the MySQL database to connect to.

fileopt1 File options. Supported options include:
BSZ=num Buffer size (in bytes)
ERR=stmtref Error transfer
IOL=iolref Default IOList
OPT=string$ Open parameters (See [MYSQL] OPT= Parameters)
REC=string$ Record prefix (REC=VIS(string$) can also be used).

table Name of the table to open. If the table name is not supplied, then SQL
statements sent to the database must be created by the application and
sent via one of the following commands:

WRITE (chan) SQL$
WRITE RECORD (chan) SQL$
READ (chan, KEY="!", SQL$)

See DB2/ODB Table and Column Information, p.775.

Note: This feature requires activation of ProvideX MySQL support. Refer to the
ProvideX website for licensing information.

"AUTOCOMMIT=" Determines auto commit functionality of the MySQL database.
Only the InnoDB storage engine is supported. (INI supported)

9. Special Command Tags [MYSQL]

ProvideX Language Reference V8.30 Back 784

"DATEFMT=" Date format mask applying to all date fields in table. (INI supported) This
can be a combination of Y M D with any other characters; e.g., to convert
dates to 4-character year, month and day: DATEFMT=YYYYMMDD.Other
characters are inserted as is; e.g., DATEFMT=YY/MM/DD with a date of
March 1, 2004 would be returned as 04/03/01.

Two packed century formats are also supported. The first format, AA, maps
A to 2000. Our example of March 1, 2004 with DATEFMT=AAMMDD would be
returned as A40301. The second format, KK, is similar except K maps to
2000. A DATEFMT=KKMMDD would return K40301 for the example.

"DEBUGIT=" String to append to SQL statement along with program name
and line number for debugging purposes. Refer to MySQL
documentation for comment styles. (INI supported)

"EXTROPT=" Controls the format of the SELECT statement used to process an
EXTRACT. (INI supported) By default, PVX generates a SELECT *
FROM table FOR UPDATE WHERE...

"FACTSDT" Causes all date fields to be translated to/from the SQL date format to
the format used by the FACTS application

"IND=" Identifies a column that contains a sequential number starting at
0. This is used to emulate an indexed file.

"KEY=" Identifies fields that make up the key(s).

"KEYDATA=" Identifies a column that represents the key. This is used to emulate
an external key where the data is not duplicated in the data.

"LOCKTABLES=" Determines if a MySQL LOCK TABLES statement or ProvideX
prefix file locking is used to lock tables. The default is using
prefix file locking. If a LOCK TABLES statement is used, a table
locked by a third party will cause ProvideX to wait for the table
to be released or until the MySQL connection is timed out.

"MAS90DATE" Reformats the contents of a date column to and from the Sage
MAS 90 date format.

"MAS90SET" Sets flags for Sage MAS 90 emulation, such as turning on the
MAS90DATE conversion.

"NONUMADJ=" Set to 1, Y or y to suppress +3 adjustment for defined length of
numerics. (INI supported).

"NONULLS=" Inserts zero-length strings rather than nulls into the target database, and
does not generate WHERE clauses checking for IS NULL or IS NOT
NULL. (INI supported) Set to 1, Y or y to enable or 0, N or n to
disable. If the application does not work correctly when moving
from Version 5 or lower, then set NONULLS=P to indicate that
keys are handled the same as pre-Version 6.

"NOSTRIP" Keeps trailing spaces (Default)

"NULLPADKEY" Forces keys to be padded to full length with the null character, 00.

9. Special Command Tags [MYSQL]

ProvideX Language Reference V8.30 Back 785

Example 0010 OPEN (1,IOL=*)"[mysql]localhost;db;table;user=root;pswd=pvx;"
0020 READ (1)
0030 PRINT "Current key: ",KEC(1)
0040 PRINT "SQL Statement executed: ",KEN(1)
0050 CLOSE(1)

See Also READ Directive, p.271,
READ RECORD Directive, p.275,
SELECT..FROM..NEXT RECORD Directive, p.299,
WRITE Directive, p.383,
WRITE RECORD Directive, p.386
OPEN Directive, p.232

"PSWD=" Specifies password. (INI supported, but not secure. Anyone with
access to the INI will be able to read this password.)

"REC=" Provides the column names, type, and size. This is typically done to
improve performance. If this information is not provided, then
ProvideX must query the database for this information. For more
information, see ODB/OCI/DB2 Record Processing, p.789.

"RECDATA=" Identifies a column to return as the full record. This can be used
for variant records which use complex rules to identify the
record type.

"STDDATE" Use standard date formatting.

"STRIP" Removes trailing spaces from fields

"TEXTMAX=" Overrides maximum size for text fields (default is 4096 bytes).
(INI supported)

"TIMEOUT=" Defines the time out value for any SQL operation (time before
error 0 returned). (INI supported)

"TOP=" Specifies use of the LIMIT clause in SELECT statements (limits the
number of rows to return in a result set). (INI supported)

"TSQL=" Defines a SQL statement that is used to control what data the
logical file returns.

"TYP=" Sets identifier for different variant records. For more information
see ODB/OCI/DB2 Record Processing, p.789.

"USER=" Specifies login name. (INI supported)

9. Special Command Tags [OCI]

ProvideX Language Reference V8.30 Back 786

[OCI] Tag [OCI] Connect to Oracle ServerConnect to Oracle Server
Format OPEN (chan[fileopt1])"[OCI]sid[;table][;fileopt2]"

Where:

Description The [OCI] tag is used as a prefix in an OPEN statement to denote that ProvideX is to
route all file I/O requests to an external (not ProvideX) Oracle database. (OCI is an
acronym for Oracle Call Interface.) Once you open a channel for [OCI] use, you can
use it just like any other channel (i.e., for file I/O). It remains open until you close it.

[OCI] OPT= Parameters
The OPEN options for connecting to an Oracle server are listed below: '"

[OCI] File tag clause to inform ProvideX that it will be opening an Oracle
database.

chan Channel or logical file number to open.
fileopt1 File options. Supported options include:

BSZ=num Buffer size (in bytes)
ERR=stmtref Error transfer
IOL=iolref Default IOList
NBF=num Dedicated number of buffers
OPT=String$ Open parameters (See [OCI] OPT= Parameters below)
REC=string$ Record prefix (REC=VIS(string$) can also be used).

fileopt2 OPT=string$ Open parameters (See [OCI] OPT= Parameters)
sid Oracle System ID of file to open. If not supplied, then the value of the

environment variable ORACLE_SID is used. String expression.
table Name of the table to open. If the table name is not supplied, then SQL

statements sent to the database must be created by the application and sent
via one of the following commands:
WRITE (chan) SQL$
WRITE RECORD (chan) SQL$
READ (chan, KEY="!", SQL$)

Note: This feature requires activation of ProvideX OCI support (available for
Windows, Redhat, HP UX, Sun Solaris, and AIX). Refer to the ProvideX website for
licensing information. Use TCB(200) to check if OCI is supported on the platform.

"AUTO_INDEX=" Used to include hints and index numbers to SELECT statements

"DATEFMT=" Date format mask applying to all date fields in table. (INI supported) This
can be a combination of Y M D with any other characters; e.g., to convert
dates to 4-character year, month and day: DATEFMT=YYYYMMDD.Other
characters are inserted as is; e.g., DATEFMT=YY/MM/DD with a date of
March 1, 2004 would be returned as 04/03/01.

9. Special Command Tags [OCI]

ProvideX Language Reference V8.30 Back 787

Two packed century formats are also supported. The first format, AA, maps
A to 2000. Our example of March 1, 2004 with DATEFMT=AAMMDD would be
returned as A40301. The second format, KK, is similar except K maps to
2000. A DATEFMT=KKMMDD would return K40301 for the example.

"DEBUGIT=" String to append to SQL statement along with program name and line
number for debugging purposes. (INI supported) This must indicate
the comment character(s) appropriate to the database. For example,
"--" is the comment identifier for Microsoft SQL Server; anything after
"--" is ignored by SQL Server when compiling the SQL statement.

"EXEC_SPRNO=" Not applicable to Oracle at this time.

"EXTROPT=" Controls the format of the SELECT statement used to process an
EXTRACT. (INI supported) By default, PVX generates a SELECT *
FROM table FOR UPDATE WHERE... When EXTROPT=text, then
text is substituted in place of FOR UPDATE. In addition, if the first
character of text is $, then the remaining characters of text are placed at
the end of the SELECT statement rather than after the filename. This
allows for different variations of SQL to be supported.

"IND=" Identifies a column that contains a sequential number starting at
0. This is used to emulate an indexed file.

"IOPROG=" Emulates the embedded I/O program logic available with a true
ProvideX file.

"KEY=" Identifies fields that make up the key(s). For named keys enter
*NAME:keyname; e.g.,

OPEN(chan)"[OCI]sid;table;KEY=field,field,*NAME:keyname"

Use the :D option to indicate that the key segment is to be sorted
in descending order; e.g., KEY=KeyFld1,KeyFld2:D,KeyFld3.

"KEYDATA=" Identifies a column that represents the key. This is used to
emulate an external key where the data is not duplicated in data.

"MAS90DATE" Reformats the contents of a date column to and from the Sage
MAS 90 date format.

"MAS90SET" Sets flags for Sage MAS 90 emulation, such as turning on the
MAS90DATE conversion.

"NONUMADJ=" Set to 1, Y or y to suppress +3 adjustment for defined length of
numerics. (INI supported)

"NONULLS=" Inserts zero-length strings rather than nulls into the target database, and
does not generate WHERE clauses checking for IS NULL or IS NOT
NULL. (INI supported) Set to 1, Y or y to enable or 0, N or n to
disable. If the application does not work correctly when moving
from Version 5 or lower, then set NONULLS=P to indicate that
keys are handled the same as pre-Version 6.

"NOSTRIP" Keeps trailing spaces (Default).

9. Special Command Tags [OCI]

ProvideX Language Reference V8.30 Back 788

"NULLPADKEY" Forces keys to be padded to full length with null character, 00. (INI
supported) When used in an INI file, set NULLPADKEY=1, Y or y.

"ORACLE=" Indicates if the database uses ORACLE SQL sequence (either Y or
N). (INI supported) If ORACLE= and TOP= are used, then SELECT
commands are generated as SELECT * FROM (SELECT * FROM
TABLE) WHERE ROWNUM < 1. Default is Y.

"PREPARE=" Set to 1, Y or y to use prepared statements. (INI supported)
Prepared statements are pre-compiled SQL that may improve
performance. Default is N.

"PSWD=" Specifies password. (INI supported, but not secure. Anyone with
access to the INI will be able to read this password.)

"REC=" Provides the column names, type, and size. This is typically done to
improve performance. If this information is not provided, then
ProvideX must query the database for this information. For more
information see ODB/OCI/DB2 Record Processing, p.789.

"RECDATA=" Identifies a column to return as full record. This can be used for
variant records that use complex rules to identify the record type.

"SHARED" Sets all tables to share a single connection to the Oracle database
(Default).

"STDDATE" Overrides the above formatting on individual columns.

"STRIP" Removes trailing spaces from fields

"TEXTMAX=" Overrides maximum size for text fields (default is 4096 bytes).
(INI supported)

"TOP=" Specifies use of the TOP clause in SELECT statements (limits the
number of rows to return in a result set). (INI supported) If TOP=n is
non-zero, then the KEF() / KEL() functions issue a SELECT where the
row number is <= n, which improves system performance. If TOP=n >
0, then PVX issues SELECT TOP n to reduce the data transferred.
TOP=-1 indicates the driver supports SELECT TOP, but normal
reading should not use it. Default is 0 (TOP not supported).

"TSQL=" Not applicable to Oracle at this time.

"TYP=" Sets identifier for different variant records. For more information
see ODB/OCI/DB2 Record Processing, p.789.

"UNIQUE" Sets new opens to be on a unique connection to the database.
(INI supported) When used in an INI file, set UNIQUE=1, Y or y.
UNIQUE=0, N or n indicates a shared connection.

"USER=" Specifies login name. (INI supported)

9. Special Command Tags [OCI]

ProvideX Language Reference V8.30 Back 789

See Also READ Directive, p.271,
READ RECORD Directive, p.275,
SELECT..FROM..NEXT RECORD Directive, p.299,
WRITE Directive, p.383,
WRITE RECORD Directive, p.386
OPEN Directive, p.232

ODB/OCI/DB2 Record Processing
The REC= phrase is used to control the formatting of the data record as viewed by
the ProvideX application. The format consists of a series of field descriptors and/or
literals, each separated by either a comma or a plus sign.
The simple format is:

REC= fieldspec { , | + } fieldspec …

Where:

The fieldspec contains the name of the field and optional format, length, and scale.
Fields are separated by either a comma or plus sign. When comma-separated, then a
field delimiter is inserted. When plus-separated, then the field is padded to full size
and no separator is inserted. Literals may be included if enclosed in apostrophes.

Example:

REC=CST_ID, NAME, ADDRESS

This results in a record with three fields, each separated by a field separator.

REC=CST_ID + NAME + ADDRESS

This results in a record consisting of three fields with each one padded to its full
length and no intervening field separator. For example, if CST_ID is 6 characters
long and NAME and ADDRESS are both 30, then the record would be 67 characters
long, including the record terminator.

Any column name can be followed by an optional colon and format specification.
This format specification consists of a data type (if not numeric or string) followed
by the field length. If the field is numeric, the length includes a decimal point
followed by the number of decimal positions.

The possible data types are:
P Packed (BIN) data
H Data is stored in HEX
B Data is a Binary field
D Field is a Date
Examples include:

CST_ID:7
OWING:8.2 (8 digits with 2 decimal places)
AMOUNT:P4.2 (4 bytes containing BIN value scaled by 100)
NAME:B30 (30 byte binary field)

9. Special Command Tags [OCI]

ProvideX Language Reference V8.30 Back 790

It is a good idea to include the field descriptions for all fields since this prevents ProvideX
from having to read the table's data dictionary to determine field sizes and types.

Hex and Binary values can be used to store non-printable and/or binary data that
would cause problems otherwise when passed in a SQL statement.

Binary fields (type P) can be used to define numeric data that has been packed into a
string using the BIN() and DEC() functions. If specified, the scale indicates the
number of implied decimal places that the value contains.

Literals may be inserted within the record layout in order to insert padding where a
field or column is not presently used, but space has been reserved for it. Literals
should be enclosed with apostrophes and separated by a comma or plus sign.

Variant Record Processing
In order to emulate multi-record type files (variant records) the database record must
contain all possible columns; i.e., if record type 1 consists of the fields Prefix and
Value when Prefix="ABC", and record type 2 consists of the fields Prefix and
Percentage when the 2nd and 3rd characters of Prefix="EF", the database record
would contain three columns Prefix, Value and Percentage.

TYP= specifies the field(s) that determine the record type. Using a ? in the REC=
clause defines the value.

Special masking options for ? include:

Example:

TYP=Prefix;REC=?"ABC",Prefix,Value,?".EF",Prefix,Percentage

If the table contains two records:

"ABC",9,0
"AEF",0,99.99

Using the statement READ (chan)A$,B:

On the 1st READ, A$="ABC", B=9.

On the 2nd READ, A$="AEF", B=99.99.

WRITE (chan)"XEF",50.5 would insert a new record into the database consisting
of "XEF",0,50.5.

. any one character (i.e., wildcard character).
[abc] any one of bracketed characters.
[0-9] any character from 0 to 9.
[] indicates end-of-field.
^ indicates records that don’t match.

9. Special Command Tags [ODB]

ProvideX Language Reference V8.30 Back 791

[ODB] Tag [OD B] Op en D ataBaseOpen DataBase
Format OPEN (chan[,fileopt1])"[ODB]datasource[;table][;fileopt2]"

Where:

Description The [ODB] tag is used as a prefix in an OPEN statement to denote that ProvideX is to
route all file I/O requests to an external ODBC database. Once you open a channel
for [ODB] use, you can use it just like any other channel (i.e., for file I/O). It remains
open until you close it.

ProvideX supports ODBC under Windows as well as two open source versions of
ODBC for UNIX/Linux (iODBC and unixODBC). Use TCB(197) to determine if
ODBC support is enabled for a given UNIX/Linux system.

[ODB] File tag clause to inform ProvideX that it will be opening an external
Windows ODBC database (not a ProvideX data file).

chan Channel or logical file number to open.

datasource Datasource name as defined in ODBC Administration.

fileopt1 File options. Supported options include:
BSZ=num Buffer size (in bytes)
ERR=stmtref Error transfer
IOL=iolref Default IOList
NBF=num Dedicated number of buffers
OPT=string$ Open parameters (See [ODB] OPT= Parameters)
REC=string$ Record prefix (REC=VIS(string$) can also be used).

fileopt2 OPT=string$ Open parameters (See [ODB] OPT= Parameters)

table Name of the table to open. If the table name is not supplied, then SQL
statements sent to the database must be created by the application and
sent via one of the following commands:

WRITE (chan) SQL$
WRITE RECORD (chan) SQL$
READ (chan, KEY="!", SQL$)

See DB2/ODB Table and Column Information, p.775.

Note: The [ODB] tag is built into the ProvideX programming language. You do not need
the ProvideX ODBC driver to use this tag, but you are limited to using the tag in Windows
only. (ODBC is the Microsoft acronym for Open Database Connectivity.)

Note: To open and read ProvideX (internal) data files using other database applications,
(e.g., Excel), install and use the ProvideX ODBC driver instead of the [ODB] tag.

9. Special Command Tags [ODB]

ProvideX Language Reference V8.30 Back 792

On the first use of an [ODB] tag under UNIX/Linux, ProvideX will first attempt to
load the unixODBC shared library, libodbc.so. If that load fails, ProvideX will
attempt to load the share library for ODBC, libiodbc.so. If that fails, an Error
#15: Operating system command failed is reported.

[ODB] OPT= Parameters
The OPEN parameters for connecting via ODBC are listed below: '"

"ACCESS=" Determines type of file access required (READ or WRITE). Default is
ACCESS=WRITE. (INI supported)

"AUTOCOMMIT=" Determines auto commit functionality of the database driver
(either ON or OFF). (INI supported) It is applicable only if the
driver supports transactions.

"CONCURRENCY=" Determines the type of con-current access control/locking to be
used. (INI supported) READONLY sets the cursor is set to read only
- no updates allowed. LOCK applies low-level record locking.
OPT_VERSION causes optimistic locking with the database version
control to be used. OPT_VALUE causes optimistic locking with
comparing record/column values to be used.

"COMPLETE=" Determines the response to incomplete information by the
following values:

0 (SQL_DRIVER_NOPROMPT). Default. Driver Manager copies the
connection string specified by the application.

1 (SQL_DRIVER_COMPLETE) or
3 (SQL_DRIVER_COMPLETE_REQUIRED). If the connection string
specified by the application includes the DSN keyword, the Driver
Manager copies the connection string specified by the application.
Otherwise, it takes the same actions as SQL_DRIVER_PROMPT.

2 (SQL_DRIVER_PROMPT). If connection string does not contain
either DRIVER, DSN, or FILEDSN keyword, the Driver Manager
displays the Data Sources dialog box. It constructs a connection
string from the data source name returned by the dialog box and
any other keywords passed to it by the application. If the data
source name returned by the dialog box is empty, the Driver
Manager specifies the keyword-value pair DSN=Default. (This
dialog box will not display a data source with the name "Default".)

All options except NOPROMPT require the handle of the parent window,
which will be the handle of the currently active ProvideX window. This
parameter is not used if a connection string is not supplied.

"CONNECT=" Specifies a connection string surrounded by a delimiter character,
enabling use of a "dsn-less" connection. Connection strings are
driver specific. Consult the driver's reference for supported
connection string values. Under UNIX/Linux, this parameter
requires COMPLETE=0 (see above).

9. Special Command Tags [ODB]

ProvideX Language Reference V8.30 Back 793

If a connection string is supplied the value of the database name is
ignored. If the database name is not null then the value is used only for
determining if a connection should be shared.

For example,

Open(1,iol=*,opt="connect='DSN=nomads'")"[odb]foo;Customer"
Open(2,iol=*,opt="")"[odb]foo;Customer Classes"
Open(3,iol=*,opt="",err=*next)"[odb];Customer"
Open(4,iol=*,opt="connect='DSN=foo')"[odb]foo;Customer"

The table opened on channel 2 will share the connection because of
foo. Channel 3 will error-out because neither a valid database name
nor a valid connect string was supplied. Channel 4 will open the table
Customer using the properties of the "nomads" DSN because foo
matches (the connect string was ignored).

If the keywords USER= or PSWD= are supplied on the open then the
values of these attributes will be appended to the connection string.

"CURSOR_TYPE=" Defines the type of cursor that is to be used. (INI supported)
FORWARD indicates that any result sets can be read in a forward only
direction. STATIC indicates that the result set is static. KEYSET forces
the cursor to use/maintain record keys in a Keyset. DYNAMIC
indicates that the cursor is effective in the current Rowset only.

"CURSOR_USE=" Defines the type of cursor to be used within the ODBC connection.
(INI supported) DRIVER (default) assumes the specific driver’s
own cursors. ODBC causes the ODBC interface to use the “Driver
Managers” cursor library that may provide additional functionality
not available within the database driver. IF_NEEDED tells the
system to use the specific database driver's own cursor functionality
unless the additional functionality is requested specifically.

"DATEFMT=" Date format mask applying to all date fields in table. (INI supported) This
can be a combination of Y M D with any other characters; e.g., to convert
dates to 4-character year, month and day: DATEFMT=YYYYMMDD.Other
characters are inserted as is; e.g., DATEFMT=YY/MM/DD with a date of
March 1, 2004 would be returned as 04/03/01.

Two packed century formats are also supported. The first format, AA, maps
A to 2000. Our example of March 1, 2004 with DATEFMT=AAMMDD would be
returned as A40301. The second format, KK, is similar except K maps to
2000. A DATEFMT=KKMMDD would return K40301 for the example.

"DB=" or
"QUALIFIER="

Qualifies the specific database that you wish to use when using a
driver to service multiple databases. (INI supported)

9. Special Command Tags [ODB]

ProvideX Language Reference V8.30 Back 794

"DEBUGIT=" String to append to SQL statement along with program name and line
number for debugging purposes. (INI supported) This must indicate
the comment character(s) appropriate to the database. For example,
"--" is the comment identifier for Microsoft SQL Server; anything after
"--" is ignored by SQL Server when compiling the SQL statement.

"EXEC_SPRNO=" Name of stored procedure used to emulate RNO() function.

"EXTROPT=" Controls the format of the SELECT statement used to process an
EXTRACT. (INI supported) By default, PVX generates a SELECT *
FROM table FOR UPDATE WHERE...

When EXTROPT=text, then text is substituted in place of FOR
UPDATE. In addition, if the first character of text is $, then the
remaining characters of text are placed at the end of the SELECT
statement rather than after the filename. This allows for different
variations of SQL to be supported.

"FACTSDT=" Causes all date fields to be translated to / from the SQL date
format to the format used by the FACTS application.

"IND=" Identifies a column that contains a sequential number starting at
0. This is used to emulate an indexed file.

"IGNORE_NODATA=" Set to 1 (Y or y) to ignore SQL_NO_DATA error. If set to 0 (N or n),
ProvideX will report Error #11: Record not found or
Duplicate key on write if it receives a SQL_NO_DATA
error when executing a direct SQL statement. Default is 1.

"ISOLATION=" Controls the isolation that this connection will have relative to
other processes on the same database. In particular, it controls
Dirty reads (reading data that may be rolled back),
Non-Repeatable reads (reading data after being changed by other
transactions), and Phantom reads (reading data newly added to
file). (INI supported)

Settings include: UNCOMMITED (D, R, P possible), COMMITED (D
possible, R & P not possible), REPEATABLE (P possible, D & R not
possible), SERIAL (D, R, & P not possible).

"KEY=" Identifies fields that make up the key(s). For named keys enter
*NAME:keyname; e.g.,

OPEN(chan)"[ODB]dsn;table;KEY=field,field,*NAME:keyname"

Use the :D option to indicate that the key segment is to be sorted
in descending order; e.g., KEY=KeyFld1,KeyFld2:D,KeyFld3.

"KEYDATA=" Identifies a column that represents the key. This is used to
emulate an external key where the data is not duplicated in the
data.

"KEYSET_SIZE=" Size of the Keyset for use with the cursor. (INI supported)

9. Special Command Tags [ODB]

ProvideX Language Reference V8.30 Back 795

"MAS90DATE" Reformats the contents of a date column to and from the Sage
MAS 90 date format.

"MAS90SET" Sets flags for Sage MAS 90 emulation, such as turning on the
MAS90DATE conversion.

"MAXROWS=" Maximum number of rows/records returned. (INI supported)

"NONUMADJ=" Set to 1, Y or y to suppress +3 adjustment for defined length of
numerics. (INI supported)

"NONULLS=" Inserts zero-length strings rather than nulls into the target database, and
does not generate WHERE clauses checking for IS NULL or IS NOT
NULL. (INI supported) Set to 1, Y or y to enable or 0, N or n to
disable. If the application does not work correctly when moving
from Version 5 or lower, then set NONULLS=P to indicate that
keys are handled the same as pre-Version 6.

"NOSTRIP" Keeps trailing spaces (Default)

"NULLPADKEY" Forces keys to be padded to full length with the null character, 00.
(INI supported) When used in INI file, set NULLPADKEY=1, Y or y.

"ORACLE=" Indicates if the database uses ORACLE SQL sequence (either Y or
N). (INI supported) If ORACLE= and TOP= are used, then SELECT
commands are generated as SELECT * FROM (SELECT * FROM
TABLE) WHERE ROWNUM < 1. Default is ORACLE=N.

"POSUPDATE=" Determines use of SqlSetPos functions. (INI supported) Use one of
the following: M (must use positioned update), O (default, optionally
use positioned update), N (never use positioned update).

"PREPARE=" Set to 1, Y or y to use prepared statements. (INI supported) Prepared
statements are pre-compiled SQL that may improve performance.

"PSWD=" Specifies password. (INI supported, but not secure. Anyone with
access to the INI will be able to read this password.)

"REC=" Provides the column names, type, and size. This is typically done to
improve performance. If this information is not provided, then
ProvideX must query the database for this information. For more
information see ODB/OCI/DB2 Record Processing, p.789.

"RECDATA=" Identifies a column to return as the full record. This can be used
for variant records which use complex rules to identify the
record type.

"SHARED" Sets all tables to share a single connection to the Oracle database.
Default.

"SCHEMA=" Sets the Schema name to be prefixed to the table name (separated
with a dot); e.g., MySchema.MyTable.

"STDDATE" Overrides the above formatting on individual columns.

"STRIP" Removes trailing spaces from fields

9. Special Command Tags [ODB]

ProvideX Language Reference V8.30 Back 796

Example To read Windows ODBC databases from a UNIX server, you would install and use
WindX to make the connection or use ProvideX RPC on a Windows Server and open
your ODBC databases through that server:

OPEN (14)"[WDX][ODB]datasourcename"

See Also READ Directive, p.271,
READ RECORD Directive, p.275,
SELECT..FROM..NEXT RECORD Directive, p.299,
WRITE Directive, p.383,
WRITE RECORD Directive, p.386
OPEN Directive, p.232

"TEXTMAX=" Overrides maximum size for text fields (default is 4096 bytes).
(INI supported)

"TIMEOUT=" Defines the time out value for any SQL operation (time before
error 0 returned). (INI supported)

"TOP=" Specifies use of the TOP clause in SELECT statements (limits the
number of rows to return in a result set). (INI supported) If TOP=n is
non-zero , then the KEF() / KEL() functions issue a SELECT TOP
1... SQL statement, which improves system performance. If TOP=n
> 0, then PVX issues SELECT TOP n to reduce the data transferred.
TOP=-1 indicates the driver supports SELECT TOP, but normal
reading should not use it. Default is 0 (TOP not supported).

"TSQL=" Defines a SQL statement that is used to control what data the
logical file returns.

"TYP=" Sets identifier for different variant records. For more information
see ODB/OCI/DB2 Record Processing, p.789.

"UNIQUE" Sets new opens to be on a unique connection to the database.
(INI supported) When used in an INI file, set UNIQUE=1, Y or y.
UNIQUE=0, N or n indicates a shared connection.

"USER=" Specifies login name. (INI supported)

9. Special Command Tags [RPC]

ProvideX Language Reference V8.30 Back 797

[RPC] Tag [RPC] Remot e Pr ocess Cont rolRemote Process Control
Formats 1. Call Remote Subprogram: CALL "[RPC:server]subprog[;entry]"[,ERR=stmtref][,arglist],varlist

2. Open Remote File: OPEN (chan[,fileopt])"[RPC:server]filename"

Where:

Description The [RPC] tag is used as a prefix to denote that ProvideX is to CALL a subprogram or
open a file that resides on a remote server. Before a remote process control can be
initiated, the server must be identified, and the server name established, via the
PROCESS SERVER Directive, p.258.

[RPC:server] The RPC clause that initiates the remote CALL. server is the logical
server name (see below).

chan Channel or logical file number to open.

;entry Entry point label. (Optional.) If you include a label, precede it with
a semicolon and append it to your subprogram name.

filename Name of the file to open prefixed by [RPC:server]. Use a string literal
as in OPEN (14)"[RPC:server]my_file"

fileopt File options. Supported options include:
BSZ=num Buffer size (in bytes)
ERR=stmtref Error transfer
IOL=iolref Default IOList
ISZ=num Open file in binary mode
NBF=num Dedicated number of buffers
OPT=char$ File open options
REC=string$ Record prefix (REC=VIS(string$) can also be used).

arglist One or more arguments (comma-separated if you include a list
arg,arg...) to pass to the subprogram. Optional.

server Name to be associated with a program server. Established using
the PROCESS SERVER Directive, p.258.

stmtref Program line number or label to transfer control to.

subprog Subprogram for the CALL directive; e.g.,

CALL "[RPC:INVENTORY]inv_alloc",a$,b,c,d

varlist One or more variables, literals, mnemonics, IOL= options, and/or
location functions; e.g., "@(5,4)". If you include a list, items
must be comma-separated.

9. Special Command Tags [RPC]

ProvideX Language Reference V8.30 Back 798

Format 1: Call Remote Subprogram
CALL "[RPC:server]subprog[;entry]"[,ERR=stmtref][,arglist],varlist

The RPC CALL format tells ProvideX that your subprogram is to run (and that your
data resides) on a different processor on the network; i.e., on a remote server. Use the
same syntax as you would for a standard CALL directive, except that a [RPC:server]
clause designates a remote server to handle the CALL. Since no data is transferred
during RPC CALL processing, this helps maximize both network performance and
data security. For more information, refer to the CALL Directive, p.40.

Transparent RPC Process
At run time, ProvideX doesn't transfer data files or programs across the network for
your RPC CALL. Instead, ProvideX puts your called remote subprogram name and
parameters into a TCP/IP data packet and sends the packet to your remote server.
The remote server loads and runs your subprogram, passing it your parameters.
When your subprogram exits, the remote server puts your parameters (as altered by
your subprogram) into a TCP/IP response packet and sends this back to the calling
program.

Format 2: Open Remote File
OPEN (chan[,fileopt])"[RPC:server]filename"

ProvideX supports the OPEN directive for remote files. Prefix your filename with the
[RPC:server] clause to indicate that the server is to handle file requests.

See Also PROCESS SERVER Directive, p.258
OPEN Directive, p.232
Remote Process Capability Technical Overview.

Note: This feature requires ProvideX RPC activation. Refer to the ProvideX website
for licensing information.

Note: Since ProvideX RPC processing is true distributed processing, handled as a
transparent background process, any displays during subprogram processing will
appear on the remote server. Do not attempt to display subprogram activity on the
calling machine.

9. Special Command Tags [TCP]

ProvideX Language Reference V8.30 Back 799

[TCP] Tag [TCP] Tr ansmiss ion Cont rol ProtocolTransmission Control Protocol
Format OPEN (chan[,fileopt])"[TCP][server];socket[;tcp_opts]"

Where:

[TCP] File tag that tells ProvideX the channel is being opened for a TCP/IP
connection.

chan Channel or logical file number to open.
fileopt File options. Supported options include:

BSZ=num Buffer size (in bytes, max. 32000).
Defaults: READ=1024, WRITE=32000.

ERR=stmtref Error transfer
TIM=num Time-out value

Example: OPEN(chan,TIM=3)"[TCP]IP;SOCKET"
arglist One or more arguments (comma-separated if you include a list

arg,arg...) to pass to the subprogram. Optional.
server Server address. Optional. If specified (to denote a client connection on

the channel), use either an IP address like 172.16.1.1 or a DNS
(Domain Name System) server, such as www.pvx.com. Omit it to
indicate a host connection.

socket TCP/IP socket number. For a host connection, this is the socket number
where the host listens and the client connects. For a client connection, this
is the socket number where the host listens. The valid range for [TCP]
sockets is 1 to 65535. (For an invalid socket number, less than 0 or greater
than 65535, the OS dynamically assigns an unused valid number.)

For more information, see System Limits, p.825

tcp_opts Options to override default TCP characteristics. When including a list,
use the semicolon as a separator. Supported options are as follows:

BINDTO= For server-side. Restricts service requests to a specified address.
By default ProvideX binds a server style socket that is open to
all IP addresses in a machine. This sets your program to only
monitor the socket number on a specific IP address, allowing
other software to use the same socket on different IP addresses.

KEEPALIVE For client-side. Forces the OS to send keepalive packets to
the host, thereby keeping TCP/IP pipes open forever on
TCP/IP connections which time out due to inactivity; e.g.,
OPEN(chan)"[tcp]ip;socket;KEEPALIVE

NODELAY Disables algorithm that delays transmission. Default: delay
up to 200ms., attempt to combine data into larger packets.

REUSE Allows server to monitor a port that may currently be in use.
SECURE For client-side. Uses the certificate found by the host to

negotiate and carry out encrypted communication.
SECURE= For server-side. Sets path to public certificate used for encoding

and decoding communications between client and server.

9. Special Command Tags [TCP]

ProvideX Language Reference V8.30 Back 800

Description The [TCP] tag is used as a prefix in an OPEN statement to denote that ProvideX is to
open the channel for a TCP/IP connection.

The TCP interface in ProvideX acts like a "smart" two-way communications pipe. A
ProvideX TCP connection can be either a Server or Client-style connection; these are
explained in the following sections. A single program can have many TCP sockets
opened concurrently, with each independent of the others. However, there are
operating system limitations. For more information, see System Limits, p.825.

TCP Server Connection
Omit the server value from the TCP OPEN syntax to notify ProvideX that the channel
is to be opened as a host/server.

Example:

OPEN (1,BSZ=8192)"[TCP];10000"

This opens a TCP channel as a host/server connection with a block size of 8192
bytes. A host/server can communicate with more than one client at a time. (You can
override this by using SINGLE as one of your tcp_opts.)

TCP Client Connection
Include the optional server, to notify ProvideX that the channel is to be opened as
client connection linked to the socket where the host is listening; i.e., this opens a
channel to create a link to the host's socket number. A client can only communicate
with the specific host to which it's connected.

Examples:

OPEN (1,BSZ=16384)"[TCP]172.16.1.1;10000"

The example above opens a client link to a TCP channel, port 10000 on the server.
The client PC uses any available socket number for its side of the communications.
Note that the local machine dynamically assigns an available socket for your
program to use.

The KEF() Function, p.466, can be used to identify local sockets; e.g.,

LET MY_KEY$=KEF(CHAN)

The data in MY_KEY$ is in IP format, "10.12.1.12;80;GORDD".

As another example, open (1)"[tcp]www.microsoft.com;80;nodelay"
opens a connection to Microsoft's website, which is listening to socket number 80
(the default). This also turns off the 200ms delay packet optimization algorithm.

See Also OPEN Directive, p.232
ProvideX Client-Server Reference

SINGLE For server-side. One client per connection.
Default: multiple clients (not single).

STREAM Sets streaming data mode. Default: block mode.

9. Special Command Tags [WDX]

ProvideX Language Reference V8.30 Back 801

[WDX] Tag [WDX] D irect Action to C lient MachineDirect Action to Client Machine
Formats 1. Execute: EXECUTE "[WDX]statement"

2. Invoke: INVOKE "[WDX]statement"
3. Call Subprogram: CALL "[WDX]subprog",params
4. Open File: OPEN (chan[,fileopt])"[WDX]filename"
5. Open COM Port: OPEN (chan,OPT=settings$)"[WDX]port_id"
6. Open Tag Process: OPEN (chan[,fileopt])"[WDX][tag]prog;[params]"
7. OPEN Print Devices: OPEN [INPUT] (chan[,fileopt])"[WDX]*device*[;Q_name[;Q_options]]"
8. Create Object: NEW("[WDX]ClassName")
9. Define Windows Object: DEF OBJECT com_id,"[WDX]objname"
10.Call *WindX.utl: CALL "[WDX]*WindX.utl;function",params

Where:

[WDX] File tag notifies ProvideX that you are directing the action to the
WindX client machine instead of the server.

chan Channel or logical file number to open.
class$ Name of class for creating new object. String expression.
com_id Numeric variable to receive a handle (memory pointer to object).
device
Q_name
Q_options

Identifier and parameters for either of the two [WDX]-supported
special device files (*WINDEV* or *WINPRT*). See *WINDEV* Raw
Print Mode, p.756, and *WINPRT* Windows Printing, p.760

filename Name of the file to open (file must exist on the client PC); e.g.,
OPEN (14)"[WDX]"+TMP$ or
OPEN (14)"[WDX]temp_file"

function A ProvideX utility/function, part of the *WindX.utl utility
program. For instance, the *WindX.utl;Spawn function initiates
tasks on the server and/or client.

fileopt File options. Supported options include:
BSZ=num Buffer size (in bytes)
ERR=stmtref Error transfer
IOL=iolref Default IOList
ISZ=num Open file in binary mode
NBF=num Dedicated number of buffers
OPT=char$ File open options
REC=string$ Record prefix (REC=VIS(string$) can also be used).

objname$ Name by which the COM object is registered in the Windows
system registry subkey HKEY_CLASSES_ROOT.

params Arguments and variables you pass to the subprogram or function.
If you include a list, it's comma-separated.

port_id System identifier for the port; e.g., COM1.

9. Special Command Tags [WDX]

ProvideX Language Reference V8.30 Back 802

Description The [WDX] tag is used as a prefix to perform an action on a remote client machine (if
your given command could be used on either client or server, and if the command
supports using [WDX]). The [WDX] tag can only be used in specialty commands when
running under WindX in a client-server environment.

WindX supports the use of the following commands via the [WDX] tag: SERIAL,
KEYED, DIRECT, SORT, PROGRAM, DIRECTORY, REFILE, LOCK, UNLOCK,
MNEMONIC and ERASE.

To Detect WindX
To detect whether or not you're actually working on a WindX PC in Command mode, look
for the special prompt -} ... i.e., a hyphen with curly brace. In your applications, a test for
one of the following indicators will tell you that your session is running under WindX:

DEC(MID(MSE, 22,1))>0
TCB(88)<>0

For more information, refer to the TCB() Function, p.534, and the MSE System
Variable, p.565.

You can create a global variable in your WindX setup, and use it later to test for the
presence of a WindX client PC connection; then, if WindX is running the session, you
can use the [WDX] tag. In the following example, the user-defined variable %WDX
below is only set when WindX is running, otherwise its value is null:

IF MID(MSE,22,1)>00 AND MID(MSE,22,1)<FF THEN %WDX$="[WDX]"

prog;function Parameters for the [tag]. For instance, for [DDE] to export to
Excel, you can open a worksheet using either,
"[WDX][DDE]EXCEL;existing_worksheet.WK1" or
"[WDX][DDE]EXCEL;"
In the first example, where a spreadsheet name is included, it
must exist on the client PC.

tag ProvideX special command file tag. (All are listed in this chapter);
e.g., [DDE], [DLL], etc.

settings$ Serial device's attributes (baud rate, etc.). String expression.
statement Command supported by ProvideX (some are not) for use with

EXECUTE or INVOKE + the [WDX] tag in WindX. String expression.
subprog Subprogram for the CALL directive.

Note: This feature requires a WindX activation. Refer to the ProvideX website for
licensing information.

Note: If you are running an earlier version of ProvideX on a WindX PC, you must
encapsulate these commands in an EXECUTE "[WDX]..." or design your applications
to run on the remote site. Also, the DIR= option and the PURGE, FILE and INDEXED
directives are not supported by WindX and must be encapsulated in an EXECUTE etc.

9. Special Command Tags [WDX]

ProvideX Language Reference V8.30 Back 803

Use such a global variable in a statement like OPEN (30)%WDX$+"*WINPRT*" to
bypass an Error #12: File does not exist (or already exists) when
WindX isn't running.

How ProvideX Detects WindX
ProvideX uses terminal type to detect a WindX session. In UNIX, ProvideX
recognizes two terminal types as potential WindX stations (TERM="winterm" for
the WindX client PC and TERM="ansi"). Since most UNIX systems and applications
can't recognize or use the winterm type, the ProvideX ansi device driver sends a
special escape sequence to a terminal to test for a WindX client. If the terminal is a
WindX PC, a special response is generated. If no response is generated before a
time-out occurs, ProvideX assumes the device is ansi.

GUI Requests
Once the ProvideX session on the server recognizes the terminal as a WindX station,
it changes the internal settings to allow graphical requests to be routed correctly.
(Then, graphical requests are automatically tokenized and forwarded to WindX for
processing. That is, you do not need the [WDX] tag.)

For instance, a server command to print a picture in a UNIX environment would
automatically be sent to WindX for the client. ProvideX transmits standard
mnemonics to WindX as an escape ($1B$) followed by the mnemonic in native form.
Traffic from the host/server is minimized because the WindX client's ProvideX
interpreter handles a lot of the functionality locally (on the client) for screen
refreshing and graphical requests.

In WindX, your instruction to print is sent to the client, bundled as is. When you use
mnemonics and/or graphics like .bmp’s, they must exist on the client or be accessible to
the client. The following example uses a 'PICTURE' that is defined and shared on a
common Windows server instead of being stored on each individual client machine:

print 'picture'(10,10,10,10),"\\serv_name\driveshare\your_bmps\that.bmp"

See Also ProvideX Client-Server Reference

Formats 1 & 2: Initiate Remote Command
EXECUTE "[WDX]statement"
INVOKE "[WDX]statement"

Use the EXECUTE and INVOKE formats with the [WDX] tag to process commands on
the WindX PC (remote client). Common applications of the EXECUTE format would
be: changing the client's local directory, setting system parameters, or altering the
prefix and in file creation.

Warning: When you use the EXECUTE and INVOKE directives from your server to initiate
action remotely on a client, the client PC might be running a ProvideX activation with a
different set of syntax tables. As a result, your MNEMONICs might be invalid.

9. Special Command Tags [WDX]

ProvideX Language Reference V8.30 Back 804

The following example illustrates the use of an EXECUTE "[WDX]statement" in an
application on the host/server to define a MNEMONIC directive locally on the
WindX client:

IF WDX%<>00 THEN EXECUTE "[WDX]MNEMONIC(LFO)'5X'=$1B+hex$" ELSE GOTO MY_LABEL

The following example sets the 'B0' System Parameter, p.656, on a WindX PC using
a [WDX] command from a UNIX host:

EXECUTE "[wdx]SET_PARAM 'B0'"

Format 3: Call Subprogram
CALL "[WDX]subprog",params

This format enables the server to CALL a subprogram that exists and runs remotely on
the client. It is true distributed processing. The server's files and global variables are
not accessible to your subprogram. Your remote call passes parameters back and forth,
not data files. You can pass a maximum of 20 parameters/arguments, in a
comma-separated list.

For example, you can call applications like special printer device drivers you have
built on the client to handle print mnemonics:

CALL "[WDX]*dev/your_driver_name"

You can use a similar format to call the ProvideX *WindX.utl (utility) functions.
For further information, see Format 10: [WDX] and *WindX.utl, p.806,
[WDX]*WINDEV* Escape Sequences, p.758.

Format 4 & 5: Open Files, Serial Ports on Client
OPEN (chan[,fileopt])"[WDX]filename"
OPEN (chan,OPT=settings$)"[WDX]port_id"

Use this format in programs running on your server when you're opening remote
files or ports. That is, using [WDX] as a prefix to the pathname of your file (or port,
etc.) tells WindX to open it remotely on the client. WindX automatically forwards
requests (i.e., file I/O directives) for processing.

Examples:

The following example opens a remote file,

OPEN (1)"[WDX]CLIENT_PATH\CLIENT_FILE"

Note: If you run your application with ‘B0' set, make sure that it is set on both the host
and the WindX PC. Otherwise, the wrong windows will be addressed. (You can set 'B0'
either by executing it from the host, as in the example, or by using -B0 as an
argument on the WindX PC's startup command line.

Reminder: When you need a statement that is not supported on a WindX PC,
encapsulate your commands in an EXECUTE "[WDX]..." directive or design your
applications to run remotely on the client.

9. Special Command Tags [WDX]

ProvideX Language Reference V8.30 Back 805

Use a similar format to open a COM port for direct access to a serial device (e.g., ,a
serial printer or weigh scale) on the client PC without going through a spooler,

LET SETTING$="9600,n,8,1,x"
OPEN (5,OPT=SETTING$)"[WDX]COM2"
or
OPEN (5,OPT="9600,n,8,1,x",ERR=BADCOM)"[WDX]COM2"

Format 6: [WDX] with Other Tags
OPEN (chan[,fileopt])"[WDX][tag]prog;[params]"

[WDX] can be used in conjunction with other file tags; e.g.,

0010 OPEN (1)"[WDX][DDE]excel;existing_worksheet.wk1"

Format 7: Windows Print Subsystem on Client
OPEN [INPUT] (chan[,fileopt])"[WDX]*device*[;Q_name[;Q_options]]"

ProvideX opens the special device files *WINPRT* and *WINDEV* on the PC/server
which issues the command. Except in UNIX (where it's done automatically), use
[WDX] with OPEN [INPUT] directives for the two specialty files to direct any print
jobs and dialogues to the WindX client PC, which will in turn use its Windows print
subsystem API to deal with the jobs and send them to the given printer; e.g.,

OPEN (7,ERR=1500)"[WDX]*WINPRT*"

With a WindX client and anWindows Server, if you do not use [WDX] in your OPEN
directive, then the printer selection dialogue will appear on the server console, and
any print queue you name directly must exist on the Windows Server in the Control
Panel printers folder.

See also [WDX]*WINDEV* Escape Sequences, p.758, *WINDEV* Raw Print Mode,
p.756, and *WINPRT* Windows Printing, p.760.

Formats 8 & 9: Remote Object Support
NEW("[WDX]ClassName")
DEF OBJECT com_id,"[WDX]objname"

The [WDX] tag can be used to create OOP/COM objects and manipulate them across
a WindX connection as if they existed locally.

Methods can be passed arguments and receive results; however, only the result of a
method will be returned across a remote connection. Any changes to the arguments
of a method by the remote object will not be returned across the connection.
Arguments are therefore considered to be passed by value only. If you need to
retrieve arguments as well as the result, you must place your code in a program on
the WindX workstation and interact with that code.

9. Special Command Tags [WDX]

ProvideX Language Reference V8.30 Back 806

Event handling is not supported across a remote connection. Event mapping must
occur within the remote object. The remote object will not have access to any server
resources. At most, the remote event could pass a CTL back to the local server for
action. It is recommended that objects requiring event processing exist completely on
the remote and interact only with the local WindX session on the remote.

Format 10: [WDX] and *WindX.utl
CALL "[WDX]*WindX.utl;function",params

Use this format to call functions in the WindX.utl utility program; e.g.,

call "[wdx]*windx.utl;Get_LWD",Station_dir$
call "*windx.utl;Spawn",cmdline$,inifile$,appfid$

The functions supplied by this utility are listed and described below:

"[WDX]*WindX.utl;CWDIR",D$ Changes to the specified directory D$ on
the WindX client.

"[WDX]*WindX.utl;Get_Addr",X$ Returns the IP address of the WindX client.

"[WDX]*WindX.utl;Get_ARG",X,Y$ Returns the command line argument
number specified by X in Y$.

"[WDX]*WindX.utl;GET_DSK",X,Y$ Returns the DSK() information for the disk
specified by X (or X$) in Y$.

"[WDX]*WindX.utl;GET_DIR",X,Y$ Returns the DIR() information for the
directory specified by X (or X$) in Y$.

"[WDX]*WindX.utl;GET_FILE_BOX",P$,D$,W$,E$,L$
"[WDX]*WindX.utl;GET_FILE_BOX_READ",P$,D$,W$,E$,L$
"[WDX]*WindX.utl;GET_FILE_BOX_WRITE",P$,D$,W$,E$,L$
"[WDX]*WindX.utl;GET_FILE_BOX_DIRECTORY",P$,D$,W$,R$

Emulates a local call to GET_FILE_BOX
directly on the WindX client. For complete
information, see GET_FILE_BOX, p.139.

"[WDX]*WindX.utl;Get_LPG",X$ Returns the lead program name LPG
system value for the WindX session.

"[WDX]*WindX.utl;Get_LWD",X$ Returns the local current disk directory
LWD for the WindX session.

CALL "*WindX.utl;Spawn",X$,I$,F$ No [WDX] prefix required. Spawns a new
session of ProvideX on the host and an
associated WindX session on the client PC.
By default, if the main session terminates,
then the spawned session terminates.

9. Special Command Tags [WDX]

ProvideX Language Reference V8.30 Back 807

The parameters are:
X$ command line parameters to be used on

the host.
I$ pathname of INI file to be used on the

client PC.
F$ value of FID(0) for the session.

CALL "*WindX.utl;Spawn_Nohup",X$,I$,F$ No [WDX] prefix required. Same as above
but detaches the session from the main user
task. If the main task terminates, then the
spawned task continues executing.

CALL "[WDX]*WindX.utl;Get_WindX",X$ Returns the absolute pathname of the
WindX program.

CALL "[WDX]*WindX.utl;Get_NewPort",XReturns the port number of an unused
TCP/IP port on the WindX station.

CALL "[WDX]*WindX.utl;Get_TCB",X Returns the value of the TCB() function
task specified by X.

CALL "[WDX]*WindX.utl;Get_Val",X$,Y$Evaluates/returns value of string
expression X$ in Y$; i.e., Y$=EVS(X$).

CALL "[WDX]*WindX.utl;Get_Num",X$,Y Evaluates/returns value of numeric
expression X$ in Y; i.e., Y=EVN(X$).

Note: Calls to *Windx.utl;spawn and *Windx.utl;Spawn_Nohup do not require
the [WDX] prefix because they are performed locally.

9. Special Command Tags [WDX]

ProvideX Language Reference V8.30 Back 808

ProvideX Language Reference V8.30 809 Back

Language Reference A
Appendix

Overview

Overview B MK

This appendix discusses additional features of the ProvideX language, such as file
options, labels, operators, and control codes. It also includes supplementary information
regarding preset system limits, error messages, and reserved words. Section headings,
page numbers, and outlines are listed below:

Input/Output and Control Options, p.810
Various options that can be included in a directive or system function to fine tune
code and redirect processing.

Data Format Masks, p.813
Character string masks used to define data (input/output) in ProvideX.

Labels/Logical Statement References, p.816
Built-in line labels that can be used instead of line number references in
applications.

Negative CTL Definitions, p.817
Actions that are assigned to negative CTL values, and have special significance to
ProvideX.

Operators, p.821
All operators that can be used in ProvideX, including: property, assignment,
auto-increment/decrement, LIKE, and the Apostrophe Operator, p.823.

System Limits, p.825
Preset system limits of ProvideX.

Reserved Words, p.827
Words that are reserved for internal use by ProvideX.

Error Codes and Messages, p.828
The numeric system variable ERR, error codes, and the messages associated with
errors detected by ProvideX.

Appendix

ProvideX Language Reference V8.30 810 Back

Input/Output and Control Options Input/Out put and Contr ol Options

Several directives and system functions described in this document include the use
of optional syntax elements in their formats to fine tune code and redirect processing.
Some are defined individually, and some are listed in format groups: Control
Options (ctrlopt) or File Options (fileopt). A general overview of available options
is provided below. Refer to specific directive/function descriptions for information on
the use of these options.

File Options File options (fileopt) can be included in the syntax for Accessing Data Files, p.22.
These may be used to handle exceptions, set key position, and deal with data errors in
I/O operations:

BSY=stmtref To trap Error #0: Record/file busy.

BSZ=num Buffer size (in bytes) for file opens and directives that control data
flow. Block size (in KB) for file creation directives (CREATE TABLE,
KEYED, etc.).

DIR=num Direction indicator. This adjusts the record pointer by num
records, where a positive value advances the pointer, a negative
pointer reverses the pointer, and a DIR=0 indicates no
movement. This option is not supported with use of the [WDX] tag.

DOM=stmtref On missing record, transfer to program line number/line label.

END=stmtref On end of file, transfer to program line number/line label.

ERR=stmtref On error, transfer to program line number/line label.

HLP=string$ Help message identifier used with INPUT and OBTAIN.

IND=num 32-bit record index value used to uniquely identify a record in
keyed files.

For Fixed length keyed files, num represents an offset into the
data file (first record has an index of 0, second is 1, and so on).
However, some record indexes will be set aside by the system
to be used for key tables and may yield gaps where the record
indexes have been used for keys.

For Variable length keyed files, num represents a logical page
address and record index within that page. The page address is
contained in the top 24-bits (high order 3 bytes) with a record
index within that page in the lower 8 bits. For VLR files, the page
address is the actual physical address for the data page. For EFF
files, the page address is a logical page number in the file.

For TCP/IP server files, num represents an internal socket
connection to the client that can be used to manually direct
output to specific sockets.

Used with the INPUT directive, IND=num sets the starting
position (column number) of the cursor in the input field.

Appendix Input/Output and Control Options

ProvideX Language Reference V8.30 811 Back

Control Options

Control options (ctrlopt) can be included in the syntax for creating and maintaining
various Graphical Control Objects, p.21.

IOL=iolref Either a string variable containing the object code of an IOList
or a statement reference to an IOList (statement number/label).

ISZ=num File open for access in binary mode.

KEY=string$ Record key or Password to open file.

KNO=num|name$ File access key number (num) or name (name$), where num is
0 based (0-15 for VLR/FLR files, 0-255 for EFF files).

NBF=num Dedicated number of buffers.

NUL=stmtref On no input, transfer to program line number/line label.

OPT=string$ File open options.

REC=name$ Record prefix represented by actual name, not the contents of name$.
Use REC=VIS(string$) to obtain the name from inside a variable.

RNO=num Record number.

RTY=num Number of times to retry (one second intervals). Default is set via
the 'WT'= System Parameter, p.694.

SEP=char$ Default field separator character. Hex or ASCII string value.

SIZ=num Number of characters to read: If negative, num identifies the
number of characters to be read. If num is a positive number,
the read continues until num characters are received.
Number of bytes to write: If num exceeds the amount of data
being written from the variable, the data is padded with nulls.

TBL=stmtref Data translation table.

TIM=num Maximum time delay to wait.

ERR=stmtref On error, transfer to program line number/line label.

HLP=string$ Help message identifier for defining AutoComplete, p.218.

FNT="font,size[,attr]" Font name, size, optional attributes Refer to the 'FONT'
Mnemonic, p.609, for details.

FMT=def$|mask$ Format definition for the associated control. If used for
character string masks, see Data Format Masks, p.813.

KEY=char$ Hot key

LEN=num Maximum input characters.

MSG=text$ Message line.

MNU=ctl CTL value associated with right-click menu event.

Appendix Input/Output and Control Options

ProvideX Language Reference V8.30 812 Back

NUL=string$ Empty value.

OWN=name$ Name assigned to a control for automated testing
purposes. This will be visible to programs that use the
Microsoft Active Accessibility (MSAA) interface. For detailed
information on this subject, refer to the document ProvideX
GUI Testing Automation.

OPT=char$ Single character attribute/behaviour settings. Settings
may be combined. Invalid settings are ignored.

SEP=char$ Column delimiter. Hex or ASCII string value.

TBL=char$ Single character translation.

TIP=text$ Mouse pointer message. Refer to the 'TC'= System
Parameter, p.688, to change the colour.

Appendix Data Format Masks

ProvideX Language Reference V8.30 813 Back

Data Format Masks D at a Format Masks

A format mask is a character string that can be used to define how data is to be
displayed or printed in ProvideX (PRINT Directive, p.255). Masks can also be
applied to filter data being received from the keyboard (INPUT Directive, p.160) or
in the conversion/validation of a string (STR() Function, p.525).

For further information on data input and output in ProvideX, refer to the ProvideX
User’s Guide.

Assigning a Format Mask

To assign a format mask in ProvideX syntax, place a colon before the mask following
the given data value:

val[$]:mask$

mask$ may be a literal string, a string variable, substring, or a string expression
(concatenation); e.g.,

0010 PRINT "The total is ",A:"$#,###,##0.00CR"
or
0010 LET MASK$="000-0000"
0020 PRINT "Phone: ",T:MASK$

The number of characters defined in a mask must be equal to or larger than the
number of characters to be displayed. One output character is generated for each
character present in the format mask.

When more characters exist in the data value than are specified in the format mask,
the result will generate an Error #43: Format mask invalid; e.g., outputting
1000 with a mask of "##0" causes an error. However, the parameters 'FI', 'F,' and
'FO'= can be specified to handle overflows without generating errors.

Format Defaults

If no format mask is specified when outputting numeric values, the system formats
the value as follows:

• The first character output will indicate the sign of the value. A space will be output
if positive, a minus sign if negative.

• If the absolute value is greater than 10E+18 or is less than 10E-18 (but not zero), the
value is output using scientific notation.

• The number is rounded to the current precision in effect and output suppressing
all leading zeroes and all trailing zeroes following the decimal point. The decimal
point is suppressed if no digits remain after it.

For example, assuming precision of two:

->0010 PRINT 3/2, 6/3, 3-4, 2/3
1.5 2-1 .67

Appendix Data Format Masks

ProvideX Language Reference V8.30 814 Back

Numeric Format Masks

Numeric format mask characters are used to convert numeric data (from literals,
variables, or numeric expressions) to ASCII. Format masks allow for the generation
of fixed format data with the insertion of fill characters (usually a space) to suppress
leading/trailing zeroes.

The recognized numeric format mask characters are described below:

Before being output, the number is rounded to the number of decimal places
specified in the format mask. If no sign indication is specified (i.e., no -, +, (,), CR, or
DR in mask), no sign will be output.

Character Description
0 Zero. Outputs one digit from the numeric value.

#
Outputs one digit of the number unless the digit is zero and no
digits have been output yet, in which case it outputs a fill character.
(Suppresses leading zeroes).

. Outputs/aligns decimal point. One occurrence allowed per mask.

!
Treated as '.' but causes output to be replaced with spaces if the
value is 0 zero; i.e., 'Blank when Zero'.

_

In front end of a mask, inserts '-' (if value negative) or a fill character
(if positive) just before the first digit. In the trailing end of a mask,
outputs either a '-' or a fill character. Within the mask, outputs a dash
regardless of the value.

+
Outputs either a '-' if the number is < 0 otherwise outputs a '+'. If this
format mask character is in front of the number, the output is placed
just before the first digit. (floating +)

,
Outputs a comma if some digits have been output; otherwise it
outputs a fill character.

$
If at the front of the number, indicates that a dollar sign is to be
output in front of the first digit of the number (floating dollar sign).
Anywhere else, indicates that a dollar sign is to be output.

*
If before any digits of the number, causes asterisks to be used as the
fill character instead of a space. If it occurs anywhere else within the
mask, it causes an asterisk to be output.

(or)
Outputs parentheses if the value is negative; otherwise it outputs a
fill character.

CR
Outputs CR if the value is negative; otherwise it outputs two fill
characters.

DR Outputs CR if the value is negative; otherwise it outputs DR.
B Outputs a space.

other Outputs the character.

Appendix Data Format Masks

ProvideX Language Reference V8.30 815 Back

The following table shows the results of various masks used on different values:

String Format Masks

String data can also be converted through the use of format masks. Unlike numeric
format masks, string format masks are typically used to validate that the contents of
a string match a pre-defined format.

The recognized string format mask characters are described below:

Value Mask Result
1 "000000" "000001"

1 "####0" " 1"

-2.4 "-###0.00" " -2.400"

1000.9 "#,##0+" "1,001+"

-10.5 "$#,##0.00BDR" " $10.50 CR"

5551212 "000-0000" "555-1212"(Phone)

2359 "00:00" "23:59"(Time)

-45 "###0" " 45"

Character Description

0 Zero. String must contain either a digit (0-9) in this position.

A
String must contain an alphabetic letter (A-Z, a-z) in this position.
The output of the format mask is converted to uppercase.

a String must contain an alphabetic letter (A-Z, a-z) in this position.

X
String can contain any character in this position. The output of the
format mask is converted to Upper case.

x String can contain any character in this position.

Z
String must contain an alphabetic letter (A-Z, a-z) or a digit (0-9) in
this position. The output of the format mask is converted to Upper
case.

z
String must contain an alphabetic letter (A-Z, a-z) or a digit (0-9) in
this position.

(nn)
A numeric value surrounded by parenthesis may be used to specify
a repeat count for the preceding format character. For example
AAAAA may also be specified as A(5).

other Outputs the character.

Appendix Labels/Logical Statement References

ProvideX Language Reference V8.30 816 Back

Labels/Logical Statement References Labels /Logical Stat ement References

ProvideX supports the use of logical statement references (line labels) in lieu of
actual line number/label references in your applications. ProvideX supplies a set of
built-in labels (keywords, with leading asterisks) that can be used wherever you
would use a statement reference. Note that some of the logical line labels and the
directives they emulate will remove an item from your stack and perform a RESET.

The following logical statement references are supported in ProvideX:

Examples A=0, Y$=""
READ (1,IND=A++,ERR=*NEXT)X$; Y$+=X$; GOTO *SAME

See Also BREAK Directive, p.33
CONTINUE Directive, p.57
END Directive, p.113
ESCAPE Directive, p.122
RETRY Directive, p.290
RETURN Directive, p.291

*BREAK Emulates BREAK Immediate Exit of Loop, p.33.

*CONTINUE Emulates CONTINUE Initiates Next Iteration of Loop, p.57.

*END Emulates END Halt Program Execution, p.113.

*ESCAPE Emulates ESCAPE Interrupt Program Execution, p.122.

*NEXT Goes to the beginning of the next line/statement.

*PROCEED Continues to the next statement in a compound statement or to the
beginning of the next line.

*RETRY Emulates RETRY Re-Execute Failing Instruction, p.290.

*RETURN Emulates RETURN Subroutine/Function Return, p.291.

*SAME Goes to the start of current line/statement.

Note: In earlier versions of ProvideX, the *CONTINUE and *BREAK labels and the
corresponding directives were not supported for use with SELECT / NEXT RECORD
directives. BREAK and *BREAK commands can now be used in SELECT structures.

Appendix Negative CTL Definitions

ProvideX Language Reference V8.30 817 Back

Negative CTL Definitions Negative CTL Definitions

ProvideX normally handles all negative CTL values internally. Values are used as follows:

Table of Negative CTL Values

The negative CTL value and their assigned values are listed as follows:

-1 to -999 used by the input handler to save current instructions,
internally call "*CONTROL"

-1000 to -1999 for input editing control keys and mouse interaction
-2000 to -2255 for composite character generation

CTL Value Assigned Actions
-1 Invoke utility sub-menu
-2 Invoke screen print utility
-3 Reserved
-4 Display session statistics
-5 Field help
-6 Field query
-7 Program help
-8 Reserved
-9 Reserved
-10 to -999 Save current instruction and screen, then call user program $CTL-nnn

(-nnn = CTL value). Upon exit, reset screen and re-execute saved
instruction

-1000 Ignore key or ignore SCROLL WHEEL action
-1001 Generate Escape/Break
-1002 Clear input buffer and blank on screen
-1003 Backspace and delete prior character
-1004 Backup one position to left
-1005 Forward one position to right
-1006 Insert a blank at current position
-1007 Delete character at current position
-1008 Skip to next blank character
-1009 Toggle Insert mode
-1010 Return to start of input (Home)
-1011 Up a line or SCROLL WHEEL up
-1012 Down a line or SCROLL WHEEL up
-1013 Page up or -SCROLL WHEEL up
-1014 Page down or -SCROLL WHEEL down

Ctrl

Ctrl

Appendix Negative CTL Definitions

ProvideX Language Reference V8.30 818 Back

-1015 Tab forward 10 spaces
-1016 Tab backward 10 spaces
-1017 Return to start end re-input
-1018 Go to end of input
-1019 Shift screen to the left
-1020 Shift screen to the right
-1021 Advance to start of next word
-1022 Go back to start of previous word
-1023 Clear from cursor to end of input
-1024 Restore input line to original value
-1025 Go Home and reset default
-1026 to -1079 Reserved for future use
-1080 LEFT-MOUSE-CLICK-DOWN /drag
-1081 LEFT-MOUSE-CLICK-UP

-1082 Reserved for RIGHT-MOUSE-CLICK-DOWN/drag
-1083 Reserved for RIGHT-MOUSE-CLICK-UP

-1084 to -1098 Reserved for future use
-1099 Reject keystroke and ring bell
-1100 Reserved for future use
-1101 Lost Focus
-1102 Received Focus
-1103 Display Cursor
-1104 Focus has changed
-1105 Window resized
-1106 to -1199 Reserved for future use
-1200 Context-sensitive help
-1201 to -1299 Reserved for future use
-1300 Open Trace Window (Windows only)
-1301 Open Command Window (Windows only)
-1302 Open Command Window (Windows only)
-1303 Open Command Window (Windows only)
-1304 to -1309 Reserved for future use
-1310 End trace
-1311 End command window
-1312 End watch window
-1313 End breakpoint window
-1314 to -1399 Reserved for future use

CTL Value Assigned Actions

Appendix Negative CTL Definitions

ProvideX Language Reference V8.30 819 Back

-1401 to -1403 Message Bar Region LEFT-MOUSE-CLICK Events. ProvideX returns CTL
values when the user performs a LEFT-MOUSE-CLICK on a segment in
the message bar region. Each of the four possible segments of the
message bar region has been assigned a different negative CTL
value. The event is reported on the button up only.

1st area (segment zero) returns CTL= -1400
2nd area (segment 1) returns CTL= -1401
3rd area (segment 2) returns CTL= -1402
4th area (segment 3) returns CTL= -1403

See also: 'MESSAGE' Mnemonic, p.620.
-1404 to -1408 Reserved for future use
-1409 ToolBar LEFT-MOUSE-CLICK-UP

MOUSE-CLICK CTL events are now supported in the ToolBar bar
region. The event is reported on the button up only.

RIGHT-MOUSE-CLICK-UP returns CTL= -1409
--1410 to -1413 Message Bar Region RIGHT-MOUSE-CLICK Events. ProvideX returns CTL

values when the user performs a RIGHT-MOUSE-CLICK on a segment in
the message bar region. Each of the four possible segments of the
message bar region has been assigned a different negative CTL
value. The event is reported on the button up only.

1st area (segment zero) returns CTL= -1410
2nd area (segment 1) returns CTL= -1411
3rd area (segment 2) returns CTL= -1412
4th area (segment 3) returns CTL= -1413

See also: 'MESSAGE' Mnemonic, p.620.
-1414 to -1418 Reserved for future use
-1419 ToolBar MOUSE-CLICK Events

MOUSE-CLICK CTL events are now supported in the ToolBar bar
region. The event is reported on the button up only.

LEFT-MOUSE-CLICK-UP returns CTL= -1409
RIGHT-MOUSE-CLICK-UP returns CTL= -1419

-1420 to -1801 Reserved for future use
-1802 to -1803 RIGHT-MOUSE-CLICK Change. RIGHT-MOUSE-CLICK no longer returns CTL=4.

RIGHT-MOUSE-CLICK-DOWN returns CTL= -1802
RIGHT-MOUSE-CLICK-UP returns CTL= -1803

Changed in *DEV/WINDOWS and *DEV/WINTERM
-1804 to -1899 Reserved for future use
-1900 Input Time-out (NOMADS Internal)

CTL Value Assigned Actions

Appendix Negative CTL Definitions

ProvideX Language Reference V8.30 820 Back

-1999 User's window_close request. By default, ProvideX maps this to
CTL=4 (in *DEV/WINDOWS). You can test for CTL=4 in your
programs, or you can use the DEFCTL Directive, p.78, to remap
-1999 to a different CTL; e.g.,

DEFCTL -1999=10 ! Maps the <F10> key (CTL=10) for
close

You can test the EOM system variable to find out whether the user
pressed the actual function key or selected one of the close options
(i.e., the Windows close button). HTA(EOM) returns 00800004
for <Alt-F4> or $0080F831$ for the close option. For more
information, refer to the 'F4' System Parameter, p.665, and the
EOM System Variable, p.559.

-2000 to -2255 Composite Character Generation. Whenever ProvideX detects a CTL
value in this range, the character whose ASCII value equals the
absolute value of CTL less 2000 is placed into the input buffer. This
feature allows you to define input sequences to generate the Extended
ASCII characters even when the terminal cannot generate them.

-2256 & below Reserved for future use

CTL Value Assigned Actions

X

Note: CTL values less than -32001 or greater than 32001 are reserved for internal use.
Please do not use CTL values in these ranges.

Appendix Operators

ProvideX Language Reference V8.30 821 Back

Operators Oper at or s

This section describes the traditional operators (e.g., + - * /) you can use in ProvideX,
along with other operators for which support has been added in recent versions
(e.g., the auto-increment and decrement operators, assignment operators, the LIKE
Operator, and the Apostrophe Operator). Use of these operators is further
described in the ProvideX User's Guide.

 Arithmetic Operators

The following operators are used to perform calculations.

In addition to the arithmetic operators, there are increment and decrement features:

Relational and Logical Operators

The following operators are used to compare two numeric or string values.

+ Addition. Where A + B adds A to B.
– Subtraction. Where A - B subtracts B from A.
* Multiplication. Where A * B multiplies A by B.
/ Division. Where A / B divides A by B.

^ Raise to. Where A ^ B raises A to the power of B (** is equivalent to ^).
| Modulus. Where A | B divides A's remainder by B.

++ Auto-increment by 1 (pre-increment when prefixed to variable name,
post-increment if suffixed); e.g., ++var1 or var1++.

– – Auto-decrement by 1 (pre-decrement when prefixed to variable name,
post-decrement if suffixed); e.g.,--var1 or var1--.

= Where A = B yields 1 if A and B are equal, else yields 0 zero.
< Where A < B yields 1 if A is less than B, else yields 0 zero.
> Where A > B yields 1 if A is greater than B, else yields 0 zero.

<> Where A <> B yields 1 if the A and B are not equal, else yields 0 zero.
<= Where A <= B yields 1 if A is less than or equal to B, else yields 0 zero.
>= Where A >= B yields 1 A is greater than or equal to B, else yields 0 zero.
AND Where A AND B yields 1 if both values are non-zero, else yields 0 zero.
OR Where A OR B yields 1 if either values are non-zero, else yields 0 zero.

Note: <>, <=, and >= can be entered as ><, =<, and => respectively.

Appendix Operators

ProvideX Language Reference V8.30 822 Back

Assignment Operators

The following assignment operators are included in the general syntax of the
language:

LIKE Operator

Use the LIKE operator for string comparisons. The ProvideX default is to take the
string expression on the left and compare it to the string mask on the right. You can
apply all the regular expression rules of the MSK() Function, p.486; e.g.,

IF A$ LIKE mask THEN ..
is the same as ...
IF MSK(A$, mask)<> 0 THEN ..

This operator may be used in conditionsl structures, such as IF..THEN..ELSE,
REPEAT..UNTIL, and WHILE..WEND.

To make conversions from Thoroughbred easier, set the 'TL' parameter to ON. With the
'TL' parameter set, the LIKE operator emulates the Thoroughbred matching of
patterns. For more information, refer to the 'TL' System Parameter, p.689.

Apostrophe Operator

The apostrophe operator is used to assign, retrieve, list, and make dynamic changes
to a given control or object's properties. For full details on the syntax and use of the
apostrophe, refer to the Apostrophe Operator in the next section.

+= Add to. Can be used with numerics or strings:
Numeric example: A+=1 is the same as A=A+1.
String example: A$+="G" is the same as A$=A$+"G".

–= Subtract from. Not valid for strings.
Numeric only: B-=A+1 is the same as B=B-(A+1).

*= Multiply by. Can be used with numerics or strings.
Numeric example: B*=A+1 is the same as B=B*(A+1)
String example: A$*=5 is the same as A$=A$+A$+A$+A$+A$.

/= Divide by. Not valid with strings.
Numeric only: B/=A+1 is the same as B=B/(A+1).

^= Exponentiation. Raise to. Not valid with strings.
Numeric only: B^=A is the same as B=B^A.

|= Modulus / remainder from division. Not valid with strings.
Numeric only: B|=A is the same as B=MOD(B,A)

Appendix Apostrophe Operator

ProvideX Language Reference V8.30 823 Back

Apostrophe Operator Ap ostr ophe Operat or

Formats 1. Assign Property: obj_id'property[$]=var[$]
2. Retrieve Property: var[$]=obj_id'property[$]
3. Call a Method: var[$]=obj_id'method[$](args)
4. List of Available Properties or Methods: var$=obj_id'*
Where

Description An apostrophe operator (tick) allows dynamic access to the properties and methods
available for a given COM, OOP, or graphical object. While the syntax is generally
the same for all object-oriented coding in ProvideX, the apostrophe operator can be
used to read and alter properties, or execute methods, in a variety of different control
and object types.

For detailed information on the use of the apostrophe operator for specific application
development purposes, refer to the following sources:

• ProvideX Event Handling documentation, Automation in ProvideX.

• ProvideX NOMADS Reference and related Direxions presentations.

• Chapter 7. Control Object Properties, p.701.

• Object Oriented Programming, p.22.

' Apostrophe Operator (sometimes called a tick)
* Asterisk to produce a comma-separated list of properties/methods

available for a particular object; e.g., to list DROP_BOX properties
(assuming dbox is a unique ctl_id):

PRINT dbox'*
Auto,BackColour,Col,Cols,CurrentItem,CtlName,Enabled
,Eom,Focus,Font,Height,hWnd,Item,ItemCount,ItemText,
Key,Left,Line,Lines,Msg,OnFocusCtl,Parent,Sep,SepLoa
d,Tbl,TextColour,Tip,Top,Value,Visible,Width,

args Optional argument(s).
method[$] Name of a valid method/function in the given control/object.

Method names are not case-sensitive. To query the list of available
methods, use the syntax for asterisk '* described above

obj_id Numeric variable containing the object identifier (handle) for the object.
property[$] Name of a valid property in the given control/object. Property

names are not case-sensitive. To query the list of available properties,
use the syntax for asterisk '* described above.

var[$] String or numeric variable.

Note: In the above syntax, ensure that numeric methods/properties correspond to
numeric variables and that string methods/properties correspond to string variables; i.e.,
obj_id'property$=var$ or var=obj_id'method() on both sides of the equation.

Appendix Apostrophe Operator

ProvideX Language Reference V8.30 824 Back

Examples The first example creates a multi-line control, displays the properties available,
changes the column width, and returns the current screen coordinates.
->multi_line 100,@(10,12,40,1)
->LET X=100
->PRINT X'*
Auto,BackColour,Col,Cols,CtlName,Enabled,Eom,Fmt,Focus,Font,Height,hWnd,
ImpliedDecimal,Key,Left,Len,Line,Lines,Lock,MenuCtl,Msg,Nul,OnFocusCtl,
Parent,Scroll,SelectLength,SelectOffset,SelectText,Sep,SignalOnExit,
TextColour,Tip,Top,Uppercase,Value,Visible,Width,
->LET X'Cols=50 ! Make control 50 columns wide
->PRINT X'Col,X'Line ! Current screen coordinates of the multi-line
 10 12
->

The following example creates a grid containing 10 columns and 5 rows, then selects
column two, row zero (which selects the entire column). Changing the value of the
property sets the contents of all the selected cells to that value.
->GRID 10,@(10,10,40,5)
->Y=10
->Y'ColumnsWide=10
->Y'RowsHigh=5
->Y'Column=2
->Y'Row=0
->Y'Value$="New Data"

This dynamically changes a property in one object based on the value of another:
IF Country.ctl’value$ = "CDN" \

THEN Zip'Fmt$="A0A 0A0" \
ELSE Zip'Fmt$="00000"

The following is a simple COM interface example that instantiates an Internet
Explorer object, then displays the PVX website:
DEF OBJECT IE, @(10,10,40,20)="Shell.Explorer"
IE’Navigate2('www.pvx.com')

The following OOP example assumes the definition of a "Customer" object:

Cst= NEW ("Customer")
Cst’Find("012345")

Appendix System Limits

ProvideX Language Reference V8.30 825 Back

System Limits Sys tem Limit s

This section lists ProvideX system limits (subject to operating system constraints on
memory and resources). There is also a general limit of 2GB on all data storage.

The following are preset limits for all ProvideX programs:

For ProvideX Basic Programs Limit Notes
Array (32-bit platforms), max elements (millions) 10
Array, dimensions 3

Command line (32-bit platforms), max characters 32767
Entire length includes path
+ all parameters, arguments.

Command line (32-bit platforms), max arguments 128
Includes path, program
name + all arguments.

COM interface method calls, max arguments 20
Directory name, max characters 260
File name, max characters 511 Includes path + file name.
Line number, highest 64999
Line label, max characters 127

Memory, max GB 2
... or the maximum the OS
allows, whichever smaller.

Mnemonics, max characters (billion) 2 String length for data
Precision, digits of accuracy 18 The default is 2.

Program name (arguments), max characters 2044 Includes path + file name
+ line label + data.

Program size (32-bit platforms), max GB 2
... or the maximum the OS
allows, whichever smaller.

Record limit, default max bytes 10240
Statement length, max in KB 24
Statement length (console editing), max in KB 4

String size, max GB 2
Refer to Internal
Limitations below.

TCP sockets (UNIX), max connections 65535
TCP sockets (Windows Server), max connections 65535
TCP/IP address, max characters 60
Variable name, max characters 127

WebServer port, highest port number 65535 Values < 2000 reserved for
standard Internet activities

Window character limit
255

Max. 225 for lines.
Max. 255 for columns.

Appendix System Limits

ProvideX Language Reference V8.30 826 Back

The following are preset limits for data files:

Internal Limitations
With this increased string limit a few internal logical limitations have been imposed
to avoid passing excessively long strings to some of the system functions. The
following functions/directives are restricted to 8kb string lengths:

• CALL subprogram names/entry point names.
• LIST_BOX LOAD for a single line.
• SYSTEM_HELP command.
• STR() function format masks.
• SYS() function system command.
• XEQ() pathname.
• EVS()/EVN() expressions.
• MSK() mask definition.
• DAY_FORMAT and DTE() formats.

For Data Files Limit Notes

Channels, max number 127/65000
See 'XF' System
Parameter, p.695

File size, max bytes 2 31-1 See 'MB'= System
Parameter, p.674

Files, max number open concurrently 500
Key segments, max KB 48 - 96
Key I/O buffers, max number 100
Keys, max number of 16/256 0-15 for VLR/FLR, or

0-255 for EFF
Keys, secondary alternate, max length 240
Record size (fixed), max bytes 32167
Record size (variable length), max bytes 31000

Appendix Reserved Words

ProvideX Language Reference V8.30 827 Back

Reserved Words Reserved W or ds

This words on this list are reserved for internal use by ProvideX. Do not use them as
variable names.

ABS
ACCEPT
ACS
ADD
ADDR
ALL
AND
ARG
ASC
ASN
ATH
ATN
AUTO
AUTO_LOCK
BEGIN
BIN
BKG
BREAK
BSY
BSZ
BUTTON
BYE
CALL
CASE
CHART
CHECK_BOX
CHG
CHN
CHR
CLEAR
CLIP_BOARD
CLOSE
CONTINUE
CONTROL
COS
CPL
CRC
CREATE
CSE
CTL
CUSTOM_VBX
CVS
CWDIR
DATA
DAY
DAY_FORMAT
DEC
DEF
DEFAULT
DEFCTL
DEFPRT
DEFTTY
DELETE
DICTIONARY
DIM
DIR
DIRECT
DIRECTORY

DISABLE
DLL
DLM
DLX
DOM
DROP
DROP_BOX
DSK
DSZ
DTE
DUMP
EDIT
ELSE
ENABLE
END
ENDTRACE
END_IF
ENTER
ENV
EOM
EPT
ERASE
ERR
ERROR_HANDLER
ERS
ESC
ESCAPE
EVN
EVS
EXCEPT
EXECUTE
EXIT
EXP
EXTRACT
FFN
FI
FIB
FID
FILE
FIN
FIND
FLG
FLOATING
FMT
FN
FNT
FOR
FPT
FROM
GAP
GBL
GEP
GET_FILE_BOX
GFN
GID
GO
GRID
HFN

HIDE
HLP
HSA
HSH
HTA
HWD
HWN
H_SCROLLBAR
I3E
I86
IF
IND
INDEX
INDEXED
INPUT
INT
INVOKE
IOL
IOLIST
IOR
ISZ
JUL
KEC
KEF
KEL
KEN
KEP
KEY
KEYED
KGN
KNO
LAOD
LCS
LEN
LET
LFA
LFO
LIKE
LINE_SWITCH
LIP
LIST
LIST_BOX
LOAD
LOCAL
LOCK
LOG
LONG_FORM
LPG
LRC
LSIT
LST
LWD
MAX
MDE
MEM
MENU_BAR
MERGE
MESSAGE_LIB

MID
MIN
MNEMONIC
MNM
MNU
MOD
MSE
MSG
MSGBOX
MSK
MSL
MULTI_LINE
MULTI_MEDIA
MXC
MXL
NAR
NBF
NEXT
NID
NOT
NUL
NUM
OBJ
OBJECT
OBTAIN
OFF
ON
OPEN
OPT
OR
OWN
PAD
PASSWORD
PCK
PERFORM
PFX
PGM
PGN
POINT
POP
POPUP_MENU
POS
PRC
PRECISION
PREFIX
PREINPUT
PRINT
PRM
PROCEED
PROCESS
PROGRAM
PROPERTIES
PROPERTY
PSZ
PTH
PUB
PURGE
QUIT

QUO
RADIO_BUTTON
RANDOM
RANDOMIZE
RCD
RDX
READ
REC
RECORD
REFILE
RELEASE
REM
REMOVE
RENAME
RENUMBER
REPEAT
RESET
RESTORE
RET
RETRY
RETURN
RND
RNO
ROUND
RSZ
RTY
RUN
SAME
SAVE
SCALL
SECURITY_MASK
SELECT
SEP
SERIAL
SERVER
SETCTL
SETDAY
SETDEV
SETDRIVE
SETERR
SETESC
SETFID
SETMOUSE
SETTIME
SETTRACE
SET_FOCUS
SET_NBF
SET_PARAM
SGN
SHORT_FORM
SHOW
SID
SIN
SIZ
SORT
SQR
SRT
SSN

SSZ
START
STEP
STK
STOP
STP
STR
SUB
SWAP
SWITCH
SWP
SYS
SYSTEM_HELP
SYSTEM_JRNL
TABLE
TAN
TBL
TCB
THEN
TIM
TIP
TME
TMR
TMS
TO
TRANSLATE
TRISTATE_BOX
TRX
TSK
TSM
TXH
TXW
UCS
UID
UNLOCK
UNT
UNTIL
UPK
USER_LEX
VAL
VARDROP_BOX
VARLIST_BOX
VIA
VIDEO_PALETTE
VIN
VIS
V_SCROLLBAR
WAIT
WEND
WHERE
WHILE
WHO
WINDOW
WINPRT_SETUP
WRITE
XEQ
XFA
XOR

Appendix Error Codes and Messages

ProvideX Language Reference V8.30 828 Back

Error Codes and Messages Error Codes and Mes sagesError Codes (Hyperlis t)

.

Note: The hyperlist above is linked to the complete list of error codes. The error and warning
messages are explained in further detail on the following pages.

 0: Record/file busy
 1: Logical END-OF-RECORD reached
 2: END-OF-FILE on read or File full on write
 3: Input/Output error on file
 4: Device not ready
 5: Data error on device or file
 6: Directory error
 7: Access out of file boundaries
 8: Data write error
 9: Unable to restore calling program
10: Illegal pathname specified
11: Record not found or Duplicate key on write
12: File does not exist (or already exists)
13: File access mode invalid
14: Invalid I/O request for file state
15: Operating system command failed
16: File/Disc is full
17: Invalid file type or contents
18: Program not loaded/Invalid program format
19: Program size too large
20: Syntax error
21: Statement number is invalid
22: Invalid compound statement
23: Missing/Invalid variable
24: Attempt to duplicate a function name
25: Invalid call to user function (Non-existant or recursive)
26: Variable type invalid
27: Unexpected or incorrect WEND, RETURN, or NEXT
28: No corresponding FOR for NEXT
29: Invalid Mnemonic or position specification
30: Statement too complex -- cannot compile
31: Memory limits reached -- Increase '-SZ' option
32: Invalid or redundant Input/Output option
33: Insufficent memory available in system -- try later
34: Directive not allowed from COMMAND mode
35: Invalid date/time specified
36: ENTER parameters don't match those of the CALL
37: Directive can only execute in subprogram
38: Directive cannot be used within CALLed program
39: Invalid record definition
40: Divide check or numeric overflow
41: Invalid integer encountered (range error or non-integer)
42: Subscript out of range/Invalid subscript
43: Format mask invalid
44: Invalid step value
45: Referenced statement invalid
46: Length of string invalid
47: Substring reference out of string
48: Invalid input -- Try again
49: <*> Internal program format error <*>
50: Reserved for FUTURE USE
51: Invalid VFU/key load
52: Program is password protected
53: Invalid password
54: Unable to load ERROR HANDLER
55: Cannot locate statement label
56: Duplicate statement label
57: No such window defined
58: Line(s) in GOSUB/FOR/WHILE stack
59: Invalid directive in function/object definition

 60: Invalid control argument value
 61: Authorization failure
 62: Not a development system
 63: Not activated for this software package
 64: No valid LEX table loaded
 65: Window element does not exist or already exists
 66: Warning-Program size > 64K -- may not run on all environments
 67: VBX processor reported a failure
 68: RPC (Remote Process Call) name not found
 69: No Journalization file open
 70: EDIT command syntax error
 71: String not found
 72: Replacement string will not fit
 73: No current string defined
 74: RENUMBER rejected -- Line numbers too large
 75: Invalid Hex string
 76: LINE_SWITCH failure - Terminal cannot be switched
 77: Edit generates no line number
 78: Invalid MSK specification
 79: Invalid FORMAT specification
 80: Invalid key definition, number or name
 81: Invalid IOLIST specification
 82: File must be 'LOCKED' before being 'PURGED'
 83: Invalid statement number range
 84: No DICTIONARY exists on OPENed file
 85: Program does not support line numbers..
 86: Transmission error to device
 87: MENUBAR definition invalid
 88: Invalid/unknown property name
 89: File access denied -- I/O operation pending
 90: Unable to locate Object class definition
 91: Class/Object in use
 92: Invalid CLASS definition
 93: Already defined within class definition
 94: Loop in Class inheritance found
 95: Bad Object Identifier
 96: Invalid Return Value
 97: Version conflict - function not supported
 98: Feature not yet implemented
 99: Feature not supported
100: No driver for terminal type or library missing
101 - 102: No message
105 - 114: Keyed file errors
115: File I/O Verification Error
116: Invalid field descriptor byte
117: Invalid segment number
118: Keyed file error
119: No message.
120: Internal system logic error
121: Invalid program format
122: No message.
123: Warning-The following statement labels cannot be located
124: Warning-The following statement labels occur more than once
125: Improper Structure Detected
126: Forced termination - No valid activation file
127: Break key depressed
>256: Operating System Errors

Appendix List of Messages

ProvideX Language Reference V8.30 829 Back

List of Messages B MK

Whenever ProvideX encounters an error, it sets the ERR System Variable, p.560, to an
error code (an integer). The associated error message indicates the type of error.

ERR values greater than 255 indicate operating system errors. In these cases,
ProvideX returns the value of the operating system's error code (integer) plus 256.
Use the MSG() Function, p.484, to obtain the error message that is associated with
the number:

->?msg(4)
Error #4: Device not ready

This section provides a numerically arranged list of all the current error codes and
their meanings.

Error #0: Record/file busy
Possible Reasons:

• Cannot open a file that is locked by another user.
• Cannot READ, FIND, EXTRACT, or INPUT if a record is being extracted by another user.
• Time-out occurred on a device.
• Permission denied.

The BSY=stmtref option allows you to trap Error #0: Record/file busy.

Error #1: Logical END-OF-RECORD reached
Combined length of data elements cannot exceed preset maximum record length (as
defined for your given file).

Error #2: END-OF-FILE on read or File full on write
Possible Reasons:

• On a read: the end of the file has been reached or
• On a write: the file is full or has reached a preset maximum record count.
• [TCP] disconnection

When ProvideX is processing a CLOSE directive and Error #2 is reported because
of a full disk, the error is only reported once. Then ProvideX internally trashes the
pending data and closes the channel.

Error #3: Input/Output error on file
A physical (hardware) error was returned from a device. If errors are recurring on a
disk drive, record and report them to your hardware maintenance supplier.

Error #4: Device not ready
A "not ready" status was returned from the device. If the device is a printer, see if it is
out of paper or the off-line button has been pressed.

Appendix List of Messages

ProvideX Language Reference V8.30 830 Back

Error #5: Data error on device or file
Typically reports a hardware malfunction: an error has occurred on a device during a
read or write (most often on a read, indicating that the system is unable to read the
data correctly).

Error #6: Directory error
Unable to re-establish a lock on a file.

Error #7: Access out of file boundaries
On a read or write – cannot use a record index which exceeds the maximum number
of records allowed for the file.

Error #8: Data write error
Typically reports a hardware malfunction: an error has occurred while trying to
update a data file.

Error #9: Unable to restore calling program
Legacy DOS only – unable to reload a program that was removed from memory
(due to memory limitations).

Error #10: Illegal pathname specified
Invalid filename on a SAVE, OPEN, LOAD, RUN, or CALL directive. Possible reasons:
filename too long, contains invalid characters, or has invalid syntax. A null string is
an invalid pathname.

In [TCP] – an invalid IP or DNS address.

Error #11: Record not found or Duplicate key on write
Possible Reasons:

• Nonexistent record specified in KEY= or IND= option. On a READ or EXTRACT
directive (KEY= option only) – index position goes to the record with the next
higher record key. Use the DOM= option to trap and process this error.

• [TCP] file I/O includes an IND=value or KEY=value for a client that is not
connected.

• Menu bar item cannot be found when processing sub-commands; i.e.,
ON/OFF/ENABLE/DISABLE.

Error #12: File does not exist (or already exists)
Possible Reasons:

• Cannot create a file (DIRECT, INDEXED, SORT, etc.) if a file of the same given name
already exists.

• Filename does not exist – cannot ERASE, OPEN, LOAD, RUN, or CALL a
non-existent file.

• In [TCP] – can't OPEN, server is not listening.

Appendix List of Messages

ProvideX Language Reference V8.30 831 Back

Error #13: File access mode invalid
Possible Reasons:

• Cannot send output to serial file unless first locked.
• Cannot receive input from an output-only device (e.g., a printer).
• Cannot send output to an input only device,
• Cannot write given output to file without a KEY= option or not before extracting a

record.
• Cannot write to a non-externally keyed file using a KEY= option.
• Cannot drop the only active window on a terminal.
• OS returned an access mode violation or a permission denied status on an OPEN

INPUT or OPEN PURGE directive for a file.
• Attempt to apply/remove a password when the file is in read-only mode, not

locked, or not empty.

Error #14: Invalid I/O request for file state
Possible Reasons:

• Cannot access a file that is not opened.
• Cannot unlock a file that is not locked.
• Cannot open a logical file number (channel) that is already open
• On a CLOSE directive – cannot close a channel that is not open, but no message is

returned unless you used the ERR= option.
• Attempt to apply a password to an un-opened channel.

Error #15: Operating system command failed
Possible Reasons:

• Returned from the operating system. For more details PRINT MSG(-1).One
possible reason: exhaustion of .bmp handles.

• In [TCP], can't open the socket locally or general TCP failure on file I/O.

Error #16: File/Disc is full
Typically, either the disk is full or the user has reached an allotted limit. The file
being written to has no additional room for expansion.

Error #17: Invalid file type or contents
Possible Reasons:

• Cannot use a KEY= option when the file does not have a key.
• Cannot have unequal lengths for the two parameters for an AND(), IOR(), or XOR(

) function.
• Cannot SAVE, LIST, or MERGE a file that has a key.
• Cannot WRITE to a program file.
• Attempt to apply a password to a non-keyed file.
• Attempt to encrypt a non-VLR formatted file.

Appendix List of Messages

ProvideX Language Reference V8.30 832 Back

Error #18: Program not loaded/Invalid program format
Cannot LOAD, RUN, or CALL a file which is not in the correct program format.

Error #19: Program size too large
Program exceeds the 64k limit

Error #20: Syntax error
The program statement contains a syntax error (usually just a typing error).

Error #21: Statement number is invalid
Possible Reasons:

• Cannot use a line number in excess of maximum 65000.
• Cannot edit/append to a non-existent line.
• Cannot refer incorrectly to an existing line

e.g., TBL=nnnn where nnnn is not a table.
• Program does not have line numbers.

Error #22: Invalid compound statement
Directive out of position: the particular directive must be the final item in a
compound statement because it has the potential to transfer control; e.g., GOTO,
GOSUB, etc.

Error #23: Missing/Invalid variable
Mandatory variable is missing from the statement's syntax.

Error #24: Attempt to duplicate a function name
Cannot create function of the same given name as one that already exists.

Error #25: Invalid call to user function (Non-existent or recursive)
Possible Reasons:

• Cannot call non-existent user-defined function (not defined or name misspelled)
• Cannot exceed limit on number of recursive calls to a user defined function.

(Maximum of 10 recursive calls, ten levels deep.)

Error #26: Variable type invalid
Possible Reasons:

• Cannot use numeric value in string variable.
• Cannot use string value in numeric variable.

Error #27: Unexpected or incorrect WEND, RETURN, or NEXT
Cannot execute NEXT, WEND, RETURN, or UNTIL if there is no corresponding entry
at the top of the stack (applies to WHILE/WEND, GOSUB/RETURN, FOR/NEXT, or
REPEAT/UNTIL stack).

Appendix List of Messages

ProvideX Language Reference V8.30 833 Back

Error #28: No corresponding FOR for NEXT
The variable name for the NEXT directive does not match the variable name given
for the current FOR directive.

Error #29: Invalid Mnemonic or position specification
Possible Reasons:

• Unrecognized or invalid mnemonic (undefined or misspelled, etc.) on a PRINT or
INPUT statement (only generated if you have already set the 'EG' mnemonic).

• Invalid position in @() function (outside of current window/scroll region
boundaries).

Error #30: Statement too complex -- cannot compile
Expression cannot exceed 249 parentheses.

Error #31: Memory limits reached -- Increase '-SZ' option
Cannot exceed preset maximum size for user work space (set either using a -SZ
option or in the START directive). Free some of the work space (delete unused
variables, arrays, etc.) or increase the memory limits.

Error #32: Invalid or redundant Input/Output option
Invalid or duplicate option used on the Input/Output directive.

Error #33: Insufficient memory available in system -- try later
The operating system has denied a request for additional memory. Either the amount of
memory being requested exceeds system capacity or the memory is in use.

Error #34: Directive not allowed from COMMAND mode
The particular directive cannot be executed from COMMAND mode. The FOR
directive is one example.

Error #35: Invalid date/time specified
An invalid date or time has been specified on a SETDAY or SETTIME directive.

Error #36: ENTER parameters don't match those of the CALL
The parameters in an ENTER directive do not match the parameters in the
corresponding CALL directive. The number and type (numeric or string) must be the
same in both directives.

Error #37: Directive can only execute in subprogram
Cannot execute an ENTER or EXIT directive except in subprogram.

Error #38: Directive cannot be used within CALLed program
The particular directive cannot be used in a subprogram.

Error #39: Invalid record definition
This message applies to ODBC data.

Appendix List of Messages

ProvideX Language Reference V8.30 834 Back

Error #40: Divide check or numeric overflow
• Cannot divide by zero. (To return zero for divide by zero errors, set the 'D0'

parameter ON.)
• Cannot exceed the machine's limits on the result of an arithmetic operation.

Error #41: Invalid integer encountered (range error or non-integer)
Either the value specified is not an integer or it exceeds the range allowed for the
type of operation being performed; e.g.,

• Cannot use logical file number (channel) outside of permitted range.
• Cannot set PRECISION to value outside of range -1 to +18.
• Cannot exceed 32767 elements in an array.
• Cannot use line or column position @...() function outside of preset window or

screen boundaries.
• Cannot return function value outside of existing range, for instance, a non-existent

TSK() number.

Error #42: Subscript out of range/Invalid subscript
The value of the subscript is beyond the minimum/maximum settings defined for
the array.

Error #43: Format mask invalid
The format mask in a PRINT statement or a STR() function is not large enough to
contain the numeric value. Use the 'FI' parameter to suppress the message.

Error #44: Invalid step value
Cannot use zero (0) for the STEP value in a FOR directive.

Error #45: Referenced statement invalid
Incorrect reference to existing statement; e.g., IOL=nnnn where nnnn does not
contain an IOList or TBL=nnnn where nnnn does not contain a TABLE directive).

Error #46: Length of string invalid
This error is reported when the length of the string provided is not appropriate for
the function of directive being executed; e.g,

• Format mask is in excess of 8192 bytes.
• Length of the string in the KEY= option cannot exceed the key length for the given file.
• Cannot execute the ASC() function on a null string.

Error #47: Substring reference out of string
Possible reasons:

• Substring does not exist in string variable, or
• Substring exceeds the capacity of the variable.

Appendix List of Messages

ProvideX Language Reference V8.30 835 Back

Error #48: Invalid input -- Try again
This error occurs when data input is checked against a validation list. It indicates one
of the following:

• Value for numeric variable is not in the range specified or has too many decimals.
• Value for a string variable exceeds the maximum length allowed.

Error #49: <*> Internal program format error <*>
The compiled statement contains invalid data and cannot be processed or
decompiled. This is either because of an internal ProvideX error or because the
program code has been modified externally.

Possible Reasons:

• The program on disk has been damaged.
• The program was created using a feature from a newer version of ProvideX which

is not supported by the version you are using.
• A new version of ProvideX was installed without the correct Lex tables

(/pvx/lib/_lex*.*)

Error #50: Reserved for FUTURE USE

Error #51: Invalid VFU/key load
The VFU is not loaded because the mnemonic sequence is incorrect or other than
numeric data has been inserted between the 'SL' and 'EL' printer mnemonics.

Error #52: Program is password protected
The current program has been saved with a password.

• Cannot change or list the program without using the PASSWORD directive.
• Cannot save a passworded program to a serial file.

Error #53: Invalid password
The password entered does not match the password recorded for the program or data
file. (Sage Software Canada Ltd. can recover a program if the password is unknown.)

Error #54: Unable to Load Error Handler
The system is unable to properly load and execute the specified error handler. This
commonly happens when an application attempts to open more files than the O/S
permits which triggers an un-trapped error. When ProvideX attempts to access the error
handler program from disk to report the error, it is unable to do so as this requires a file
handle which is what caused the original un-trapped error.

Error #55: Cannot locate statement label
Non-existent or misspelled line label during program execution. (If the label is
missing during a SAVE operation, the program is saved without a reported error but
the program may not function properly.)

Appendix List of Messages

ProvideX Language Reference V8.30 836 Back

Error #56: Duplicate statement label
This error is only generated by the SAVE command. It warns that a line label has
been defined twice. The SAVE operation is completed without error, but the program
may not function properly.

Error #57: No such window defined
Possible Reasons:

• Non-existent window number: cannot locate for a 'DROP'/'GOTO'
• Cannot exceed window number 248 in creating new Window.

Error #58: Line(s) in GOSUB/FOR/WHILE stack
One of the program lines you are trying to edit is currently in the stack. You must
reset or end the program before making the change.

Error #59: Invalid directive in function/object definition
In a multi line function, cannot include a directive which could reset the stack or
return to program Command mode.

Error #60: Invalid control argument value
An attempt was made to access or set an invalid property, or apply an invalid value
to a property normally associated with a GRID or CHART.

Error #61: Authorization failure
Possible Reasons:

• Cannot run an unauthorized program or system function. Contact your dealer to
obtain the proper activation keys.

• Password record may have failed the internal CRC check.

Error #62: Not a development system
Cannot create (or change access to) a secured program. Only developers can perform
this task.

Error #63: Not activated for this software package
Cannot save a program using a package ID without an activation key.

Error #64: No valid LEX table loaded
The system is unable to locate or read the file containing the LEX (syntax) table
(*lextbl.en).

Error #65: Window element does not exist or already exists
Cannot reference non-existent window or GUI object that has not yet been drawn.

Warning #66: Program size > 64K -- may not run on all environments
ProvideX issues this warning when you save a program that is getting close to the
64k limit.

Appendix List of Messages

ProvideX Language Reference V8.30 837 Back

Error #67: VBX processor reported a failure
The VBX Processor reported back with an error.

Error #68: RPC (Remote Process Call) name not found
Cannot issue a call to a remote system that has not yet been defined.

Error #69: No Journalization file open
File marked to be journalized but no journal file is open.

Error #70: EDIT command syntax error
The EDIT directive was incorrectly entered. No changes will be made to the program.

Error #71: String not found
The string given (enclosed in square brackets) has not been found.

Error #72: Replacement string will not fit
The length of the string following an EDIT 'R' directive exceeds the number of
characters remaining in the original line. The complete EDIT command is rejected.

Error #73: No current string defined
Cannot reference the current string using [] because no current string has been defined.

Error #74: RENUMBER rejected -- Line numbers too large
Cannot renumber if the result will generate statements exceeding maximum 65000.
Change the RENUMBER directive to reduce the highest line number used.

Error #75: Invalid Hex string
Cannot use characters other than 0 to 9 or A to F in a Hex string.

Error #76: LINE_SWITCH failure - Terminal cannot be switched
The system cannot properly switch file 0 zero to the specified file (cannot switch to a
file that is not a terminal).

Error #77: Edit generates no line number
On EDIT directive – resultant string does not contain a valid leading line number.

Error #78: Invalid MSK specification
Possible Reasons:

• The mask specified in the MSK() function is invalid.
• Cannot reuse as current mask if no previous mask already available.

Error #79: Invalid FORMAT specification
The IOList contains an invalid format specification.

Error #80: Invalid key definition, number or name
Possible Reasons:

• Invalid key definition on a KEYED directive

Appendix List of Messages

ProvideX Language Reference V8.30 838 Back

• Invalid key number referenced

Error #81: Invalid IOLIST specification
The IOList contains an invalid specification.

Error #82: File must be 'LOCKED' before being 'PURGED'
File must be locked before using a PURGE directive to erase all data.

Error #83: Invalid statement number range
Cannot have invalid range of statement numbers; e.g., an ending statement number
less than the starting statement number.

Error #84: No DICTIONARY exists on OPENed file
No embedded data dictionary exists but the file INPUT directive is looking for one.

Error #85: Program does not support line numbers..
Returned if trying to use line numbers when system parameter 'NN' set to prohibit
line numbers

Error #86: Transmission error to device
A communications problem is reported between a host and a WindX client (usually
when the client does not respond quickly).

Error #87: MENUBAR definition invalid
Syntax error in a menubar definition

Error #88: Invalid/unknown property name
The property or method name of a ProvideX object (OOP object/OCX/COM/VBX
control or GUI control) is invalid, or the parameters passed to a method call are
incorrect.

Error #89: File access denied -- I/O operation pending
Processing an OCX event during the middle of a file I/O operation; e.g., if a program
is reading from a TCP/IP port and an OCX event occurs, the event processing logic
may not access the TCP/IP port since doing so may harm a pending I/O operation.

Error #90: Unable to locate Object class definition
Attempting to load an object class definition the system did not detect the DEF
CLASS directive.

Error #91: Class/Object in use
Attempting to DROP a class definition while it is still in use.

Error #92: Invalid CLASS definition
Incorrect object class definition. It is likely that an invalid directive was found
between the DEF CLASS and END DEF.

Appendix List of Messages

ProvideX Language Reference V8.30 839 Back

Error #93: Already defined within class definition
Two or more PRECISION or PROGRAM declarations in one class definition.

Error #94: Loop in Class inheritance found
Object class being defined is attempting to inherit a class definition that inherits the
object class being defined.

Error #95: Bad Object Identifier
Specified object handle is not valid or the object has been deleted.

Error #96: Invalid Return Value
Invalid return value.

Error #97: Version conflict - function not supported
Attempting to use a feature of the language that has been disabled due to use of an
activation key for an earlier version of the software. The key you are using only
provides access to the functionality that existed at the time the key was issued. You
must purchase an newer version of the software.

Error #98: Feature not yet implemented
Cannot use the particular function or directive because it isn't implemented in this
release of ProvideX.

Error #99: Feature not supported
Cannot use the particular function or directive because it's not implemented or
available on this hardware platform.

Error #100: No driver for terminal type or library missing
During initialization –ProvideX could not locate the device driver module for the
type of terminal you are using (as defined in the TERM environment variable). This
error may also result because the system cannot find the ProvideX library.

Error #101: to Error #102: No message.

Reserved for future use.

Error #105: Keyed file error (Short key block)
Reported whenever a key/data block is read from the file and the OS reports that the
data read is less than was expected. Normally this indicates a truncated file caused
by OS failure.

note
Note: Errors 105 to 117 signal a logical error in the format of the Keyed file being
referenced. Try to recover the file if possible, either by restoring it from a backup or by
running the ProvideX Keyed/Direct file key reconstruction utility (*UFAR).

Appendix List of Messages

ProvideX Language Reference V8.30 840 Back

Error #106: Keyed file error (Bad key block hdr)
The key/data block read has an invalid header. The first byte of the data block which
indicates the type of data stored within the block is incorrect. See note above.

Error #107: Keyed file error (Wrong key block addr)
The logical address field within the key/data block (offset 2,4) does not match the
address that was expected. See note above.

Error #108: Keyed file error (Record length invalid)
A data record read from the file has an invalid record length field. The record length
must not exceed the maximum record length for the file. See note above.

Error #109: Keyed file error (Deleted record chain bad)
The deleted record chain on a fixed record length Keyed file is corrupted. Each
record on this chain should have a deleted record flag set. See note above.

Error #110: Keyed file error (No EOF flag found)
The key structure has become corrupted as there is no logical EOF key entry. See
note above.

Error #111: Keyed file error (Record data unreadable)
The system was unable to read a record from a fixed record length Keyed file. The
operating system is indicating that the data is not available, usually due to file
truncation. See note above.

Error #112: Keyed file error (Record key size invalid)
A data record read from the file has an invalid external key size length. The external
key size must not exceed the maximum defined for the file. See note above.

Error #113: Keyed file error (Variable record offset bad)
An offset within a data block is invalid. The offset which indicates where within the
data block the physical record starts must contain a positive value not exceeding the
size of the data block. See note above.

Error #114: Keyed file error (Physical record address bad)
A logical record address in a variable length record file is incorrect. A logical address
consists of a block address plus a one-byte record index within the block. The record index
must be between 1 and 255. This error is reported if the index is zero. See note above.

Error #115: File I/O Verification Error
Attempt to verify a file READ or WRITE failed. This error is only reported when
using the 'VR' or 'VW' system parameters.

Error #116: Invalid field descriptor byte
The contents of a record stored in a file with a dynamic field separator (SEP=*)
could not be parsed due to an invalid field descriptor or field identifier.

Appendix List of Messages

ProvideX Language Reference V8.30 841 Back

Error #117: Invalid segment number
The record address contained within a key block contains an invalid file segment
reference. This may be reported when running ProvideX versions prior to 4.23 or
when using ProvideX ODBC driver versions prior to 3.22.

Error #118: Keyed file error
Decompression failed.

Error #119: No message.

Reserved for future use.

Error #120: Internal system logic error
Contact Sage Software Canada Ltd.

Error #121: Invalid program format
The Embedded I/O program associated with a Keyed file could not be loaded.

Error #122: No message.

Reserved for future use.

Warning #123: The following statement labels cannot be located
This warning appears when a non-existent label is referenced in a program.

Warning #124: The following statement labels occur more than once
This warning appears when the same label is defined more than once in a program.

Warning #125: Improper structure detected
This warning appears when faulty decision/loop logic is detected in a program.

Error #126: Forced termination - No valid activation file
Contact Sage Software Canada Ltd.

Error #127: Break key depressed
An internal error generated when either the user hits the BREAK key or an ESCAPE
directive is encountered.

Error #256 (and >256): Operating System Errors
Any error message over 255 is a reported operating system error. ProvideX reports
OS errors by taking the actual OS error number and adding 256. Use the following
requests to determine what these errors are:

PRINT MSG(error#) or PRINT MSG(RET)

Appendix List of Messages

ProvideX Language Reference V8.30 842 Back

ProvideX Language Reference V8.30 Back

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

843

Index

@
!, exclamation point 25
’!9’ parameter 697
’!B’ parameter 697
'!D' parameter 698
'!F' parameter 698
'!I' parameter 698
’!K’ parameter 698
’!Q’ parameter 698
’!R’ parameter 698
'!S' parameter 699
'!T' parameter 699
'!U' parameter 699
'!W' parameter 699
’!X’ parameter 700
" , quotation marks 25
$, dollar sign 25
%, percent sign 25
' , back apostrophe 26
* , asterisk 25, 252
'*K' parameter 700
'*L' parameter 700
/ or \ slashes (forward or back) 26
: , colon 26
-: -> -} prompts 26
; semicolon 25
? question mark 26
'@@' mnemonic 585
@X() / @Y() functions, return

coordinates 390–391
’ , apostrophe 25, 823
’@@’ define cursor position sequence 585
'1U' parameter 655
'2D' mnemonic 585
'3D' mnemonic 586

'3D' parameter 655
’4D’ mnemonic 586

A
'AB' mnemonic 586
ABS() function, absolute value 392
accent characters 67, 70, 74
ACCEPT directive, read single keystroke 28
ACS() function, return arc-cosine 393
ActiveX, See Component Object Model (COM)
ADD INDEX directive, add key to keyed file 29
ADDR directive, load/lock program 30
’AD’ parameter 655
'AH' parameter 656
'AI' parameter 656
AND() function, logical AND 394
apostrophe (’) 25

back apostrophe (') 26
operator for controls/objects 823
parameters 653

’AP’ parameter 656
application, See program
arc-cosine, ACS() function 393
arc-sine, ASN() function 397
arc-tangent, ATN() function 399
'ARC' mnemonic 586
arguments 19, 40

ARG() function, in command-line 395
CALL directive, transferred to subprogram 40
ENTER directive, in subprogram 119
NAR system variable, number at startup 567
system limits 825
See also parameters, syntax, variables

arithmetic, See math
arrays

’AD’ parameter, auto-DIM 655

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

844

DIM() function, get array dimensions 415
DIM directive, define arrays, strings 86–88
REDIM directive, redimension array 277
system limits 825

ASCII
ASC() function, get ASCII value 396
ASCII from Radix-40, TRX() function 542
ASCII to Radix-40, RDX() function 509
CHR() function, ASCII character of value 403
CMP() function, compress data 404
UCP() function, compress data 547

ASN() function, returns arc-sine 397
assignment operators 821
asterisk (*) 25, 252
ATH() function, convert hex 398
'AT' mnemonic 587
ATN() function, return arc-tangent 399
attributes, See Keyed files, graphical control

objects
Auto Complete 218, 709
AUTO directive, automatic line generation 31
’AW’ parameter 656

B
’+B’ & ’-B’ mnemonics 587
'B0' parameter 656
'Bn' mnemonic 588
back apostrophe (') 26
'BACKGR' mnemonic 588
base 10 logarithm, LOG() function 475
Basic, See language compatibility
'BB' mnemonic 588
BBx, See language compatibility
’BEEP’ mnemonic 589
BEGIN directive, reset files and variables 32
behaviour-related mnemonics 581
'BE' mnemonic 589
'BF' parameter 657
'BG' mnemonic 589
'BI' mnemonic 590
binary 341, 565, 580

BIN() function, binary from numeric 400
DEC() function, get binary of string 414
NOT() function, invert string bits 490
POS() function, scan string 502
SWP() function, swap data 528
test for serial files 657
See also logic

bitmaps/icons 36, 49, 179, 192, 203, 267, 346
BITMAP special file 738
’PICTURE’ mnemonic, define/draw

image 631
SAVE CONTROL directive, screen capture 296
SAVE FILE directive, save bitmap file 298

'BJ' mnemonic 590
BKG system variable, background status 556
'BK' mnemonic 590
'BLACK' & '_BLACK' mnemonics 591
’BL’ parameter 657
'BLUE' & '_BLUE' mnemonics 591
'BM' mnemonic 591
'BO' mnemonic 591
bookmarks in PDF 627, 747
'BOX' mnemonic 592
branching

CASE directive, define branch points 42
DEFAULT directive, branch if no CASE 77
END SWITCH directive, end branching 115
SWITCH directive, branch control 331

BREAK directive, immediate exit of loop 33
'BR' mnemonic 592
'BS' mnemonic 592
BSZ() function, bank memory size 401
'BT' mnemonic 593
’BT’ parameter 657
'BU' mnemonic 593
Business Basic, See language compatibility
BUTTON directive, control button 34–37

object properties 703
'BW' mnemonic 593
'BX' mnemonic 593
'BX' parameter 658
BYE directive, terminate ProvideX session 39
’BY’ parameter 658

C
’*C’ mnemonic 594
'Cn' mnemonic 594
Calendar 711
Calendar button 219
call

CALL directive, transfer to subprogram 40
program to call on close 649
STK() function, stack 522
XEQ() function, inline to subprogram 551

'CAPTION' mnemonic 594

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

845

CASE directive, define branch points 42
’CD’ parameter 658
’CE’ mnemonic 595
'CE' parameter 658
'CF' mnemonic 595
'CF' parameter 658
channels xiv, 22, 826

See also files
character display

mnemonics 584
See also text

CHART directive, control chart 43
object properties 704

CHECK_BOX directive, control check box 47,
49, 51–53

object properties 704
CHG() function, if variable changed 402
'CH' mnemonic 595
CHN system variable, channels open 556
'CH' parameter 659
CHR() function, ASCII character of value 403
’CI’ mnemonic 595
’CI’ parameter 659
'CIRCLE' mnemonic 596
clear

BEGIN directive 32
CLEAR directive, reset variables 54, 87
cursor to EOL 596
data from chart 43
data from file, PURGE directive 263
data from file, REFILE directive 278
input type-ahead buffer 595
screen 598
text from cursor 595

client-server, See networks
CLIP_BOARD directive, Windows clipboard 55
’CL’ mnemonic 596
CLOSE directive, close file 56

output on close 594
program to call on close 649

CMP() function, compress data 404
colon (:) 26
’COLOR’ & ’_COLOR’ mnemonics 596
’COLOUR’ & ’_COLOUR’ mnemonics 596
columns

MXC() function, maximum in file 488
command line

ARG() function, return argument 395
NAR system variable, argument number 567

system limits 825
Command mode 19, 31, 687

display errors in 664
prompt 19, 681, 683

commands
See directives
INVOKE directive, execute OS command 163
send OS command string 634
special command tags 769–806
SYS() function, invoke OS command 529

comments
exclamation point (!) 25
REM directive, remark 280

compatibility, See language, conversion
compiled format

CPL() function, compile string 407
LIST directive, convert statements 176
LST() function, convert statements 477
PGM() function, return program line 500
See program

Component Object Model (COM) 823, 825
DEF OBJECT directive, define object 71
DELETE OBJECT directive 84
ON EVENT directive, COM event

processing 228
compress data 404, 547

See also Zlib
console

input/output 175
CONTINUE directive, next iteration of loop 57
control object properties 701–735

apostrophe operator 823
compound properties 728
drag and drop (grid) 733
loading by row (grid) 733
load on demand (list boxes) 729
multiple selections (lists and grids) 730
multi-property access 728
state indicators (tree view list boxes) 731
See also graphical control objects, Graphical

User Interface
control options 810
conventions

in this documentation xiv
universal naming convention (UNC) 417,

421, 757, 761
conversion

accent conversion table 74
ASCII to Radix-40, RDX() function 509
character sets, TRANSLATE directive 341
compiled to readable/list format 176, 477

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

846

formatted date, DTE() function 422
Hex to ASCII, ATH() function 398
numeric to string, STR() function 525
Radix-40 to ASCII, TRX() function 542
string to numeric, NUM() function 492
string to other formats, CVS() function 412
tables 340–341, 532, 614, 624
to/from IEEE, I3E() function 456
X,Y coordinates 390–391
See also language compatibility

coordinates xiv, 390–391, 544–545, 579, 633,
635

'CO' parameter 659
COS() function, return cosine 406
cosine

ACS() function, return arc-cosine 393
COS() function, return cosine 406

'CPI' mnemonic 597
CPL() function, compile string 407
'CP' mnemonic 597
CRC() function, cyclic-redundancy-check 408
CREATE TABLE directive, create EFF file 58
'CR' mnemonic 598
CSE() function 409
CSE() function, case compare 409
’CS’ mnemonic 598
'CS' parameter 660
CTL

CTL() function, return CTL definition 410
CTL system variable, end input code 557
DEFCTL directive, define CTL values 78
negative CTL definitions 817
PREINPUT directive, prime input queue 254
SET_FOCUS directive, set input focus 304
SETCTL directive, GOSUB on CTL event 307
See also graphical control objects

'CT' parameter 660
ctrlopt, control options 810
CUI (Character User Interface)

See character display, text mode
'CU' parameter 660
cursor 592, 594–596, 599, 602

’CURSOR’ mnemonic 598
motion mnemonics 582
See also prompts, mouse

CUSTOM_VBX directive, create/control VBX 61
CVS() function, convert string 412
CWDIR directive, change working directory 62
'CYAN' & '_CYAN' mnemonics 599
cyclic-redundancy-check, CRC() function 408

D
'+D' & '-D' mnemonics 599
'D0' parameter 660
data

DATA directive, define data elements 63
DICTIONARY directive, data dictionary 85
EXTRACT directive, read and lock data 126
FIND directive, locate and read data 131
SWP() function, swap data 528
See files, records, variables

date
buffers 658
date table 67, 70, 74
DAY_FORMAT directive, format for DAY 64
DAY system variable, current date 557
define date table 67, 70, 74
DTE() function, convert date 422
JUL() function, Julian date 463
MAS 90 date format 697
SETDAY directive, change local date 308

[DB2] special command tag 770–774
’DB’ parameter 660
’DC’ mnemonic 599
'DC' parameter 661
[DDE] special command tag 776
’DD’ parameter 661
debugging 122, 317, 468

See also error handling
DEC() function, get binary of string 414
decryption value, HSH() function 451
DEFAULT directive, branch if no case 77
'DEFAULT' mnemonic 600
DEF CLASS directive, define object class 65
DEF CTL directive, define control signal 76
DEFCTL directive, define CTL values 78
DEF CVS directive, define accent table 74
DEF DTE directive, define date table 74
DEF EOM directive, define EOM character 76
DEF ERR directive, define system error value 76
DEF FN directive, define function 68
DEF GID directive, define UNIX group ID 67
definiton mnemonics 581
DEF LCS directive, define lowercase table 74
DEF LFA directive, define last file number

accessed 76
DEF LFO directive, define last file number

opened 76
DEF MSG directive, define temporary

message 70

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

847

DEF OBJECT directive, define COM 71
DEFPRT directive, define as printer 81
DEF RET directive, define OS error code 76
DEFTTY directive, define terminal size 82
DEF UCS directive, define uppercase table 74
DEF UID directive, define UNIX user ID 67
delete

character at cursor 599
DELETE directive, remove program lines 83
DELETE OBJECT directive, drop COM

Object 84
DROP CLASS directive, class definition 102
DROP OBJECT directive 104, 382
ERASE directive, file or directory 120
object in scroll region 602
REMOVE directive, record from file 281

device
control sequences (mnemonics) 577–651
ProvideX devices 737–767
SETDEV directive, set device type name 309
time-out 662
See terminals, printers

'DF' parameter 661
'DIALOGUE' mnemonic 600
DICTIONARY directive, data dictionary 85
DIM() function, fill string/get array size 415
DIM directive, define arrays and strings 86
DIR() function, get current directory 417
Direct, Keyed file type 22

DIRECT directive, create Direct file 89
directives 27–387

concepts 19
conventions regarding syntax xiv

directory
change current, CWDIR directive 62
check before checking prefix 658
delete from system, ERASE directive 120
delimiter, DLM system variable 558
DOS delimiter 661
get current, DIR() function 417
home/starting, HWD system variable 563
path of current, LWD system variable 565
subdirectory delimiter 686

DIRECTORY directive, create subdirectory 91
dirty file indicator 337
DISABLE CONTROL directive 93
DISABLE directive, disable prefix 92
DISABLE EVENT directive, Internal Event

Disable 94
disk 92, 110, 249, 417, 434

CWDIR directive, change directory/drive 62
DSK() function, get current disk drive 421
input/output 237, 305
manage disk space 120, 263, 278
pathname 438, 441
SETDRIVE directive, change default drive 315

display
control window display 639
OS errors in command mode 664
popup message, MSGBOX directive 212
printable data, PRINT directive 255
variables, DUMP directive 106

[DLL] special command tag 778, 781
DLL() / DLX() functions, call DLL 418
DLM system variable, directory delimiter 558
'DL' parameter 662
'DN' mnemonic 602
dollar sign ($) 25
’DO’ mnemonic 602
DOS 372, 401, 567, 665, 686, 694, 769

delimiter 558, 661
DIR() function, get current directory 417
DOS-only mnemonics 588, 603, 648, 650
DOS-only parameters 665, 675, 677, 679,

681, 692, 697
DSK() function, get current disk drive 421
line mode 650
wide printer mode 648

'DP' parameter 662
drive, See disk, devices, directory
DROP..ON directive, drag and drop 105
DROP_BOX directive, control drop box 96–101

drop box write error 623
object properties 704
VARDROP_BOX directive 354

DROP CLASS directive, drop class
definition 102

DROP directive, unload program 95
DROP INDEX directive, drop key from file 103
'DROP' mnemonic 602
DROP OBJECT directive, delete object 104, 382
DSK() function, get current disk drive 421
DSZ system variable, data space available 559
DTE() function, convert date 422
’DT’ parameter 662
DUMP directive, display variables 106
'DW' parameter 663

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

848

E
'+E' & '-E' mnemonics 603
'EB' mnemonic 603
echoing 28, 227, 589, 598, 603
editing

EDIT directive, edit line in program 108
mnemonics related to 582

'EE' mnemonic 603
EFF (Enhanced File Format) 22, 59, 167, 334,

671, 683
'EF' mnemonic 603
'EG' mnemonic 603
'EG' parameter 663
'EI' mnemonic 604
'EJ' mnemonic 604
'EL' mnemonic 604
’EL’ mnemonic 604
’EL’ parameter 663
'EM' mnemonic 605
emulation, See language compatibility
ENABLE CONTROL directive, enable CTL 111
ENABLE directive, re-enable prefix 110
ENABLE EVENT directive, Internal Event

Enable 112
encryption

level, ’EL’ parameter 663
option with SAVE directive 295
PASSWORD directive 239

encryption value, HSH() function 451
END_IF directive, end IF directive 117
END DEF directive, end function definition 114
END directive, halt program execution 113

See also terminate
END SWITCH directive, end branching 115
ENDTRACE directive, end trace output 118
END WITH directive 116
Enhanced File Format (EFF) 22, 59, 167, 334,

671, 683
ENTER directive, specify arguments 119
entry point 26
ENV() function, get environment values 424
'EO' mnemonic 605
EOM system variable, EOM string 559
'EO' parameter 664
'EP' mnemonic 605
EPT() function, return exponent value 426
ERASE directive, delete file/directory 120
'ER' mnemonic 605

ERR() function, test error value 427
error

handling in ProvideX 24
codes and messages 828–841
drop box write error 623
ERR() function, test error value 427
ERR system variable, system-detected 560
ERS system variable, line number of last 560
invalid mnemonic 589, 603
MSG() function, message text 484
OS errors in command mode 664
RET system variable, last OS error code 571
SETERR directive, set error transfer 316

ERROR_HANDLER directive, assign generic error
handler 121

ERR system variable, last detected error 560
ERS system variable, error’s line number 560
ESCAPE directive, interrupt execution 122
ESC system variable, escape character 561
’ES’ mnemonic 606
’ES’ parameter 664
'ET' mnemonic 606
'EU' mnemonic 606, 618, 633
Event Handing

*SYSTEM 751
Event Handling 71, 228, 805, 823, 825

DISABLE EVENT directive 94
ENABLE EVENT directive 112
See also Component Object Model (COM)

EVN() function, evaluate numeric 429
EVS() function, evaluate string 430
'EW' mnemonic 606
exclamation point (!) 25, 280
EXECUTE directive, execute command 123
Execution mode 19
exit

from a loop, BREAK directive 33
from stack, POP directive 245
return CTL=4 on exit 665
to OS on end of program 697

EXIT directive, halt subprogram and return 124
EXITTO directive, end loop, transfer control 125
EXP() function, raise to base ten 431
exponent

assignment, arithmetic operators 821
EPT() function, return power of 10 426

’EX’ parameter 664
expressions, syntax conventions of xiv
’!V’ parameter 699
EXTRACT directive, read data 126

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

849

EXTRACT RECORD directive, read record 128

F
'+F' & '-F' mnemonics 606
'F,' parameter 665
'Fn' mnemonic 607
’F4’ parameter 665
'FB' parameter 665
’FC’ parameter 665
'FE' parameter 665
'FF' mnemonic 607
FFN() function, find file number 432
’FF’ parameter 666
FIB() function, file information block 434
FID() function, file information descriptor 438

FID(0) definition 320
FI directive, See END_IF
fields

extended field attributes, XFA() function 552
field separator 515

fileopt, file options 810
files 22

’FF’ parameter, file format 666
create/assign program file 259
DIRECT directive, create Direct file 89
dirty file indicator 337
dynamic buffering 660
EFF files 22
FFN() function, find file number 432
FIB() function 434
FID() function 438
FILE directive, new file from FID, FIB 130
FIN() function 441
flushing 587
GET_FILE_BOX directive, filename entry 139
INDEXED directive, create Indexed file 159
input/output options 810
KEYED directive, create Keyed file 58, 166
KNO (file access key) 811
LOCK directive, reserve file 200
logging 334, 337
logical file numbers 22
markup files 591
MXC() function, maximum columns in 488
MXL() function, maximum lines in 488
OPEN directive, open files for processing 232
output buffering on/off 587
print files 752
PROGRAM directive, create program file 259
PURGE directive, clear data from file 263

READ directive, data from file 271
READ RECORD directive, record from file 275
RENAME directive, change a file's name 282
search rules 249
SERIAL directive, create a sequential file 302
SORT directive, create file for sorting 327
special files 737–767
system limits 826
UNLOCK directive, remove file lock 349
VLR files 22
See also Keyed, Index, and Program files

’FILL’ mnemonic 607
FIN() function, return file information 441
FIND directive, locate data 131
FIND RECORD directive, locate data record 132
'FI' parameter 666
'FL' mnemonic 608
FLOATING POINT directive, switch to scientific

notation 133
'FL' parameter 666
FLR, (fixed length record) 22
'FN' parameter 667
focus

change of focus on/off 606
SET_FOCUS directive 304
See graphical control objects

'FONT' mnemonic 609
fonts 626, 811
'FO' parameter 667
FOR..NEXT directive, incremented loop 134
format

DAY_FORMAT directive 64
masks 160, 255, 525, 813
See syntax, dates, control object properties

formfeed, See printers
'FP' parameter 667
FPT() function, return fractional part 445
fractional parts, FPT() function 445
'FRAME' mnemonic 610
'FS' parameter 667
'FT' parameter 668
FUNCTION directive, declare object method 137
functions 389–554

DEF FN directive, define function 68
END DEF directive, end definition of 114
function keys 608

'FU' parameter 668
'FX' parameter 668

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

850

G
GAP() function, return odd parity string 446
GBL() function, global string variable 447
'GD' mnemonic 611
'GE' mnemonic 611
GEP() function, return even parity string 449
GET_FILE_BOX directive, ask for filename 139
'GF' mnemonic 612
GFN system variable, global file number 561
GID system variable, OS process ID 562
global

GBL() function, global string variable 447
GFN system variable, global file number 561
global variables 25
search utility 25

GOSUB.. directive, execute subroutine 141
GOTO directive, transfer within program 142
'GOTO' mnemonic 612
gradient fill 607
graphical control objects 21, 703–708

2D, 3D, and 4D controls 585–586
BUTTON directive 34–37
CHECK_BOX directive 47, 49, 51–53
DISABLE CONTROL directive 93
DROP_BOX directive 96–101
ENABLE CONTROL directive 111
GDI resources 21
GRID directive 143–152
H_SCROLLBAR directive 153–155
HIDE directive 156
LIST_BOX directive 178–188
list view list boxes 189
MENU_BAR directive 202–203, 205
MULTI_LINE directive 215, 217, 222
POPUP_MENU directive 246
RADIO_BUTTON directive 265–269
redisplay hidden control 326
RENAME CONTROL directive 284
return object information 493
SHOW directive 326
tree view list boxes 192
TRISTATE_BOX directive 344, 346–348
V_SCROLLBAR directive (vertical) 365–367
VARDROP_BOX directive 354–356, 358–359
VARLIST_BOX directive 360–364
See also control object properties, Graphical

User Interface
Graphical User Interface (GUI) 21, 579

caption for window 594
control window display 639

mnemonics 582–583
size of window 579
window number 455
window region 579
X,Y coordinates 579
See also graphical control objects

graphics
BITMAP special file 738
bitmaps/icons 36, 49, 179, 192, 203, 267,

346
drawing frame, box, line, arc, polygon,

rectangle, circle 579
’IMAGE’ mnemonic, define graphics

group 615
’PICTURE’ mnemonic, define/draw

image 631
SAVE CONTROL directive, screen capture 296
SAVE FILE directive, save bitmap file 298

'GREEN' & '_GREEN' mnemonics 612
GRID directive, control grid 143–152

drag and drop 733
loading and accessing 733
object properties 705

'GS' mnemonic 613

H
'*H' mnemonic 613
H_SCROLLBAR directive, control horizontal

scrollbar 153
object properties 708

halt, See terminate
hash value, HSH() function 451
'HC' parameter 668
help

message identifier 160, 227
restore default 202
SYSTEM_HELP directive, invoke help 332

hexadecimal
ATH() function, convert hex 398
HTA() function, hex value of string 454
values in ProvideX 25

HFN system variable, highest channel 562
HIDE directive, hide control object 156
’HIDE’ mnemonic 639
HLP system variable, last specified HLP= 563
’HP’ parameter 669
HSA() function, highest sector available 450
HSH() function, generate modified value 451
HTA() function, get hex value of string 454

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

851

HTML 740
HWD system variable, home directory 563
HWN() function, highest window number 455

I
'*I' mnemonic 614
'+I' & '-I' mnemonics 614
'I0' parameter 669
'I2' parameter 669
I3E() function, convert to/from IEEE 456
'IC' mnemonic 614
icons

dialogue icon 626
'IC' parameter 669
IEEE, I3E() function 456
IF ... THEN ... ELSE directive, test condition 157
’IMAGE’ mnemonic 615
'IM' parameter 669
IND() function, return next record index 457
Indexed, file type 22

INDEXED directive, create Indexed file 159
INPUT directive, get input from terminal 160
INSERT directive, insert new record in file 162
instructions, See directives, statements
INT() function, return integer portion 458
interrupt

ESCAPE directive, suspend execution 122
See also exit, terminate
SETESC directive, handler program 317

INVOKE directive, execute OS command 163
IOList

IOL() function, get specification 459
IOLIST directive, specify variable list 165
REC() function, expand specification 510

IOR() function, OR comparison 460
'IR' parameter 670
'IS' parameter 670
’IW’ parameter 670
’IZ’ parameter 670

J
JavX xiii
'JC' mnemonic 616
'JC' parameter 670
'JD' mnemonic 616
'JL' mnemonic 616
'JN' mnemonic 616

journalization, SYSTEM_JRNL directive 334
'JR' mnemonic 616
'JS' mnemonic 616
JST() function, justify string 461
JUL() function, return Julian date 463

K
KEC() function, key of current record 465
KEF() function, return first key of file 466
KEL() function, return last key of file 467
KEN() function, return key after next 468
KEP() function, return prior record’s key 469
KEY() function, return key of next record 470
KEYED directive, create Keyed file 166
Keyed files 22, 671

ADD INDEX directive, add key to file 29
automatic padding of 272, 383, 386
BBx emulation 671
buffers 677
DIRECT directive, file with keyed access 89
DROP INDEX directive, drop from file 103
I/O buffers 657
KEF() function, first key of file 466
KEL(), last key of file 467
KEN(), key after next 468
KEP(), prior record’s key 469
KEY() function, key of next record 470
Key definition attributes 167
KEYED directive 58, 166
KGN() function, generate record key 471
opening static Keyed file 237
’QK’ parameter 683
RENAME..INDEX directive, rename keys 285
SETDEV KEY directive, change keys 311
shrink files 687
special for paths 250
system limits 826
writing to 384

KEYED LOAD directive, rebuild keyed file 172
KGN() function, generate record key 471
KNO (file access key) 811
’KF’ parameter 671
’KR’ parameter 671

L
’L6’ mnemonic 617
’L8’ mnemonic 617
labels, logical statement references 816

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

852

language compatibility
BBx 79, 88, 440, 643, 651, 658, 661, 666,

671, 691, 700
BSZ() function 401
conversion to ProvideX 17, 352, 521, 604,

608, 641, 664, 670, 822
dates 423
DISABLE directive 92
emulation 79, 643, 658, 661, 666, 671,

690–691
ENABLE directive 110
GBL() function 447
HSA() function 450
Rexon 666
SETDRIVE directive, change default drive 315
SHORT_FORM directive 325
SSZ() function 521
Thoroughbred 487, 666, 690, 822
TSM system variable 575
XFA() function 552
See also ProvideX

LAOD, See LOAD directive 194
Large File Support (LFS) 59, 167, 671
'LB' parameter 671
'LC' mnemonic 617
'LC' parameter 671
LCS() function, return lowercase string 74, 472
’LD’ mnemonic 617
'LD' parameter 672
LEN() function, return string length 473
'LE' parameter 672
LET directive, assign value to variable 173
lexicon 352

See also language compatibility
LFA system variable, last file accessed 563
'LF' mnemonic 617
LFO system variable, last file opened 564
'LF' parameter 672
LFS (Large File Support) 59, 167, 671
Libharu 538, 669, 746
library

DLL() / DLX() 418
message library 208, 484
PDF forms library 748
program library 781
XML Library 764

LIKE directive, inherit properties 174
limits preset in ProvideX 825
'LI' mnemonic 617
lines

’LINE’ mnemonic 618
AUTO directive, automatic line generation 31
labels 26
LINE_SWITCH directive, switch I/O 175
MXL() function, maximum in file 488
RENUMBER directive, renumber lines 286
system limits 825
See also statements

LIP system variable, last input location 564
LIST_BOX directive, control list box 178–188

list view list boxes 189
load on demand 729
object properties 705
tree view list boxes 192

LIST directive, list program statements 176
list view list boxes 189

load on demand 729
object properties 706
row highlighting 645

’LM’ parameter 672
LNO() function, return line number 474
LOAD CLASS directive, pre-load class

definition 195
LOAD DATA directive, load program

constants 196
LOAD directive, load program into memory 194
load on demand (list boxes) 729
LOCAL directive, designation of local data 197
LOCK directive, reserve file 200
LOG() function, return base 10 logarithm 475
logic 105, 502

AND() function, AND comparison 394
descending key 698
IOR() function, OR comparison 460
logical ON/OFF control 38, 52
logical statement references (labels) 816
NOT() function, condition 490
ON_CREATE/ON_DELETE definitions 489
pre-display (NOMADS) 256
XOR() function, exclusive OR 554
See also branching, program, Object Oriented

Programming
LONG_FORM directive, use long names 201
longitudinal-redundancy check, LRC()

function 476
loops

BREAK directive, immediate exit of loop 33
CONTINUE directive, next iteration of loop 57
EXITTO directive, exit/transfer from loop 125
FOR..NEXT directives, increment loop 134

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

853

REPEAT..UNTIL directives, repetitive
execution 287

WHILE..WEND directives, repeat 375
lowercase

DEF LCS directive, define uppercase table 67,
70, 74

LCS() function, lowercase string 472
LPG system variable, lead program name 564
'LPI' mnemonic 618
'LP' parameter 672
LRC() function, longitudinal-redundancy

checksum 476
'LS' parameter 673
LST() function, return LIST form 477
'LT' mnemonic 619
'LU' parameter 673
LWD system variable, working directory 565
’LW’ parameter 673
'LZ' parameter 673

M
'MAGENTA' & '_MAGENTA' mnemonics 619
MAS 90 697, 773, 784, 787, 795
masks

data format masks 160, 255, 525, 813
password mask character 681
scan string for mask 486
set date format 64

math
arithmetic operators 821
ABS() function, absolute value 392
ACS() function, return arc-cosine 393
ASN() function, returns arc-sine 397
ATN() function, return arc-tangent 399
COS() function, return cosine 406
EPT() function, return exponent value 426
EVN() function, evaluate expression 429
EXP() function, raise to base ten 431
LOG() function, return base 10 logarithm 475
MOD() function, return modulus 483
PRC() function, round to precision 503
SGN() function, return sign of value 516
SIN() function, sine 517
SQR() function, square root 518
TAN() function, tangent 531

MAX() function, return maximum value 478
'MAXSIZE' & 'MINSIZE' mnemonics 619
'MB' parameter 674
MCI, Multimedia Control Interface 223

'MC' parameter 674
'ME' mnemonic 620
memory 670, 675, 688, 692, 697

MEMORY 741
BSZ() function, bank memory size 401
MEM() function, return memory value 479
system limit 825

MENU_BAR directive, define menu
bar 202–203, 205

MERGE directive, read lines from file 206
MESSAGE_LIB directive, message library 208
’MESSAGE’ mnemonic 620
messages

DEF MSG directive, define temporary
message 70

library files 208
message bar text 620
return error messages 484
See also error codes and messages

'MF' parameter 675
MID() function, return substring 480
MIN() function, minimum value in list 481
'MINSIZE' mnemonic 621
mnemonics 20, 210, 577–651

overview 577
MNEMONIC directive, define mnemonic 210
MNM() function, mnemonic value 482
categories 581
DOS-only mnemonics 588, 603, 648, 650
dynamic information 580
invalid mnemonic 603

'MN' mnemonic 622
MOD() function, return modulus 483
'MODE' mnemonic 622
modes in ProvideX (Execution, Command) 19
mouse 582

’CURSOR’ mnemonic 598
define signal 630
SETMOUSE directive, control/set mouse 321

'MOVE' mnemonic 623
’MP’ mnemonic 623
'MP' parameter 675
MSE system variable, mouse state 565
MSG() function, return message text 484
MSGBOX directive, popup message box 212

See also POPUP_MENU directive
MSK() function, scan string for mask 486
MSL system variable, mask string length 567
’MS’ mnemonic 623
’MS’ parameter 675

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

854

MULTI_LINE directive, control multi-line
input 215, 217, 222

object properties 706
MULTI_MEDIA directive, control interface 223
MXC() / MXL() function, return maximum

column/line 488
’MX’ parameter 675
[MYSQL] special command tag 783–785

N
'+N' & '-N' mnemonics 623
NAR system variable, startup arguments 567
navigation tips xiv
’NE’ parameter 676
networks 440, 576, 678, 687

[RPC] special command tag 797–798
[TCP] special command tag 799
[WDX] special command tag 801
NID system variable, network ID 567
PROCESS SERVER directive 258
UID system variable, current user ID 575

NEW() function, create new object 489
NEXT directive, end of FOR loop 225
NEXT RECORD directive, end of SELECT 226
NID system variable, network ID 567
'NI' mnemonic 624
'NI' parameter 676
'NK' parameter 676
'NL' parameter 676
'NN' parameter 676
NOMADS xiii, 21, 256, 698
NOT() function, logical condition 490
’NR’ parameter 676
'NS' parameter 677
NUL() function, test for null 491
NUM() function, convert string to numeric 492
numeric values

binary from numeric, BIN() function 400
contents of variable, VIN() function 549
convert from string, NUM() function 492
evaluate expression, EVN() function 429
maximum value in list, MAX() function 478
minimum value in list, MIN() function 481
numeric to string, STR() function 525
pack numeric data, PCK() function 498
return random number, RND() function 513
sign of value, SGN() function 516
unpack numeric data, UPK() function 548
See also math

'NX' parameter 677

O
'*O' mnemonic 624
OBJ() function, return object information 493
object code 259, 352, 459, 510, 688
Object Oriented Programming (OOP) 22

DEF CLASS directive, define object class 65
DROP CLASS directive, delete class 102
DROP OBJECT directive, delete object 104,

382
FUNCTION directive, declare method 137
LIKE directive, inherit properties 174
LOAD CLASS directive, pre-load class 195
LOCAL directive, assign local properties 197
methods and properties 65
NEW() function, create new object 489
OPEN OBJECT directive 232
PROGRAM directive, assign program 259
PROPERTY directive, declare properties 261
RENAME CLASS directive, rename class 283
STATIC directive, add local properties at

runtime 329
WindX support 805

objects
See Component Object Model (COM)
See graphical control objects
See Object Oriented Programming (OOP)

OBTAIN directive, hidden terminal input 227
[OCI] special command tag 786

See Oracle Call Interface
’OC’ parameter 677
OCX (Object Component eXtension)

See Component Object Model (COM)
[ODB] special command tag 788, 791, 795–796
ODBC, See Open DataBase Connectivity
'OFFSET' mnemonic 629
'OF' parameter 677
OLE (Object Linking and Embedding)

See Component Object Model (COM)
'OL' parameter 677
'OM' parameter 678
ON ... GOSUB directive, conditional subroutine

execution 230
ON ... GOTO directive, conditional transfer 231
ON EVENT directive, COM event

processing 228
OOP

See Object Oriented Programming

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

855

Open DataBase Connectivity (ODBC) xiii, 162,
351, 467–469, 478, 481, 514, 788,
791, 795–796

[ODB] special command tag 791
ODBC to MAS 90 697
SQL display, ’!Q’ parameter 698

OPEN directive, open a file/device 232
commit updates before 677
file open options 233
maximum buffers for OPEN LOAD 677
OPT() function, return file open options 495
PASSWORD directive, password-encrypt 239
PREFIX directive, define search path 249
special command tags 769
See files, devices

operating system
expanded path, ’OR’ parameter 678
GID system variable, OS process ID 562
INVOKE directive, OS command 163
RET system variable, last OS error code 571
SYS() function, invoke OS command 529
SYS system variable, OS identification 573
See also Windows, UNIX, DOS, pathname

operators
apostrophe operator 823
arithmetic operators 821
assignment operators 822
conventions in this documentation xiv
punctuation/syntax symbols 25

'OP' parameter 678
OPT() function, return file open options 495
options

’OPTION’ mnemonic 624
file open options 233, 495
input/output and control options 810

Oracle Call Interface (OCI) 162, 351, 786
[OCI] special command tag 786

OR comparison, IOR() function 460
’OR’ parameter 678
output, See mnemonics, DUMP, LIST, PRINT
'OW' parameter 678

P
'+P' & '-P' mnemonics 630
PAD() function, pad/truncate string 496
parameters 19

PRM() function, return parameter value 504
PRM system variable, list of parameters 570
SET_PARAM directive, set parameters 306
system parameters 653–700

parity value of strings 446, 449
PASSWORD directive, password-encrypt 239
pathname

DIR() function, get current directory 417
PREFIX directive, set file search rules 249
PTH() function 506
special command tags 769–806
UNC-style 417, 421, 434, 757, 761
See also disk, directory, file

PCK() function, pack numeric data 498
’PC’ parameter 678
PDF, Portable Document Format 744

PDF 744
bookmarks 627, 747
redirecting printer output to PDF 656, 750
Libharu 538, 669, 746

'PD' parameter 679
'PE' mnemonic 630
'PEN' mnemonic 630
'PE' parameter 679
percent sign (%) 25
PERFORM directive, transfer to subprogram,

share variables 243
'PF' parameter 679
PFX() function, return prefix value 499
PFX system variable, current prefix 568
PGM() function, return program line 500
PGN system variable, program pathname 568
’PICTURE’ mnemonic 631
'PIE' mnemonic 632
’PL’ parameter 679
'POLYGON' mnemonic 633
'PO' parameter 680
POP directive, premature exit from stack 245
’POP’ mnemonic 633
POPUP_MENU directive, popup menu 246
POS() function, scan string 502
’PP’ parameter 680
'PQ' parameter 680
PRC() function, round number to precision 503
precision

PRC system variable, current precision 569
PRECISION directive, change precision 248
round to precision, PRC() function 503

prefix
DISABLE directive 92
ENABLE directive 110
PFX() function, return current prefix 499
PFX system variable, current prefix 568

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

856

PREFIX directive, file search rules 249
table 92, 110, 250

PREINPUT directive, prime input queue 254
PRINT directive, display information 255
printers

VIEWER device file 752, 755
WINDEV device file 756–758
WINPRT device file 629, 760–763
changing source tray 629
defined on servers 376
DEFPRT directive, define as printer 81
formfeeds 607
maximum columns, lines 488
mnemonics 582–584
orientation 629
print files 752
queues 763
raw print mode 756
set printer default 687
spooler 586, 594, 662, 684, 752
Windows printer 376, 756–758, 760–763

PRM() function, return parameter value 504
PRM system variable, ProvideX parameters 570
PROCESS directive, call a NOMADS panel 256
PROCESS SERVER directive, remote server 258
program

concepts, syntax 19
ADDR directive, load/lock program 30
call program on close 649
DROP directive, unload program 95
EDIT directive, edit program 108
Embedded I/O program 312
END directive, halt execution 113
error status 575
library 781
LOAD directive, load into memory 194
LPG system variable, lead program name 564
PROGRAM directive, create program file 259
PSZ system variable, current size 570
public programs 507
RESET directive, reset program state 288
RUN directive, transfer/execute program 294
SAVE directive, write to file 295
STK() function, program call stack 522
system limits 825
trace 324
See also ProvideX, subprogram, compiled

format,, Object Oriented Programming
prompts 19, 26, 681, 683

for password 239, 680
issued to terminal devices 160, 227

properties

See control object properties
See also Object Oriented Programming

PROPERTY directive, declare properties 261
ProvideX

devices 737–767
environments 19
Execution mode/Command mode 19
introduction 17–25
parameter settings, PRM system variable 570
restart 328
SBB 688
search rules 251
session 19
syntax xiv
system limits 825
terminate session 39, 264, 279
utilities 25
See also PVX, compiled format, language

compatibility
'PS' mnemonic 634
'PS' parameter 681
PSZ system variable, current program size 570
PTH() function, return pathname 506
’PT’ parameter 681
PUB() function, list public programs 507
punctuation 25
'PU' parameter 681
PURGE directive, clear data from a file 263
'PUSH' mnemonic 634
PVX
PVXFID0 environment variable 320, 435,

438
www.pvx.com 22

’PW’ parameter 681
'PZ' parameter 681

Q
'Q^' parameter 682
'Q_' parameter 682
’QD’ parameter 682
'QF' parameter 683
'QS' parameter 683
’QK’ parameter 683
’QT’ parameter 683
question mark (?) 26
QUIT directive, terminate ProvideX 264
quote characters

" , double 25
’ , single (apostrophe) 25

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

857

QUO system variable, ASCII quote
character 571

R
’*R’ mnemonic 634
RADIO_BUTTON directive, control radio

button 265–269
object properties 707

Radix-40
from ASCII, RDX() function 509
to ASCII, TRX() function 542

RANDOMIZE directive, set random key 270
random numbers, RND() function 513
'RB' mnemonic 634
RCD() function, return next record 508
'RC' mnemonic 635
RDX() function, ASCII to Radix-40 509
READ DATA directive, read from program 273
READ directive, read from file 271
READ RECORD directive, read record 275
REC() function, expand IOList 510
records

EXTRACT RECORD directive, read-lock 128
FIND RECORD directive, locate/read 132
IND() function, next record index 457
INSERT directive, new record in file 162
KEC() function, key of current record 465
NEXT RECORD directive, end of SELECT 226
RCD() function, return next record 508
READ RECORD directive, read from file 275
REFILE directive, clear data from file 278
REMOVE directive, delete from file 281
RNO() function, next record number 514
SELECT directive, select/query records 299
system limits 825–826
UPDATE directive, update record in file 351
WRITE directive, add/update data in file 383
WRITE RECORD directive, write record 386

'RECTANGLE' mnemonic 635
REDIM directive, redimension array 277
'RED' & '_RED' mnemonics 635
REF() function, control reference count 512
REFILE directive, clear data from file 278
RELEASE directive, terminate ProvideX 279
REM directive, remark 280
remote processing

[RPC] Remote Process Control 797–798
PROCESS SERVER directive 258
See networks

REMOVE directive, delete record from file 281
RENAME..INDEX directive, rename keys 285
RENAME CLASS directive, OOP class 283
RENAME CONTROL directive, change CTL

values 284
RENAME directive, change a file's name 282
RENUMBER directive, change line numbers 286
REPEAT directive, repetitive execution 287
reserved words 827
reset

BEGIN directive, reset files and variables 32
CLEAR directive, reset variables 54
RESET directive, reset program state 288

resource library 626
restart ProvideX 328
RESTORE directive, reset data pointer 289
retries, setting default 695
RETRY directive, re-execute instruction 290
RET system variable, last OS error code 571
RETURN directive, return from subroutine 291
reverse video 592
Rexon, See language compatibility
'RI' parameter 683
'RL' mnemonic 636
'RM' mnemonic 636
RND() function, return random number 513
RND system variable, random numbers 571
RNO() function, return next record number 514
’RN’ parameter 684
rounding control 293

’NR’ parameter 676
’RN’ parameter 684
’RS’ parameter 684
ROUND directive 293

[RPC] special command tag 797–798
'RP' mnemonic 636
'RP' parameter 684
'RR' parameter 684
'RS' mnemonic 636
’RS’ parameter 684
'RT' mnemonic 637
RUN directive, transfer/execute program 294

S
'+S' & '-S' mnemonics 637
'Sn' mnemonic 637
SAVE CONTROL directive, save image 297
SAVE DATA directive, save constants 297

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

858

SAVE directive, write program to file 295, 688
SAVE FILE directive, save bitmap file 298
'SB' mnemonic 638
'SB' parameter 686
scientific notation 133
'SC' parameter 686
screen capture, SAVE CONTROL directive 296
scrolling

’SCROLL’ mnemonic 638
grid scroll modes 147
H_SCROLLBAR directive 153–155
scroll region 602
scroll wheel control 688
V_SCROLLBAR directive 365–367

’SD’ parameter 686
search

rules, PREFIX directive 249
rules, ProvideX defaults 251
search and replace utility 25, 177, 672

sectors
highest available, HSA() function 450
size, SSZ() function 521

security 17, 199, 317, 438, 537, 798
SELECT directive, select/query records 299
semicolon (;) 25
'SE' mnemonic 638
SEP() function, return field separator 515
SEP system variable, field delimiter 572
Serial file type 22

SERIAL directive, create sequential file 302
server 797, 799–801

Oracle server 786
printer defined on server 376
PROCESS SERVER directive 258

session 19
terminate ProvideX session 39, 264, 279
See ProvideX

SET_FOCUS directive, set input focus 304
SET_NBF directive, set Keyed I/O buffers 305
SET_PARAM directive, system parameters 306
SETCTL directive, GOSUB on CTL event 307
SETDAY directive, change local date 308
SETDEV directive, set device type name 309
SETDEV IOL directive, change IOList 310
SETDEV KEY directive, change keys 311
SETDEV PROGRAM directive, set I/O

program 312
SETDEV SEP= directive, change file SEP 313
SETDEV TSK() directive, add to TSK() List 314

SETDRIVE directive, change default drive 315
SETERR directive, set error transfer 316
SETESC directive, set interrupt handler 317
SETFID directive, set FID(0) definition 320
SETMOUSE directive, control/set mouse 321
SETTIME directive, set local time 323
SETTRACE directive, enable program trace 324
'SF' mnemonic 639
'SF' parameter 686
SGN() function, return sign of value 516
SHORT_FORM directive, use short names 325
SHOW directive, show control 326
’SHOW’ mnemonic 639
SID system variable, system ID code 572
SIN() function, sine 517
'SIZE' mnemonic 639
’SK’ parameter 687
slashes (/ or \) 26
'SL' mnemonic 640
’SL’ parameter 687
SN' mnemonic 640
sort

Sort, Keyed file type 22
SORT directive, create file for sorting 327
SRT() function, sort string 519

sound effect 589
special command tags 21, 769–806

[DB2] 770–774
[DDE] 776
[DLL] 778, 781
[MYSQL] 783–785
[OCI] 786
[ODB] 788, 791, 795–796
[RPC] 797–798
[TCP] 799
[WDX] 801

specialty files 21, 737–767
'SP' mnemonic 640
spooler

See printers
’SP’ parameter 687
SQL 468, 681, 698, 770, 783, 786, 791

[DB2], [OCI], [ODB], [MYSQL] 769
SQR() function, square root 518
square brackets 25
'SR' mnemonic 641
'SR' parameter 687
SRT() function, sort string 519
SSN system variable, system software ID 572

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

859

’SS’ parameter 688
SSZ() function, return sector size 521
START directive, restart session 328
statements 19

conventions regarding syntax xiv
LIST directive, convert statements 176
logical statement references (labels) 816
LST() function, convert statements 477
separators (; semicolon) 25
statement reference 26
system limit 825
WHILE..WEND directives, repeat 375
See also directives, lines

STATIC directive, runtime OOP properties 329
STK() function, program call stack 522
STOP directive, halt program execution 330

See also terminate
STP() function, strip characters 523
STR() function, convert numeric to string 525
string files, See Serial file type
strings

binary of string, DEC() function 414
compile string, CPL() 407
contents of variable, VIS() function 549
convert to numeric, NUM() function 492
convert via table, TBL() function 532
evaluate variable, EVS() function 430
even parity of string, GEP() function 449
extract portion of string, MID() function 480
generate string, DIM() function 415
global string variable, GBL() function 447
hex value of string, HTA() function 454
JST() function 461
justify, JST() function 461
length, LEN() function 473
line labels 26
literal strings 25
lowercase string, LCS() function 472
numeric to string, STR() function 525
odd parity value, GAP() function 446
PAD() function 496
scan for mask, MSK() function 486
scan for occurence, POS() function 502
sort, SRT() function 519
strip characters, STP() function 523
substitute text, SUB() function 527
text height, TXH() function 544
to different values, CVS() function 412
truncate, PAD() function 496
uppercase string, UCS() function 546

SUB() function, substitute text 527

subprograms
CALL directive, transfer to subprogram 40
ENTER directive, specify arguments 119
error report 676
EXIT directive, terminate and return 124
interrupt processing 317
PERFORM directive, CALL with variables 243
remote processing 797
XEQ() function, in-line execute 551

subroutines
GOSUB.. directive, execute subroutine 141
interrupt processing 317
ON ... GOSUB directive, conditional 230
RETURN directive 291

sults 660
’SV’ parameter 688
'SWAP' mnemonic 641
switch

SWITCH directive, branch control 331
END SWITCH directive, end branching 115
LINE_SWITCH directive, switch I/O 175

SWP() function, swap data 528
’SW’ parameter 688
'SX' mnemonic 641
syntax

conventions xiv
punctuation 25

SYS() function, invoke OS command 163, 529
SYS system variable, operating system ID 573
system

functions 20, 389–554
limits 825
parameters 20, 306, 653–700
variables 20, 555–576
See ProvideX, operating system

SYSTEM_HELP directive, Windows help 332
SYSTEM_JRNL directive, file system

journalization 334
’SZ’ parameter 688

T
'+T' & '-T' mnemonics 641
TABLE directive, define translation table 340
tables

accent conversion table 67, 70, 74
convert string via table, TBL() function 532
date table 67, 70, 74
define system tables 67, 70, 74
input conversion table 614
lowercase table 67, 70, 74

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

860

output conversion table 624
prefix table entry 92, 110
uppercase table 67, 70, 74

tags, special command tags 769–806
TAN() function, tangent 531
'TA' parameter 689
tasks

entry from task list, TSK() function 543
TSK() function 314

TBL() function, convert string via table 532
'TB' parameter 689
TCB() function, return task information 534
TCP/IP 435, 440, 442, 696, 798

[TCP] special command tag 799, 825
PROCESS SERVER directive 258
See networks

'TC' parameter 689
terminals

DEFTTY directive, define terminal 82
display editing 582
INPUT directive, get input from terminal 160
OBTAIN directive, get terminal input 227
PREINPUT directive, prime input queue 254

terminate
BYE directive, terminate session 39
END directive, halt program execution 113
POP directive, premature exit from stack, 245
ProvideX 39, 264, 279
QUIT directive, terminate session 264
RELEASE directive, terminate session 279
STOP directive, halt program execution 330
subprogram 124
WAIT directive, temporarily halt 372

text
accent character 67, 70, 74
cursor 582
return height, TXH() function 544
return width, TXW() function 545
substitute text, SUB() function 527
’TEXT’ mnemonic 642
’TEXTWDW’ mnemonic 643
See also strings

text files, See Serial file type
Thoroughbred, See language compatibility
'TH' parameter 690
tick or apostrophe operator (’) 823
time

device time-out 662
SETTIME directive, set local 323
TIM system variable, since midnight 573
TME system variable, since midnight 574

TMR() function, timer 541
TMS system variable, in 60 seconds 574

'TL' parameter 690
'TN' parameter 690
touchscreen 37
tracing

ENDTRACE directive, end trace output 118
SETTRACE directive, enable tracing 324

translation
TABLE directive, define translation table 340
TBL() function, translation table 532
TRANSLATE directive, translate variable 341

transmission
[TCP] Transmission Control Protocol 799
checksums 408

tree view list boxes 192
object properties 707
state indicators 731

TRISTATE_BOX directive, tristate box 344,
346–348

object properties 707
'TR' mnemonic 643
TRX() function, Radix-40 to ASCII 542
TSK() function, entry from task list 314, 543
TSM system variable, current error status 575
'TT' parameter 691
'TU' parameter 691
'TW' mnemonic 644
TXH() function, text height 544
'TX' parameter 691
TXW() function, text width 545
type-ahead mode 593

U
'+U' & '-U' mnemonics 644
'UC' mnemonic 644
UCP() function, uncompress data 547
UCS() function, return uppercase string 546
UID system variable, current user ID 575
'UL' parameter 692
’UM’ parameter 692
underscoring 593
universal naming convention (UNC) 417, 421,

757, 761
UNIX 372, 417, 421, 567, 694, 769

changing user or group IDs 67, 70
delimiter 558
FacetTerm session 443

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

861

UNLOCK directive, remove exclusive use 349
UNTIL directive, end of REPEAT loop 350
UNT system variable, lowest available

channel 576
UPDATE directive, update record in file 351
UPK() function, unpack numeric data 548
'UP' mnemonic 644
uppercase

DEF UCS directive, define uppercase table 67,
70, 74

UCS() function, uppercase string 546
USER_LEX directive, define alternate

directives 352
user-defined functions 68
utilities
*CMD 177, 477
*LEXEDIT 353
*UCP 654
*UFAC 169
*UFAR 169, 687
*WindX.utl 801, 804
ProvideX 25, 604, 608
search utility 25
third party 61, 71, 228

V
'+V' & '-V' mnemonics 645
V_SCROLLBAR directive, control vertical

scrollbar 365–367
object properties 708

values, See numeric values, strings
VARDROP_BOX directive, control variable drop

box 354–356, 358–359
object properties 708

variables 25
CHG() function, if variable changed 402
GBL() function, global string variable 447
IOLIST directive, specify variable list 165
LET directive, assign value to variable 173
LOCAL directive, designate local data 197
LONG_FORM directive, long names only 201
reset 54, 87
SETDEV IOL directive, alter IOList 310
SHORT_FORM directive, use short names 325
string variables 25
system variables 555–576
Variable Definition file 196, 297
VIA directive, assign variable indirectly 368
VIN()/VIS() functions, contents of 549

VARLIST_BOX directive, control variable list

box 360–364
object properties 708

VBX 61
'VC' parameter 692
VIA directive, assign variable indirectly 368
video

MULTI_MEDIA directive, interface 223
VIDEO_PALETTE directive, video colours 370
See Graphical User Interface, terminals

VIEWER 752
VIN() function, numeric from variable 549
VIS() function, string from variable 549
Vista, See Windows
Vista-style GUI 586
VLR (variable length record) 22
’VM’ parameter 692
'VP' parameter 692
'VR' parameter 693
'VT' mnemonic 645
'VW' parameter 693

W
'+W' & '-W' mnemonics 645
WAIT directive, temporarily halt execution 372
WAIT FOR EVENT directive 373
'WA' mnemonic 646
'WB' parameter 693
'WC' mnemonic 646
'WD' mnemonic 646
'WD' parameter 694
[WDX] special command tag 801
WebServer xiii, 825
WEND directive, end of WHILE Processing 374
'WF' parameter 694
'WG' mnemonic 646
WHILE.. directive, repeat statements 375
'WHITE' & '_WHITE' mnemonics 646
WHO system variable current userID 576
'WH' parameter 694
wildcard characters (*) 252
WINDEV 756

Queues 763
’WINDOW’ mnemonic 647
Windows 694, 769

API Frame Styles 579
clipboard 55
DIR() function, get current directory 417
DLL() / DLX() functions 418

ProvideX Language Reference V8.30 Back

Index

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

862

DSK() function, get current disk drive 421
MULTI_MEDIA directive 223
Multimedia Control Interface (MCI) 223
printer 376, 760, 805
repainting window region 579
resources (GDI) 21, 582
spooler 586
SYSTEM_HELP directive, invoke help 332
VIDEO_PALETTE directive, video colours 370
Vista-style GUI 213
Windows-only parameters 692
XP-style GUI 213, 586

WindX xiii, 801–807
WINPRT 760

directing output to PDF 656, 750
Queues 763

WINPRT_SETUP directive, windows printer 376
'WI' parameter 694
'WK' parameter 695
'WL' parameter 695
'WM' mnemonic 648
working directory 62
'WP' mnemonic 648
'WRAP' mnemonic 648
WRITE directive, add/update data in file 383
WRITE RECORD directive, write record 386
'WR' mnemonic 648
'WS' mnemonic 648
’WT’ parameter 695
'WX' mnemonic 649
’WZ’ parameter 696

X
'*X' mnemonic 649
'XC' parameter 696
XEQ() function, in-line subprogram 551
XFA() function, extended field attributes 552
'XF' parameter 696
'XI' parameter 696
XML 764

*XML 764
XOR() function, exclusive OR comparison 554
XP, See Windows
'XP' mnemonic 650
’XS’ parameter 697
’XT’ parameter 697
@X() / @Y() functions, coordinates 390–391,

544–545, 579

Y
'YELLOW' & '_YELLOW' mnemonics 650

Z
'+Z' & '-Z' mnemonics 585, 650
ZLib compression 59, 167, 404, 538, 547, 696
'ZP' parameter 697
'ZX' mnemonic 645, 651

	Menu
	Contents
	Preface
	Using this Documentation
	Navigation Tips
	Conventions
	Chapter Outlines

	1. Introduction
	About ProvideX
	Basic Concepts
	Punctuation/Syntax

	2. Directives
	Overview
	List of Directives
	ACCEPT Read Single Keystroke
	ADD INDEX Add Key to Keyed File
	ADDR Load & Lock Program in Memory
	AUTO Automatic Line Generation
	BEGIN Reset Files and Variables
	BREAK Immediate Exit of Loop
	BUTTON Control Button
	BYE Terminate ProvideX
	CALL Transfer to Subprogram
	CASE Define Branch Points
	CHART Control Chart
	CHECK_BOX Control Check Box
	CLEAR Reset Variables
	CLIP_BOARD Use Windows Clipboard
	CLOSE Close File
	CONTINUE Initiates Next Iteration of Loop
	CREATE TABLE Create Keyed File (EFF)
	CUSTOM_VBX Create/Control VBX
	CWDIR Change Working Directory
	DATA Define Data Elements
	DAY_FORMAT Specify DAY Format
	DEF CLASS Define Object Class
	DEF GID/UID Define Group/User ID
	DEF FN Define Function
	DEF MSG Define Temporary Message
	DEF OBJECT Define Object
	DEF systab= Define System Tables
	DEF sysvar= Define System Variables
	DEFAULT Branch If No Matching Case
	DEFCTL Define/Redefine CTL Values
	DEFPRT Define as Printer
	DEFTTY Define Terminal Size
	DELETE Remove Lines from Program
	DELETE OBJECT Remove Windows Object
	DICTIONARY Data Dictionary Access
	DIM Define Arrays and Strings
	DIRECT Create File with Keyed Access
	DIRECTORY Create Subdirectory
	DISABLE Disable Use of Prefix Table Entry
	DISABLE CONTROL Disable Control
	DISABLE EVENT Internal Event Disable
	DROP Removes Program from Memory
	DROP_BOX Control Drop Box
	DROP CLASS Delete Class Definition
	DROP INDEX Drop Key from Keyed File
	DROP OBJECT Delete Object
	DROP .. ON Drag and Drop
	DUMP Display Variables
	EDIT Edit Line in Program
	ENABLE Re-Enable Use of Prefix Table Entry
	ENABLE CONTROL Enable Custom Control
	ENABLE EVENT Internal Event Enable
	END Halt Program Execution
	END DEF End Definition of Multi-line Function
	END SWITCH End Branching of a Program
	END WITH End Branching of a Program
	END_IF End IF Directive
	ENDTRACE End Trace Output
	ENTER Specify Arguments
	ERASE Delete File/Directory from System
	ERROR_HANDLER Define Generic Handler
	ESCAPE Interrupt Program Execution
	EXECUTE Execute Basic Instruction
	EXIT Terminate Subprogram and Return
	EXITTO End Loop, Transfer Control
	EXTRACT Read and Lock Data
	EXTRACT RECORD Read-Lock Data Record
	FILE Create New File from File Descriptor
	FIND Locate and Read Data
	FIND RECORD Locate & Read Data Record
	FLOATING POINT Switch to Scientific Notation
	FOR..NEXT Loop While Incrementing
	FUNCTION Declare Object Method
	GET_FILE_BOX Ask for Filename
	GOSUB.. Execute Subroutine
	GOTO Transfer within Program
	GRID Control Grid
	H_SCROLLBAR Control Horizontal Scroll Bar
	HIDE Hide Control
	IF..THEN..ELSE Test Condition
	INDEXED Create Indexed File
	INPUT Get Input from Terminal
	INSERT Insert New Record in File
	INVOKE Execute Operating System Command
	IOLIST Specify Variable List
	KEYED Create Single/Multi-Keyed File
	KEYED LOAD Load and Repair Keyed File
	LET Assign Value to Variable
	LIKE Inherit Properties
	LINE_SWITCH Redirect Console Input/Output
	LIST List Program Statements
	LIST_BOX Control List Box
	LOAD Read Program into Memory
	LOAD CLASS Pre-Load Class Definition
	LOAD DATA Load Program Constants
	LOCAL Designation of Local Data
	LOCK Reserve File for Exclusive Use
	LONG_FORM Use Long Variable Names
	MENU_BAR Control Menu Bar
	MERGE Read/Append Lines from File
	MESSAGE_LIB Establish Message Library
	MNEMONIC Define File Command Sequence
	MSGBOX Display PopUp Message Box
	MULTI_LINE Control Multi-Line Input
	MULTI_MEDIA Control Multimedia Interface
	NEXT End FOR Loop
	NEXT RECORD End SELECT Statment
	OBTAIN Get Hidden Terminal Input
	ON EVENT Event Processing
	ON ... GOSUB Conditional Subroutine Execution.
	ON ... GOTO Conditional Transfer of Control
	OPEN Open for Processing
	PASSWORD Apply Password & Encryption
	PERFORM Call Subprogram, Pass Variables
	POP Premature Exit from Stack
	POPUP_MENU Create Popup Menu
	PRECISION Change Current Precision
	PREFIX Set File Search Rules
	PREINPUT Place Data in Input Queue
	PRINT Display Information
	PROCESS Call NOMADS Panel
	PROCESS SERVER Process Remote Server
	PROGRAM Create/Assign Program File
	PROPERTY Declare Object Properties
	PURGE Clear Data from a File
	QUIT Terminate ProvideX
	RADIO_BUTTON Control Radio Button
	RANDOMIZE Set Random Key
	READ Read Data from File
	READ DATA Read Data from Program
	READ RECORD Read Record from File
	REDIM Redimension Array
	REFILE Clear Data from File
	RELEASE Terminate ProvideX
	REM Remark
	REMOVE Delete Record from File
	RENAME Change a File's Name
	RENAME CLASS Change Name of Class
	RENAME CONTROL Change CTL Values
	RENAME..INDEX Rename Keys in Keyed File
	RENUMBER Change Program Line Numbers
	REPEAT..UNTIL Repetitive Execution
	RESET Reset Program State
	RESTORE Reset Program Data Position
	RETRY Re-Execute Failing Instruction
	RETURN Subroutine/Function Return
	ROUND Control Rounding
	RUN Transfer and Execute a Program
	SAVE Write Program to File
	SAVE CONTROL Save Image of Control
	SAVE DATA Save Program Constants
	SAVE FILE Save Bitmap to Disk
	SELECT Query Records
	SERIAL Create a Sequential File
	SET_FOCUS Set Input Focus
	SET_NBF Set Number of Keyed I/O Buffers
	SET_PARAM Set System Parameters
	SETCTL GOSUB on CTL Event
	SETDAY Change Local Date
	SETDEV Set Device Type Name
	SETDEV IOL= Change IOList of Open File
	SETDEV KEY Change Keys of Open File
	SETDEV PROGRAM Set I/O Program
	SETDEV SEP= Change File SEP
	SETDEV TSK() Add to TSK() List
	SETDRIVE Set Default Drive
	SETERR Set Error Transfer
	SETESC Set Interrupt Processing
	SETFID Set FID(0) Definition
	SETMOUSE Control/Set Mouse
	SETTIME Set Local Time
	SETTRACE Enable Program Tracing
	SHORT_FORM Use Short Variable Names
	SHOW Show Control
	SORT Create File for Sorting
	START Restart ProvideX
	STATIC Add Local Properties at Runtime
	STOP Halt Program Execution
	SWITCH..CASE Branch Control
	SYSTEM_HELP Invoke Windows Help
	SYSTEM_JRNL File System Journalization
	TABLE Define Translation Table
	TRANSLATE Translate Contents of Variable
	TRISTATE_BOX Control Tristate Box
	UNLOCK Remove Exclusive Use from File
	UNTIL End REPEAT Loop
	UPDATE Update Existing Record in File
	USER_LEX Define Alternate Keywords
	VARDROP_BOX Control Variable Drop Box
	VARLIST_BOX Control List Box
	V_SCROLLBAR Control Vertical Scrollbar
	VIA Assign Variable Indirectly
	VIDEO_PALETTE Control Video Colours
	WAIT Temporarily Halt Execution
	WAIT FOR EVENT Temporarily Halt Execution
	WEND End WHILE Loop
	WHILE..WEND Repeat Statements
	WINPRT_SETUP Windows Printer Setup
	WITH Object Reference Construct
	WRITE Add/Update Data in File
	WRITE RECORD Write Record

	3. System Functions
	Overview
	List of System Functions
	@() Location Function
	@X() and @Y() Convert X/Y Coordinates
	ABS() Absolute Value
	ACS() Return Arc-Cosine
	AND() Logical AND
	ARG() Command-Line Argument
	ASC() Get Internal Character Value
	ASN() Returns Arc-Sine Function
	ATH() Convert Hex
	ATN() Return Arc-Tangent
	BIN() Binary String from Numeric Value
	BSZ() Bank Memory Size
	CHG() Notify if Variable Has Changed
	CHR() ASCII Character of Value
	CMP() Compress Data
	COS() Return Cosine
	CPL() Compile String
	CRC() Cyclic-Redundancy-Check
	CSE() Case Compare
	CTL() Return CTL Definition
	CVS() Convert String
	DEC() Get Binary of String
	DIM() Generate String/Get Array Size
	DIR() Get Current Directory
	DLL() Call Windows DLL
	DSK() Get Current Disk Drive
	DTE() Convert Date
	ENV() Get Environment Values
	EPT() Return Exponent Value
	ERR() Test Error Value
	EVN() Evaluate Numeric Expression
	EVS() Evaluate String Expression
	EXP() Raise to Base Ten
	FFN() Find File Number
	FIB() Return File Information Block
	FID() Return File Information Descriptor
	FIN() Return File Information
	FPT() Return Fractional Part
	GAP() Return Odd Parity String
	GBL() Reference Global String Variable
	GEP() Return Even Parity String
	HSA() Highest Sector Available
	HSH() Generate Modified Value
	HTA() Get Hex Value of String
	HWN() Highest Unused Window Number
	I3E() Convert to/from IEEE Format
	IND() Return Next Record Index
	INT() Return Integer Portion
	IOL() Get IOList Specification
	IOR() OR Comparison
	JST() Justify String
	JUL() Return Julian Date
	KEC() Return Key of Current Record
	KEF() Return First Key of File
	KEL() Return Last Key of File
	KEN() Return Key After Next
	KEP() Return Prior Record's Key
	KEY() Return Key of Next Record
	KGN() Generate Record Key
	LCS() Return Lowercase String
	LEN() Return String Length
	LNO() Return Line Number
	LOG() Return Base 10 Logarithm
	LRC() Longitudinal-Redundancy Check
	LST() Return List Form of Statement
	MAX() Return Maximum Value
	MEM() Return Memory Value
	MID() Return Substring
	MIN() Return Minimum Value
	MNM() Return Mnemonic Value
	MOD() Return Modulus
	MSG() Return Message Text
	MSK() Scan String for Mask
	MXC() and MXL() Return Maximum Column/Line
	NEW() Create new Object
	NOT() Invert String Bits/Logical Condition
	NUL() Return Test for Null
	NUM() Convert String to Value
	OBJ() Return Object Information
	OPT() Return File OPEN Options
	PAD() Pad/Truncate String
	PCK() Pack Numeric Data
	PFX() Return Prefix Value
	PGM() Return Program Line
	POS() Scan String
	PRC() Round Number to Precision
	PRM() Return Parameter Value
	PTH() Return Pathname
	PUB() List Public Programs
	RCD() Return Next Record
	RDX() Convert ASCII to Radix-40
	REC() Expand IOList Specification
	REF() Control Reference Count
	RND() Return Random Number
	RNO() Return Next Record Number
	SEP() Return Field Separator
	SGN() Return Sign of Value
	SIN() Sine Function
	SQR() Square Root
	SRT() Sort String
	SSZ() Return Sector Size
	STK() Program Call Stack
	STP() Strip Leading/Trailing Characters
	STR() Convert Numeric to String
	SUB() Substitute Text
	SWP() Swap Data
	SYS() Invoke Operating System Command
	TAN() Return Tangent
	TBL() Convert String Via Table
	TCB() Return Task Information
	TMR() Timer
	TRX() Convert Radix-40 to ASCII
	TSK() Returns Entry from Task List
	TXH() Text Height
	TXW() Text Width
	UCS() Return Upper Case String
	UCP() UnCompress Data
	UPK() Unpack Numeric Data
	VIN() and VIS() Obtain Value of Variable
	XEQ() In-line Subprogram Execute
	XFA() Extended Field Attributes
	XOR() Exclusive OR Comparison

	4. System Variables
	Overview
	List of System Variables
	BKG Background Process Status
	CHN Channels Open
	CTL Control Signal
	DAY Return Current System Date
	DLM Return System Directory Delimiter
	DSZ Data Space Size Available to User
	EOM End of Message Character String
	ERR Last System-Detected Error Value
	ERS Line Number of Last Error
	ESC ASCII ESCape Character
	GFN Highest Available Global Channel
	GID Operating System Process Identifier
	HFN Highest Available Local Channel
	HLP Last Specified HLP= Value
	HWD Starting/Home Directory
	LFA Last File Number Accessed
	LFO Last File Number Opened
	LIP Input Location: Column, Line
	LPG Lead Program Name
	LWD Current Working Directory
	MSE Mouse State
	MSL Length of String Matching Last MSK
	NAR Number of Arguments, Start ProvideX
	NID Network or Network Node ID
	PFX Current Prefix Setting
	PGN Current Program Pathname
	PRC Precision Currently In Effect
	PRM ProvideX Parameter Settings
	PSZ Current Program Size
	QUO ASCII Quote Character
	RET Operating System's Last Error Code
	RND Random Number Generator
	SEP ProvideX Field Delimiter
	SID System Identification Code
	SSN System Software Identifier
	SYS Operating System Identification
	TIM Time in Hours Past Midnight
	TME Time in Hours Past Midnight
	TMS Seconds Expired in Current Minute
	TSM Error Status of Current Program
	UID Current UserID
	UNT Lowest Available Local Channel
	WHO Current UserID

	5. Mnemonics
	Overview
	Creating or Redefining Mnemonics
	X,Y Coordinates
	Mnemonic Settings, Window / Region
	Windows API Frame Styles
	Dynamic Information in Mnemonics
	Categories
	List of Mnemonics
	'@@' Define Cursor Position Sequence
	'2D' Use 2D Controls
	'3D' Use 3D Controls
	'4D' Use 4D Controls
	'AB' Abort (For Windows Spooler)
	'ARC' Define/Draw Arc
	'AT' Character Attribute Output Sequence
	'+B' and '-B' Output Buffereing On/Off
	'Bn' Background Colour
	'BACKGR' Next Colour Is Background
	'BB' Begin Blinking
	'BE' Begin Echoing
	'BEEP' Simple Sound Effect
	'BG' Begin Generating Error #29
	'BI' Begin Input Transparency
	'BJ' Join Box Intersections
	'BK' Next Colour Is Background
	'BLACK' & '_BLACK' Black Text
	'BLUE' & '_BLUE' Blue Text
	'BM' Begin Output of Markup Files
	'BO' Begin Output Transparency
	'BOX' Define / Draw a Box
	'BR' Begin Reverse Video
	'BS' Cursor Back One Space
	'BT' Begin Type-Ahead Mode
	'BU' Begin Underscoring
	'BW' Begin WrapAround
	'BX' Define / Draw a Box
	' C' Automatic Output on CLOSE
	'Cn' Control Cursor Display_Mode
	'CAPTION' Replace Caption for Window
	'CE' Clear from Cursor to End of Screen
	'CF' Clear Foreground Mode
	'CH' Position Cursor at Home
	'CI' Clear Input Type-Ahead Buffer
	'CIRCLE' Define / Draw a Circle
	'CL' Clear from Cursor to End of Line
	'COLOUR' User-Defined Colours
	'CP' Condense Print for Screen
	'CPI' Logical Characters per Inch
	'CR' Carriage Return
	'CS' Clear Screen
	'CURSOR' Control Cursor, Mouse Pointer
	'DC' Delete Character at Cursor
	'DEFAULT' Define Mnemonic as Default
	'DIALOGUE' Define / Draw Dialogue Region
	'DN' Move Cursor Down a Line
	'DO' Delete Objects in Scroll Region
	'DROP' Drop Identified Window
	'+E' and '-E' Multi-line Enter as Tab
	'EB' End Blinking Mode (DOS)
	'EE' End Echo Mode
	'EF' End Expanded Print
	'EG' End Generating Error #29
	'EI' End Input Transparency
	'EJ' End Box Joining
	'EL' Start Edit Key Load
	'EL' End VFU Load
	'EM' End Output Markup Mode
	'EO' End Output Transparency
	'EP' Start Expanded Print
	'ER' End Reverse Video
	'ES' Send Escape
	'ET' End Type Ahead
	'EU' End Underscoring
	'EW' End Wrap Around
	'+F' and '-F' Signal Change of Focus On/Off
	'Fn' Foreground Colour
	'FF' FormFeed
	'FILL' Define Fill Style
	'FL' Start Function Key Load
	'FONT' Define / List Fonts
	'FRAME' Define / Draw a Frame
	'GD' Define Graphics Character Set
	'GE' End Graphics Data
	'GF' Default Font for Window Objects
	'GOTO' Make Window Current
	'GREEN' & '_GREEN' Green Text
	'GS' Start Graphics Data Transmission
	' H' Control Screen Colours
	'HIDE' Control Window Display
	' I' Input Conversion Table
	'+I' and '-I' Implied Decimals On/Off
	'IC' Insert a Space at Cursor
	'IMAGE' Define a Graphics Group
	'JC' Justify Centre
	'JD' Justify Decimal-Aligned
	'JL' Left-Justify Text
	'JN' Right-Justify for Numeric
	'JR' Right-Justify Numeric
	'JS' Left-Justify String
	'L6' Set to 6 LPI
	'L8' Set to 8 LPI
	'LC' Mixed-Case User Input
	'LD' Delete Current Line
	'LF' Line Feed (Advance Line)
	'LI' Insert Line
	'LINE' Define / Draw a Line
	'EU' End Underscoring
	'LPI' Logical Lines / Inch
	'LT' Move Left One Column
	'MAGENTA' & '_MAGENTA' Magenta Text
	'MAXSIZE' & 'MINSIZE' Window Resize User Limit
	'ME' Begin Edit Mode
	'MESSAGE' Define Message Bar Text
	'MN' End Edit Mode
	'MODE' Set Attributes and Colour
	'MOVE' Relocate Current Window
	'MS' Mouse Definition
	'MS' Mouse Definition
	'+N' and '-N' Control Drop Box Write Error
	'NI' Next Input Numeric
	' O' Output Conversion Table
	'OPTION' On-The-Fly Setting
	'OFFSET' for WINPRT
	'+P' and '-P' Mouse Define Signal
	'PE' Auxiliary Port Off
	'PEN' Define Pen Style
	'PICTURE' Define / Draw Picture
	'PIE' Define / Draw Pie Slice
	'EU' End Underscoring
	'POLYGON' Define / Draw a Polygon
	'POP' Remove Current Window
	'PS' Auxiliary Port On
	'PUSH' Save/Copy Current Window
	' R' OS Command String
	'RB' Ring Bell
	'RC' Return Cursor Address
	'RECTANGLE' Draw a Rectangle
	'RED' & '_RED' Red Text
	'RL' Return Line Contents
	'RM' Reset to Default Mode
	'RP' Terminal Read to End
	'RS' Restore Screen
	'RT' Move Right One Column
	'+S' and '-S' Substitute Solid Lines On/Off
	'Sn' Slew to Channel
	'SB' Set Mode to Background
	'SCROLL' Manipulate Scroll Region
	'SE' & 'SD' Scroll Enable/Disable
	'SF' Set Mode to Foreground
	'SHOW' / 'HIDE' Control Window Display
	'SIZE' Control Visual Size of Window
	'SL' Start VFU Load
	'SN' Native Screen Mode
	'SP' Standard Print
	'SWAP' Swap Windows on Stack
	'SX' Set Extended Screen Mode
	'+T' and '-T' Text Display On/Off
	'TEXT' Draw Text
	'TEXTWDW' Create Text Window
	'TR' Terminal Read from Start
	'TW' Transmit Windows as String
	'+U' and '-U' Screen Refresh On/Off
	'UC' Convert Input to Upper Case
	'UP' Move Up One Line
	'+V' and '-V' Control Row Highlighting
	'VT' Slew to S6, Vertical Tab
	'+W' and '-W' Windows-Style Windows
	'WHITE' & '_WHITE' Color Text
	WINDOW' Define / Draw Window
	'WP' Wide Printer (DOS)
	'WRAP' WrapAround On/Off
	'WX' Windows Definition Sequence
	'*X' Program to Call on CLOSE
	'+X' and '-X' Windows’X’ Close Button
	'XP' Line Mode (DOS)
	'YELLOW' and '_YELLOW' Yellow Text
	'+Z' and '-Z' Text Mode Like Windows
	'ZX' Return Attributes as per BBx

	6. System Parameters
	Overview
	Setting / Resetting Parameters
	Parameter Defaults
	Saving / Restoring System Parameters
	List of Parameters
	'1U' Force Session to Dedicated User Slot
	3D in Windows
	'AD' Auto-DIM Array
	'AH' Alternative 'WINDOW' / 'BOX' Heading
	'AI' Automatic Line-Numbering Increment
	'AP' Auto-Enable PDF Output
	'AW' Alternate WINPRT_SETUP
	'B0' Base Zero for Level / Window
	'BF' Common File Buffers
	'BL' Break Lines in Listings
	'BT' Binary Test: 1st Read
	'BX' BBx Emulation
	'BY' Base year
	'CD' Check Current Directory
	'CF' Bypass Console Flush
	'CH' Hover Colour
	'CS' Coloured Syntax
	'CO' Mouse Over Colour
	'CS' Coloured Syntax
	'CT' Character Time-out
	'CU' Currency Symbol
	'D0' Divide by Zero
	'DB' Dynamic File Buffers
	'DC' Destructive Cursor
	'DD' Convert DOS Directory Delimiter
	'DF' Enforced Delay Time after 'FF'
	'DL' Enforced Delay Time after 'LF'
	'DP' Decimal Point Symbol
	'DT' Device Time-out
	'DW' Enforced Delay Time after 'WI'
	'EG' End Generation of Error #29
	'EL' Encryption Level
	'EO' Embedded 'EO' Mnemonics
	'ES' Display OS Errors in Command Mode
	'EX' Apply Execute at Level 0
	'F,' Format Overflow: Suppress Commas, Retry
	'F4' Return CTL=4 for Exit
	'FB' Dedicated File Buffers
	'FC' Force File Commit (DOS/Windows)
	'FF' File format
	'FI' Ignore Format Mask Errors
	'FL' Filename in Lower Case
	'FN' Filename As-Is: No Case Conversion
	'FO' Format Overflow Character
	'FP' Floating Point
	'FS' Default Field Separator
	'FT' Trapping the F10 Key
	'FU' Filename in Upper Case
	'FX' Force EXTRACT
	’HP’ LibHaru *PDF*
	'I0' Ignore Null Substring (No Error 47)
	'I2' Ignore Max. Record Count (No Error 2)
	'IC' Ignore Case-Sensitivity for Scan
	'IM' Insert Mode for Input
	'IR' Insert Mode Reset (Decimal Point Input)
	'IS' CTL for Input Ending on SIZ=
	'IW' Terminate Invoke Wait
	'IZ' Ignore Max. Memory Setting
	'KF' Keyed File Format
	'KR' Keyed File I/O Emulates BBx
	'LB' Colour for Line # in Break Points
	'LC' List Variables in Lower Case
	'LD' List Directives in Lower Case
	'LE' SAVE and LIST: Indent Statements
	'LF' Long Form Variables
	'LM' List, Show Matched Strings
	'LS' Colour for Line with Syntax Error
	'LU' Lock Unnecessary: Serial Files
	'LW Lock and Wait
	'LZ' Suppress Leading Zeros
	'MB' MegaBytes: File Segment Size
	'MC' Mixed Case
	'MF' Multi-Line Size Factor
	'MP' Returns Positive Modulus Value
	'MS' Memory for Program Swap
	'MX' User-Define Message Box
	'NE' Subprogram Error Report
	'NI' Ignore Blanks in Numeric Fields
	'NK' Null Key Stripping
	'NL' Suppress LET Directive in Listings
	'NN' No Line Numbers as References
	'NR' No Intermediate Rounding on Division
	'NS' No Swapping
	'OC' Commit Prior to OPEN Directive
	'OF' Maximum Size Before Output Flush
	'OL' Maximum Buffers for OPEN LOAD
	'OM' Old Style Mask
	'OP' Return Original Program Name
	'OR' Full OS Path for Rename
	'OW' Owner Application Code
	'PC' Program Caching
	'PD' Default Precision for Current Session
	'PE' Password Error Control
	'PF' EMS Page Frame
	'PL' Program Libraries
	'PO' Path Original
	'PP' Prompt for Password
	'PQ' Password Queue
	'PS' Maximum Program Size (KB)
	'PU' Upper-Case Prefix
	'PW' Password Character for Multi-Line
	'PZ' Suppress Program Size Warning
	'Q_', 'Q^' and 'QF' Task Priorities
	'QK' Quick Key Lookup
	'QS' START, Not Initialized
	'QT' No Prompt in Command Mode
	'RI' Round Multi-Line Inputs
	'RN' Rounding Control
	'RP' Raw Print for *WINDEV*
	'RR' Reset on RUN
	'RS' Round STR()
	'SB' Self-Block Extracts
	'SC' Show Cursor
	'SD' Subdirectory Slash
	'SF' Short Form Variables
	'SK' Shrink Keyed Files
	'SL' Save Command Lines
	'SP' Set Printer Default
	'SR' Small Reads
	'SS' Check Structure on Save
	'SV' Generate for Old Version
	'SV' Generate for Old Version
	'SZ' Maximum Memory Size for Session
	'TA' Turbo Mode Acknowledgement
	'TB' Toolbar Size
	'TC' Tip Colour
	'TH' Thousands Separator
	'TL' LIKE Emulates Thoroughbred
	'TN' Strip Trailing Nulls
	'TT' Timed Trace
	'TU' WindX Turbo Mode
	'TX' Default BBX String-Template Separator
	'UL' Un-Numbered Line Assignment
	'UM' Upper Memory Blocks
	'VC' VT100 Cursor Mode Line Wrap
	'VM' Direct Memory Addressing
	'VP' Variable Pitch
	'VR' Verify Read
	'VW' Verify Write
	'WB' WindX BREAK Recognition
	'VW' Verify Write
	'WD' Defer File Writes
	'WF' Force Windows Screen Update
	'WH' Delay Retry: Locking File Headers
	'WI' Windows Instruction Count
	'WK Keep Window
	'WL' Use Write Locks
	'WP' Wait for Pipe on Close
	'WT' Number of Retries
	'WZ' WindX ZLib Compression
	'XC' WindX Continues After TCP Error
	'XF' Extended File channels
	'XI' Extract Ignore
	'XS' Extended Memory (KB)
	'XT' ProvideX Exits to OS
	'ZP' Accept Zero-Length Programs
	'!9' Sage MAS 90 Date Format
	'!B' Set Break Character
	'!D' Decimal/Thousands Separator: Legacy Mode
	'!I' NOMADS Input Queue
	'!K' Descending Key Logic (Legacy)
	'!Q' ODBC SQL Display
	'!S'Suppress Error Flags on Serial Save
	'!T' Accept 'DP' and/or Decimal for Numerics
	'WK Keep Window
	'!W' WindX Keyboard Synchronization
	'!X' I/O Crossover

	7. Control Object Properties
	Overview
	Graphical Control Objects
	List of Properties
	Compound Properties
	Multi-Property Access
	Load on Demand
	Multiple Selections
	State Indicators
	Drag and Drop
	Loading/Accessing by Row
	Grid Property Access
	Chart Label Reference

	8. Special Files and Devices
	Overview
	BITMAP Virtual Bitmap
	HTML Print to HTML
	MEMORY Create & Use Memory File
	PDF PDF Print Interface
	*SYSTEM Event handling Object
	VIEWER Print Preview
	WINDEV Raw Print Mode
	WINPRT Windows Printing
	*XML ProvideX XML Interface

	9. Special Command Tags
	Overview
	[DB2] DB2 Support
	[DDE] Dynamic Data Exchange
	[DLL] Custom File Access
	[LIB] Program Library
	[MYSQL] MySQL InnoDB Support
	[OCI] Connect to Oracle Server
	[ODB] Open DataBase
	[RPC] Remote Process Control
	[TCP] Transmission Control Protocol
	[WDX] Direct Action to Client Machine

	A. Appendix
	Overview
	Input/Output and Control Options
	Data Format Masks
	Labels/Logical Statement References
	Negative CTL Definitions
	Operators
	Apostrophe Operator
	System Limits
	Reserved Words
	Error Codes and Messages

	Error Codes (Hyperlist)
	Index
	@
	@X() / @Y() Functions
	[DB2]
	[DB2]
	[DDE]
	[DLL]
	[DLL]
	[OCI]
	[ODB]
	[RPC]
	[TCP]
	[WDX]
	’!9’ System Parameter
	’!B’ = System Parameter
	’!D’ System Parameter
	’!F’ System Parameter
	’!I’ System Parameter
	’!K’ System Parameter
	’!Q’= System Parameter
	’!R’= System Parameter
	’!S’ System Parameter
	’!T’ System Parameter
	’!U’= System Parameter
	’!V’ System Parameter
	’!W’ Mnemonic
	’!W’ System Parameter
	’!X’ System Parameter
	’*C’ Mnemonic
	’*H’ Mnemonic
	’*I’ Mnemonic
	’*K’ System Parameter
	’*L’ System Parameter
	’*O’ Mnemonic
	’*R’ Mnemonic
	’*X’ Mnemonic
	’+$’ & ’-$’ Mnemonics
	’+B’ & ’-B’ Mnemonics
	’+D’ & ’-D’ Mnemonics
	’+E’ & ’-E’ Mnemonics
	’+F’ & ’-F’ Mnemonics
	’+I’ & ’-I’ Mnemonics
	’+N’ & ’-N’ Mnemonics
	’+P’ & ’-P’ Mnemonics
	’+S’ & ’-S’ Mnemonics
	’+T’ & ’-T’ Mnemonics
	’+U’ & ’-U’ Mnemonics
	’+V’ & ’-V’ Mnemonics
	’+W’ & ’-W’ Mnemonics
	’+X’ & ’-X’ Mnemonics
	’+Z’ & ’-Z’ Mnemonics
	’1U’ System Parameter
	’2D’ Mnemonic
	’3D’ Mnemonic
	’3D’ System Parameter
	’4D’ Mnemonic
	’@@’ Mnemonic
	’AB’ Mnemonic
	’AD’ System Parameter
	’AH’ System Parameter
	’AI’= System Parameter
	’AP’ System Parameter
	’ARC’ Mnemonic
	’AT’ Mnemonic
	’Aw’ System Parameter
	’B0’ System Parameter
	’BACKGR’ Mnemonic
	’BB’ Mnemonic
	’BEEP’ Mnemonic
	’BE’ Mnemonic
	’BF’= System Parameter
	’BG’ Mnemonic
	’BI’ Mnemonic
	’BJ’ Mnemonic
	’BK’ Mnemonic
	’BLACK’ & ’_BLACK’ Mnemonics
	’BLUE’ & ’_BLUE’ Mnemonics
	’BL’ System Parameter
	’BM’ Mnemonic
	’Bn’ Mnemonic
	’BOX’ Mnemonic
	’BO’ Mnemonic
	’BR’ Mnemonic
	’BS’ Mnemonic
	’BT’ Mnemonic
	’BT’ System Parameter
	’BU’ Mnemonic
	’BW’ Mnemonic
	’BX’ Mnemonic
	’BX’ System Parameter
	’BY’= System Parameter
	’CAPTION’ Mnemonic
	’CD’ System Parameter
	’CE’ Mnemonic
	’CE’ System Parameter
	’CF’ Mnemonic
	’CF’ System Parameter
	’CH’ Mnemonic
	’CH’ System Parameter
	’CIRCLE’ Mnemonic
	’CI’ Mnemonic
	’CI’ System Parameter
	’CL’ Mnemonic
	’Cn’ Mnemonic
	’COLOUR’ & ’_COLOUR’ Mnemonics
	’CO’ System Parameter
	’CPI’ Mnemonic
	’CP’ Mnemonic
	’CR’ Mnemonic
	’CS’ Mnemonic
	’CS’ System Parameter
	’CT’= System Parameter
	’CURSOR’ Mnemonic
	’CU’= System Parameter
	’CYAN’ & ’_CYAN’ Mnemonics
	’D0’ System Parameter
	’DB’ System Parameter
	’DC’ Mnemonic
	’DC’ System Parameter
	’DD’ System Parameter
	’DEFAULT’ Mnemonic
	’DF’ Mnemonic
	’DF’= System Parameter
	’DIALOGUE’ Mnemonic
	’DL’= System Parameter
	’DN’ Mnemonic
	’DO’ Mnemonic
	’DP’= System Parameter
	’DROP’ Mnemonic
	’DT’= System Parameter
	’DW’= System Parameter
	’EB’ Mnemonic
	’EE’ Mnemonic
	’EF’ Mnemonic
	’EG’ Mnemonic
	’EG’ System Parameter
	’EI’ Mnemonic
	’EJ’ Mnemonic
	’EL’ Mnemonic
	’EL’ System Parameter
	’EM’ Mnemonic
	’EO’ Mnemonic
	’EO’ System Parameter
	’EP’ Mnemonic
	’ER’ Mnemonic
	’ES’ Mnemonic
	’ES’ System Parameter
	’ET’ Mnemonic
	’EU’ Mnemonic
	’EU’ Mnemonic
	’EU’ Mnemonic
	’EW’ Mnemonic
	’EX’ System Parameter
	’F,’ System Parameter
	’F4’ System Parameter
	’FB’= System Parameter
	’FC’ System Parameter
	’FE’ System Parameter
	’FF’ Mnemonic
	’FF’= System Parameter
	’FILL’ Mnemonic
	’FI’ System Parameter
	’FL’ Mnemonic
	’FL’ System Parameter
	’Fn’ Mnemonic
	’FN’ System Parameter
	’FONT’ Mnemonic
	’FO’= System Parameter
	’FP’ System Parameter
	’FRAME’ Mnemonic
	’FS’= System Parameter
	’FT’ System Parameter
	’FU’ System Parameter
	’FX’ System Parameter
	’GD’ Mnemonic
	’GE’ Mnemonic
	’GF’ Mnemonic
	’GOTO’ Mnemonic
	’GREEN’ & ’_GREEN’ Mnemonics
	’GS’ Mnemonic
	’HC’ System Parameter
	’HIDE’ Mnemonic
	’HP’ System Parameter
	’I0’ System Parameter
	’I2’ System Parameter
	’I2’ System Parameter
	’IC’ Mnemonic
	’IC’ System Parameter
	’IMAGE’ Mnemonic
	’IM’ System Parameter
	’IR’ System Parameter
	’IS’= System Parameter
	’IW’= System Parameter
	’IZ’= System Parameter
	’JC’ Mnemonic
	’JC’ System Parameter
	’JD’ Mnemonic
	’JL’ Mnemonic
	’JN’ Mnemonic
	’JR’ Mnemonic
	’JS’ Mnemonic
	’KF’ System Parameter
	’KR’ System Parameter
	’L6’ Mnemonic
	’L8’ Mnemonic
	’LB’= System Parameter
	’LC’ Mnemonic
	’LC’ System Parameter
	’LD’ Mnemonic
	’LD’ System Parameter
	’LE’ System Parameter
	’LF’ Mnemonic
	’LF’ System Parameter
	’LINE’ Mnemonic
	’LI’ Mnemonic
	’LM’ System Parameter
	’LPI’ Mnemonic
	’LP’ System Parameter
	’LS’= System Parameter
	’LT’ Mnemonic
	’LU’ System Parameter
	’LW’ System Parameter
	’LZ’ System Parameter
	’MAGENTA’ & ’_MAGENTA’ Mnemonics
	’MAXSIZE’ & ’MINSIZE’ Mnemonics
	’MB’= System Parameter
	’MC’ System Parameter
	’MESSAGE’ Mnemonic
	’ME’ Mnemonic
	’MF’= System Parameter
	’MINSIZE’ Mnemonic
	’MN’ Mnemonic
	’MODE’ Mnemonic
	’MOVE’ Mnemonic
	’MP’ Mnemonic
	’MP’ System Parameter
	’MS’ Mnemonic
	’MS’= System Parameter
	’MX’ System Parameter
	’NE’ System Parameter
	’NI’ Mnemonic
	’NI’ System Parameter
	’NK’ System Parameter
	’NL’ System Parameter
	’NN’ System Parameter
	’NR’ System Parameter
	’NS’ System Parameter
	’NX’ System Parameter
	’OC’ System Parameter
	’OFFSET’ Mnemonic
	’OF’= System Parameter
	’OL’= System Parameter
	’OM’ System Parameter
	’OPTION’ Mnemonic
	’OP’ System Parameter
	’OR’ System Parameter
	’OW’= System Parameter
	’PC’= System Parameter
	’PD’= System Parameter
	’PEN’ Mnemonic
	’PE’ Mnemonic
	’PE’ System Parameter
	’PF’ System Parameter
	’PICTURE’ Mnemonic
	’PIE’ Mnemonic
	’PL’ System Parameter
	’POLYGON’ Mnemonic
	’POP’ Mnemonic
	’PO’ System Parameter
	’PP’ System Parameter
	’PQ’ System Parameter
	’PS’ Mnemonic
	’PS’= System Parameter
	’PT’ System Parameter
	’PUSH’ Mnemonic
	’PU’ System Parameter
	’PW’= System Parameter
	’PZ’ System Parameter
	’QD’= System Parameter
	’QF’= System Parameter
	’QK’ System Parameter
	’QS’ System Parameter
	’QT’ System Parameter
	’Q^’= System Parameter
	’Q_’= System Parameter
	’RB’ Mnemonic
	’RC’ Mnemonic
	’RECTANGLE’ Mnemonic
	’RED’ & ’_RED’ Mnemonics
	’RI’ System Parameter
	’RL’ Mnemonic
	’RM’ Mnemonic
	’RN’= System Parameter
	’RP’ Mnemonic
	’RP’ System Parameter
	’RR’ System Parameter
	’RS’ Mnemonic
	’RS’ System Parameter
	’RT’ Mnemonic
	’SB’ Mnemonic
	’SB’ System Parameter
	’SCROLL’ Mnemonic
	’SC’ System Parameter
	’SD’ Mnemonic
	’SD’ System Parameter
	’SE’ Mnemonic
	’SF’ Mnemonic
	’SF’ System Parameter
	’SHOW’ & ’HIDE’ Mnemonics
	’SIZE’ Mnemonic
	’SK’ System Parameter
	’SL’ Mnemonic
	’SL’ Mnemonic
	’SL’= System Parameter
	’Sn’ Mnemonic
	’SN’ Mnemonic
	’SP’ Mnemonic
	’SP’ System Parameter
	’SR’ Mnemonic
	’SR’ System Parameter
	’SS’= System Parameter
	’SV’= System Parameter
	’SV’= System Parameter
	’SWAP’ Mnemonic
	’SX’ Mnemonic
	’SZ’= System Parameter
	’TA’ System Parameter
	’TB’ System Parameter
	’TC’= System Parameter
	’TEXTWDW'’ Mnemonic
	’TEXT’ Mnemonic
	’TH’= System Parameter
	’TL’ System Parameter
	’TN’ System Parameter
	’TR’ Mnemonic
	’TT’ System Parameter
	’TU’ System Parameter
	’TW’ Mnemonic
	’TX’ System Parameter
	’UC’ Mnemonic
	’UL’ System Parameter
	’UM’ System Parameter
	’UP’ Mnemonic
	’VC’ System Parameter
	’VM’ System Parameter
	’VP’= System Parameter
	’VR’= System Parameter
	’VT’ Mnemonic
	’VW’= System Parameter
	’WA’ Mnemonic
	’WB’ System Parameter
	’WC’ Mnemonic
	’WD’ Mnemonic
	’WD’= System Parameter
	’WF’ System Parameter
	’WG’ Mnemonic
	’WHITE’ & ’_WHITE’ Mnemonics
	’WH’= System Parameter
	’WINDOW’ Mnemonic
	’WI’= System Parameter
	’WK’ System Parameter
	’WL’ System Parameter
	’WM’ Mnemonic
	’WP’ Mnemonic
	’WRAP’ Mnemonic
	’WR’ Mnemonics
	’WS’ Mnemonic
	’WT’= System Parameter
	’WT’= System Parameter
	’WX’ Mnemonic
	’WZ’= System Parameter
	’XC’ System Parameter
	’XF’ System Parameter
	’XI’ System Parameter
	’XL’ System Parameter
	’XP’ Mnemonic
	’XS’= System Parameter
	’XT’ System Parameter
	’YELLOW’ & ’_YELLOW’ Mnemonics
	’ZP’ System Parameter
	’ZX’ Mnemonic

	A
	ABS() Function
	ACCEPT Directive
	ACS() Function
	ADD INDEX Directive
	ADDR Directive
	AND() Function
	ARG() Function
	ASC() Function
	ASN() Function
	ATH() Function
	ATN() Function
	AUTO Directive

	B
	BEGIN Directive
	BIN() Function
	BKG System Variable
	BREAK Directive
	BSZ() Function
	BUTTON Directive
	BYE Directive

	C
	CALL Directive
	CASE Directive
	CHART Directive
	CHECK_BOX Directive
	CHG() Function
	CHN System Variable
	CHR() Function
	CLEAR Directive
	CLIP_BOARD Directive
	CLOSE Directive
	CMP() Function
	CONTINUE Directive
	COS() Function
	CPL() Function
	CRC() Function
	CREATE TABLE Directive
	CSE() Function
	CTL System Variable
	CTL() Function
	CUSTOMVBX Directive
	CVS() Function
	CWDIR Directive

	D
	DATA Directive
	DAY System Variable
	DAY_FORMAT Directive
	DEC() Function
	DEF CLASS Directive
	DEF FN Directive
	DEF GID/UID Directives
	DEF MSG Directive
	DEF OBJECT Directive
	DEF systab= Directives
	DEF sysvar= Directives
	DEFAULT Directive
	DEFCTL Directive
	DEFPRT Directive
	DEFTTY Directive
	DELETE Directive
	DELETE OBJECT Directive
	DICTIONARY Directive
	DIM Directive
	DIM() Function
	DIRECT Directive
	DIRECTORY Directive
	DIR() Function
	DISABLE CONTROL Directive
	DISABLE Directive
	DISABLE EVENT Directive
	DLL() / DLX() Functions
	DLM System Variable
	DROP CLASS Directive
	DROP Directive
	DROP INDEX Directive
	DROP OBJECT Directive
	DROP ON Directive
	DROP_BOX Directive
	DSK() Function
	DSZ System Variable
	DTE() Function
	DUMP Directive

	E
	EDIT Directive
	ENABLE CONTROL Directive
	ENABLE Directive
	ENABLE EVENT Directive
	END DEF Directive
	END Directive
	END SWITCH Directive
	END WITH Directive
	ENDTRACE Directive
	END_IF Directive
	ENTER Directive
	ENV() Function
	EOM System Variable
	EPT() Function
	ERASE Directive
	ERR System Variable
	ERROR_HANDLER Directive
	ERR() Function
	ERS System Variable
	ESC System Variable
	ESCAPE Directive
	EVN() Function
	EVS() Function
	EXECUTE Directive
	EXIT Directive
	EXITTO Directive
	EXP() Function
	EXTRACT Directive
	EXTRACT RECORD Directive

	F
	FFN() Function
	FIB() Function
	FID() Function
	FILE Directive
	FIND Directive
	FIND RECORD Directive
	FIN() Function
	FLOATING POINT Directive
	FOR TO Directive
	FPT() Function
	FUNCTION Directive

	G
	GAP() Function
	GBL() Function
	GEP() Function
	GET_FILE_BOX Directive
	GFN System Variable
	GID System Variable
	GOSUB RETURN Directive
	GOTO Directive
	GRID Directive

	H
	HFN System Variable
	HIDE Directive
	HLP System Variable
	HSA() Function
	HSH() Function
	HTA() Function
	HWD System Variable
	HWN() Function
	H_SCROLLBAR Directive

	I
	I3E() Function
	IF THEN ELSE Directive
	INDEXED Directive
	IND() Function
	INPUT Directive
	INSERT Directive
	INT() Function
	INVOKE Directive
	IOLIST Directive
	IOL() Function
	IOR() Function

	J
	JST() Function
	JUL() Function

	K
	KEC() Function
	KEF() Function
	KEL() Function
	KEN() Function
	KEP() Function
	KEYED Directive
	KEYED LOAD Directive
	KEY() Function
	KGN() Function

	L
	LCS() Function
	LEN() Function
	LET Directive
	LFA System Variable
	LFO System Variable
	LIKE Directive
	LINE_SWITCH Directive
	LIP System Variable
	LIST Directive
	LIST_BOX Directive
	LNO() Function
	LOAD CLASS Directive
	LOAD DATA Directive
	LOAD Directive
	LOCAL Directive
	LOCK Directive
	LOG() Function
	LONG_FORM Directive
	LPG System Variable
	LRC() Function
	LST() Function
	LWD System Variable

	M
	MAX() Function
	MEM() Function
	MENU_BAR Directive
	MERGE Directive
	MESSAGE_LIB Directive
	MID() Function
	MIN() Function
	MNEMONIC Directive
	MNM() Function
	MOD() Function
	MSE System Variable
	MSGBOX Directive
	MSG() Function
	MSK() Function
	MSL System Variable
	MULTI_LINE Directive
	MULTI_MEDIA Directive
	MXC() / MXL() Functions

	N
	NAR System Variable
	NEW() Function
	NEXT Directive
	NEXT RECORD Directive
	NID System Variable
	NOT() Function
	NUL() Function
	NUM() Function

	O
	OBJ() Function
	OBTAIN Directive
	ON EVENT Directive
	ON GOSUB Directive
	ON GOTO Directive
	OPEN Directive
	OPT() Function

	P
	PAD() Function
	PASSWORD Directive
	PCK() Function
	PERFORM Directive
	PFX System Variable
	PFX() Function
	PGM() Function
	PGN System Variable
	POP Directive
	POPUPMENU Directive
	POS() Function
	PRC System Variable
	PRC() Function
	PRECISION Directive
	PREFIX Directive
	PREINPUT Directive
	PRINT Directive
	PRM System Variable
	PRM() Function
	PROCESS Directive
	PROCESS SERVER Directive
	PROGRAM Directive
	PROPERTY Directive
	PSZ System Variable
	PTH() Function
	PUB() Function
	PURGE Directive

	Q
	QUIT Directive
	QUO System Variable

	R
	RADIO_BUTTON Directive
	RANDOMIZE Directive
	RCD() Function
	RDX() Function
	READ DATA Directive
	READ Directive
	READ RECORD Directive
	REC() Function
	REDIM Directive
	REFILE Directive
	REF() Function
	RELEASE Directive
	REM Directive
	REMOVE Directive
	RENAME CLASS Directive
	RENAME CONTROL Directive
	RENAME Directive
	RENAMEINDEX Directive
	RENUMBER Directive
	REPEAT Directive
	RESET Directive
	RESTORE Directive
	RET System Variable
	RETRY Directive
	RETURN Directive
	RND System Variable
	RND() Function
	RNO() Function
	ROUND Directive
	RUN Directive

	S
	SAVE CONTROL Directive
	SAVE DATA Directive
	SAVE Directive
	SAVE FILE Directive
	SELECT Directive
	SEP System Variable
	SEP() Function
	SERIAL Directive
	SETCTL Directive
	SETDAY Directive
	SETDEV Directive
	SETDEV IOL Directive
	SETDEV KEY Directive
	SETDEV PROGRAM Directive
	SETDEV SEP Directive
	SETDEV TSK() Directive
	SETDRIVE Directive
	SETERR Directive
	SETESC Directive
	SETFID Directive
	SETMOUSE Directive
	SETTIME Directive
	SETTRACE Directive
	SET_FOCUS Directive
	SET_NBF Directive
	SET_PARAM Directive
	SGN() Function
	SHORT_FORM Directive
	SHOW Directive
	SID System Variable
	SIN() Function
	SORT Directive
	SQR() Function
	SRT() Function
	SSN System Variable
	SSZ() Function
	START Directive
	STATIC Directive
	STK() Function
	STOP Directive
	STP() Function
	STR() Function
	SUB() Function
	SWITCH Directive
	SWP() Function
	SYS System Variable
	SYSTEM_HELP Directive
	SYSTEM_JRNL Directive
	SYS() Function

	T
	TABLE Directive
	TAN() Function
	TBL() Function
	TCB() Function
	TIM System Variable
	TME System Variable
	TMR() Function
	TMS System Variable
	TRANSLATE Directive
	TRISTATE_BOX Directive
	TRX() Function
	TSK() Function
	TSM System Variable
	TXH() Function
	TXW() Function

	U
	UCP() Function
	UCS() Function
	UID System Variable
	UNLOCK Directive
	UNT System Variable
	UNTIL Directive
	UPDATE Directive
	UPK() Function
	USER_LEX Directive

	V
	VARDROP_BOX Directive
	VARLIST_BOX Directive
	VIA Directive
	VIDEO_PALETTE Directive
	VIN() / VIS() Functions
	V_SCROLLBAR Directive

	W
	WAIT Directive
	WAIT FOR EVENT Directive
	WEND Directive
	WHILE Directive
	WHO System Variable
	WINPRT_SETUP Directive
	WRITE Directive
	WRITE RECORD Directive

	X
	XEQ() Function
	XFA() Function
	XOR() Function

	Y
	Z

